
Discrete Connections for Geometry Processing

Thesis by
Keenan Crane

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

California Institute of Technology
Pasadena, California

May 28, 2010

ii

c© 2010

Keenan Crane

All rights Reserved

iii

Acknowledgements

The meshes used to test our algorithm are courtesy of the AIM@Shape Project,

the Stanford 3D Scanning Repository, Jotero, and Hugues Hoppe. Thanks to

Felix Kälberer, Matthias Nieser, and Konrad Polthier for processing the Aphrodite

model using QuadCover [11]. Last but not least, thanks to Peter and Mathieu for

letting me wander. . .

iv

Discrete Connections for Geometry Processing

by

Keenan Crane

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Abstract

Connections provide a way to compare local quantities defined at different points

of a geometric space. This thesis develops a discrete theory of connections that

naturally leads to practical, efficient numerical algorithms for geometry processing.

Our formulation is motivated by real-world applications where meshes may be

noisy or coarsely discretized. Further, because our discrete framework closely

parallels the smooth theory, we can draw upon a huge wealth of existing knowledge

to develop and interpret mesh processing algorithms.

The main contribution of this thesis is a new algorithm for computing trivial

connections on discrete surfaces that are as smooth as possible everywhere but on

a set of isolated singularities of given index. A connection is represented via an

angle associated with each dual edge, i.e., a discrete angle-valued 1-form. These

angles are determined by the solution to a linear system, and are globally optimal

in the sense that they describe the trivial connection closest to Levi-Civita among

all solutions with the prescribed set of singularities. Relative to previous meth-

ods our algorithm is surprisingly simple, and can be implemented using standard

operations from mesh processing and linear algebra. The solution can be used

to construct rotationally symmetric direction fields with a prescribed set of sin-

gularities and directional constraints, which are essential in applications such as

quadrilateral remeshing and texture synthesis.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Previous Work . 3

2 Discrete Connections 5

2.1 Connections . 5

2.2 Holonomy . 8

2.3 Discrete Connections . 9

2.4 Discrete Holonomy . 10

3 Algorithm 12

3.1 Setup . 12

3.2 Basis Cycles . 13

3.3 Angle Defects . 15

3.4 Singularities . 15

3.5 Optimization . 17

3.6 Area Weights . 18

3.7 Surfaces with Boundary . 18

3.8 Direction Fields . 19

3.9 Directional Constraints . 19

4 Results 21

4.1 Performance . 21

4.2 Robustness . 23

vi

5 Discussion 30

5.1 Connections on Surfaces . 30

5.2 Trivial Connections . 31

5.3 Singularities . 35

5.4 Summary . 36

6 Conclusion 38

1

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Discrete connections can be used to compute a field with singularities

precisely where desired (left) and nowhere else (right).

Our framework for discrete connections is motivated by the following question:

how does one construct a direction field on a discrete surface that is in some sense

as smooth as possible? In general we cannot find a field that is smooth everywhere

– in particular, the Poincaré index theorem requires that any direction field on a

given surface satisfies

∑
i

index(vi) = χ,

2

i.e., the winding numbers or indices of the field around singular points vi must

add up to the Euler characteristic χ. We therefore seek a direction field where

1. singularities have the prescribed index and location, and

2. integral curves are as close to straight (geodesic) as possible.

Figure 1.1 illustrates this idea: given some prescribed set of singularities (rep-

resented by colored dots), we would like to construct a field that has singularities

at these points and nowhere else. Although there are many ways to think about

this problem, the perspective provided by connections leads to algorithms that are

both highly efficient and simple to formulate.

Classically, there are two closely related ways to think about connections: in

terms of differentiation and in terms of transport. The differentiation perspective

is captured by the covariant derivative ∇XY , which can be thought of as the

directional derivative of one vector field along another. The transport perspective

is captured by a connection 1-form ω, which tells us how to modify an object as it

moves along a curve. In the smooth setting, these notions are largely equivalent,

i.e., a covariant derivative can be used to define transport and vice versa. However,

there is a point at which these two perspectives diverge: an Ehresmann connection

sacrifices the notion of differentiation to provide a more generic notion of transport.

In the discrete setting, the perspective we choose has a significant impact on

our computational setup. The covariant derivative takes us down the standard

path of discretizing differential operators (using, e.g., finite differences or finite el-

ements). This approach is essential when solving partial differential equations since

we need to retain the ability to differentiate along arbitrary directions. However,

the additional structure comes at a cost: because differentiation is approximated

numerically, it may be very difficult to exactly satisfy global relationships from

the smooth theory that depend on curvature and holonomy. Alternatively, we can

take the “Ehresmann” approach and abandon differentiation so that holonomy and

curvature can play the principal role. In this thesis we adopt the latter perspective

since the trivial connections we wish to compute are defined in terms of a global

3

condition on holonomy. The outcome is a discrete connection with an “algebraic”

flavor in the sense that curvature and holonomy are expressed purely in terms of

simplicial chains and group operations.

1.2 Previous Work

Our approach is closest in spirit to the work of Leok et al [14], which describes

a discretization of principal connections via a Lie group-valued discrete 1-form.

Their work focuses primarily on the discrete configuration space Q × Q used in

integrators for mechanical systems and does not develop numerical applications

on discrete meshes. In computer graphics, early work on smooth, consistent tran-

sitions between tangent spaces was motivated by decoration of surfaces with con-

sistently oriented textures and curvature-aligned strokes [19, 10, 23]. While these

algorithms were framed in terms of smoothly varying direction fields, we view them

as some of the first which constructed connections on discrete surfaces. Later mo-

tivation for this type of algorithm came from the requirements of quadrilateral

remeshing [22, 11, 3], where directions are specified only up to rotations by π/2

(a.k.a., “cross fields”). These applications led to the development of tools for the

controlled design of direction fields [17, 21, 13]. Discrete connections have also

appeared in the context of mesh deformation [15, 12] as a natural way to encode

the relationship between adjacent frames on a mesh. While these approaches dis-

cretize the Christoffel symbols, we instead focus on an intrinsic, coordinate-free

discretization of connections.

The main application presented in this thesis is the computation of globally

consistent direction fields on discrete surfaces, or in other words, parallel sections

of the unit tangent bundle. A major tension in the computation of direction fields

is between simplicity of the formulation and total control over all aspects of the

field. Efficient methods for vector field design have been proposed (e.g., in [24, 9]),

but unintended additional singularities often arise. At the other extreme, methods

which offer full control over singularities (location and index) require sophisticated

4

non-linear solvers (e.g., in [13]). Several approaches provide a trade-off between

efficiency and partial control over singularities by applying repeated linear solves

(e.g., [20, 3]).

Fundamentally, the difference between our approach and previous methods is

that we work with a connection 1-form (i.e., angles on dual edges) instead of

adopting the more traditional metric perspective (i.e., lengths on primal edges).

This representation allows us to perform computations that typically require a

conformally equivalent flat metric (such as constructing orthogonal curve networks

on surfaces) without explicitly determining edge lengths. In addition to increased

efficiency, this representation has some interesting benefits – for instance, consider

the usual discretization of Gaussian curvature at a vertex, given by

K = 2π −
∑
i

θi,

where θi are the tip angles. This representation makes it difficult to encode

curvatures greater than 2π, since we would require negative tip angles. However,

we can easily encode large curvature using a discrete connection since there is no

constraint on the range of connection angles (see Sections 2.3 and Chapter 3 for

more details).

5

Chapter 2

Discrete Connections

This chapter describes our formulation of discrete connections. Sections 2.1 and

2.2 give some intuition for the smooth objects we discretize; readers seeking a more

formal presentation can consult a reference such as Abraham et al. [1]. Sections 2.3

and 2.4 develop the discretization we use as our computational framework.

2.1 Connections

Figure 2.1: A fiber bundle associates an identical space or fiber (pink) to every

point of a manifold (blue). A connection describes how to move from one fiber to

another (illustrated by orange beads).

6

Roughly speaking, a connection tells us how a quantity associated with a man-

ifold changes as we move from one point to another – it “connects” neighboring

spaces (Figure 2.1). In the most generic setting, connections are defined in terms

of fiber bundles. A fiber bundle F → E
π→ B consists of a base space B, fiber space

F , and total space E, together with a projection map π : E → B. The basic idea

behind a fiber bundle is that E locally looks like the product of the base and fiber

spaces in the sense that every point x ∈ B is contained in an open set U ⊂ B such

that there is a homeomorphism φ : π−1(U) → U × F . Further, π ◦ φ−1 gives the

projection onto the first factor of U × F . In terms of fiber bundles, a connection

tells us how movement in the total space induces change along the fiber.

Given this setup, we can define an Ehresmann connection on any fiber bundle

where B and F are differentiable manifolds. Specifically, consider tangent vectors

of the total space that lie “along” fibers, i.e., all the vectors in the kernel of dπ

– this space is the vertical subbundle V of TE. An Ehresmann connection ω is

a vertical-valued 1-form ωx : TxE → Vx which leaves vertical vectors fixed, i.e.,

ω(v) = v for all v ∈ V [2]. The only other requirement is that this map is linear,

i.e., if ωx : TxE → TxF is a connection 1-form then for any scalar values a, b

and tangent vectors u, v ∈ TxE we must have ωx(au + bv) = aωx(u) + bωx(v) at

every point x ∈ E. In many applications we are concerned only with principal

bundles – in this case F is a Lie group and ω takes values in the corresponding Lie

algebra. We say that a 1-form is “angle-valued,” “g-valued,” etc., to indicate the

fiber space.

A simple physical example helps to motivate Ehresmann connections and make

the idea more concrete [2]. Consider a rolling coin whose configuration q is given

by a position s = (x, y), rolling angle θ, and heading ϕ (Figure 2.1). For a small

change q̇ in the overall configuration, we can express the resulting change ṡ in

position via

7

Figure 2.2: Rolling coin.

 1 0 0 cosϕ

0 1 0 sinϕ

︸ ︷︷ ︸

ω:TqE→Vq

q̇x

q̇y

q̇θ

q̇ϕ

︸ ︷︷ ︸
q̇∈TqE

=

 q̇x + cosϕ q̇θ

q̇y + sinϕ q̇θ

︸ ︷︷ ︸

ṡ∈Vq

,

i.e., the coin slips along the direction of linear velocity, and rolls forward in

the direction of the heading – the quantity ṡ = ω(q̇) describes the change in

position (x, y) induced by our current linear and angular velocity. The geometric

interpretation is that the base space B = S1×S1 encodes the rotation of the coin,

the fiber space F = R2 encodes the position, and the connection maps a velocity q̇

tangent to the total space to the induced change in position ṡ tangent to the fiber.

If the angles θ and φ are prescribed as functions of time, then we can integrate the

change along the fiber to get the full dynamics of the coin.

8

2.2 Holonomy

Figure 2.3: A connection maps tangents in the total space to tangents along the

fiber. By integrating these tangents as we walk around a closed loop, we get the

total change or holonomy. (Figure modified from [2], used with permission.)

The dynamics of the rolling coin provide one example of parallel transport.

More generally, given a curve γ(t) in the total space of any fiber bundle, we can

evaluate transport by integrating ω(γ̇(t)) over the length of the curve, i.e., at each

point we take the tangent to the curve and “plug it in” to the connection to get

the change along the fiber. Hence, the way quantities are transported is defined

by our choice of connection ω.

In general, a quantity transported around a closed loop ` will not return to

its original location. The difference between the initial and final quantity is called

the holonomy of ω around ` (Figure 2.3). In the most general case, holonomy also

depends on the basepoint of our loop, i.e., it depends on a choice of initial point

p ∈ `. For a principal bundle, however, picking a different starting p along the

same fiber will not change the holonomy; for a principal bundle with an abelian

fiber, the choice of basepoint does not affect holonomy at all. In particular, for

direction field design we work with the bundle SO(2)→ E
π→M where SO(2) is

the (abelian) group of rotations in the plane andM is a surface. Hence, we do not

have to worry about a choice of basepoint – in this case, holonomy is simply the

9

difference in angle between an initial and final vector transported around a loop `

(Figure 5.1).

Finally, every connection has an associated curvature. In particular, holonomy

around infinitesimal loops gives the sectional curvature of the connection. The

most familiar example is perhaps the Levi-Civita connection, whose curvature is

the standard Riemannian curvature. On a surface, the curvature of the Levi-Civita

connection is the Gaussian curvature.

2.3 Discrete Connections

Figure 2.4: A discrete connection is expressed via a map between fibers associated

with adjacent k-simplices.

In this work we take the following approach to discrete connections. Let a

semi-discrete fiber bundle F → Ê
π→ B̂ consist of a triangulated k-manifold B̂

where we associate a copy of F with each k-simplex in B̂ (Figure 2.4). We call this

structure semi -discrete because we do not discretize the fiber space. A discrete

connection is then given by a collection of fiber automorphisms ω̂ij : F → F

associated with each ordered pair of k-simplices (σi, σj) in B̂ that share a k − 1-

dimensional face. Conceptually, we have a map associated with each dual edge e?ij

that encodes parallel transport between adjacent fibers – in fact, we can project

10

a smooth connection ω onto a discrete connection ω̂ via integration along dual

edges. For this reason, we require that ω̂ji = ω̂−1
ij . Note that nothing prevents

us from discretizing the base via a more general cell complex; we use triangulated

manifolds only for simplicity.

In the case where F is given by a Lie group G, we have a discrete principal

bundle, and the maps ω̂ij can be expressed via group action of F on F . In other

words, we can explicitly represent the automorphisms by storing a group element

g ∈ G on each dual edge. Alternatively, we can store elements ξ ∈ g – in this case

the map between fibers is expressed by exp(ξ), where exp : g → G is the usual

exponential map. The latter representation may be preferable for two reasons.

First, if G is compact and connected then exp is surjective, so we can encode

at least as much information in the algebra as we can in the group. In fact, we

can often encode more: consider the case where G = SO(n) – an element in the

algebra can encode, say, multiple rotations by 2π around a given axis, whereas all

such elements are identified with the identity in the group. Second, if G is abelian

then expressions of the form g1g2 · · · gn in the group can be represented by linear

expressions ξ1 + ξ2 + · · · + ξn in the algebra (where exp(ξi) = gi). Both of these

considerations will come into play when developing our algorithm for direction

field design (Chapter 3).

2.4 Discrete Holonomy

Since the maps ω̂ij encode transport along dual edges, we can define discrete paral-

lel transport along any sequence of consecutive dual edges e?i0i1 , e
?
i1i2

, . . . by simply

composing the corresponding maps ω̂i0i1 , ω̂i1i2 , (Note that we need to be care-

ful about orientation here since ω̂ji = ω̂−1
ij .) Or, in the case of a principle bundle,

we simply concatenate the appropriate group elements. The definition of discrete

holonomy is thus the same as the smooth definition: it is the difference found along

the fiber after transporting a quantity around a closed loop (expressed as a cycle

of dual edges). Since the base B̂ does not discretize infinitesimal loops, we do not

11

have a pointwise notion of the sectional curvature of a discrete connection. For

certain bundles, however, discrete holonomy tells us about integrated curvature –

see Section 5.1.

12

Chapter 3

Algorithm

This chapter describes an algorithm for computing trivial connections, i.e., con-

nections with globally vanishing holonomy. Although we describe this algorithm

in terms of the unit tangent bundle of a surface, in principle it can be applied to

any semi-discrete fiber bundle whose fiber is an abelian Lie group. Here we give a

pragmatic description in terms of familiar operations on meshes – Chapter 5 gives

an interpretation of our algorithm in terms of the discrete connections developed

in Chapter 2. Chapter 4 provides numerical experiments and timings.

3.1 Setup

We work with a triangulated 2-manifold K = {V,E, F} and its dual (Figure 3.1)–

note, however, that we do not need to explicitly construct a dual mesh since we

can simply store dual quantities on the corresponding primal elements. Most of

the tools we need are standard operations from discrete exterior calculus (DEC).

Although we review the essential concepts, a more general overview can be found

in [7]. Ultimately, we need to solve for a set of adjustment angles that tell us how

to rotate a vector whenever it moves across an edge. Our algorithm for computing

these angles consists of a few simple steps:

1. Find a set of basis cycles.

2. Compute the angle defect around each basis cycle.

13

Figure 3.1: The natural setting for a discrete connection is on the dual edges

(bottom, center) of a triangulated surface (top).

3. Specify singular vertices and their indices.

4. Solve a linear system for the adjustment angles.

These angles can then be used for various mesh processing tasks; we use them to

construct direction fields with user-specified singularities (Section 3.8).

3.2 Basis Cycles

In the context of our algorithm, a cycle is a sequence of consistently oriented

dual edges that form a loop. More explicitly, a cycle is represented

by a vector c ∈ Z|E| that has nonzero entries only for dual edges

in that cycle. The sign of these entries is determined by the ori-

entation of each dual edge relative to some canonical orientation:

1

11

1 -1

-1

positive if it agrees, negative otherwise. A cycle around the boundary of a dual

cell is a boundary cycle.

Given this representation, it is straightforward to construct a basis for all possible

cycles on the surface. Note that any particular cycle is either contractible, meaning

that it can be continuously deformed to a point, or noncontractible, meaning that

it cannot (Figure 3.2). We first construct a matrix d0 ∈ R|E|×|V | whose columns

span the contractible cycles:

14

Figure 3.2: Loops on a surface can be contractible (ζ) or noncontractible (ξ).

(d0)ij =

±1, dual edge i is contained in dual cell j

0, otherwise.

Here, each column is the boundary cycle of some dual cell (we use d0 to denote this

matrix since it is the discrete exterior derivative on 0-forms [5]). Technically, this

matrix defines a spanning set since only |V | − 1 columns are independent. (This

degeneracy is accounted for by a condition on singular indices; see Section 3.4.)

We compute a basis for the noncontractible cycles using the tree-cotree decom-

position of Eppstein [8]:

• compute a spanning tree T of primal edges;

• compute a spanning tree T ∗ of dual edges that do not cross edges of T ;

• for any dual edge not contained in T ∗ and not crossed by T , follow both of

its vertices to the root, completing a cycle.

On a surface of genus g, we get exactly 2g independent noncontractible cycles

or generators. This basis can again be represented by the columns of a matrix

H ∈ R|E|×2g given by

Hij =

±1, if dual edge i is in generator j

0, otherwise.

We combine all basis cycles into a single matrix

A =

 dT0

HT

 .

15

Figure 3.3: Left: In the discrete setting, the holonomy of the Levi-Civita con-

nection on a surface is given by the usual angle defect δ–this defect is found by

simply translating a vector across each unfolded pair of triangles in sequence (right

figure).

3.3 Angle Defects

Each cycle in our basis specifies a sequence of dual edges, or equivalently, a sequence

of primal triangles. The angle defect δ of a cycle is simply the angle between initial

and final edges when these triangles are unfolded in the plane (Figure 3.3, left).

More explicitly, given an initial angle αi in face i, we compute a new angle αj in

neighboring face j as

αj = αi − θij + θji, (3.1)

where θij and θji are the angles between the shared edge e and an arbitrary but

fixed reference direction in triangles i and j, respectively (Figure 3.3, right). Re-

peating this procedure for n consecutive dual edges in a cycle gives us a sequence

of angles α0, . . . , αn, and the angle defect is given by δ = αn − α0. In the case of

contractible basis cycles, this procedure yields the usual discretization of Gaussian

curvature. We hence use K ∈ R|V | to denote the vector of defects around con-

tractible cycles; we use z ∈ R2g to denote defects around noncontractible cycles.

3.4 Singularities

To control the placement and behavior of singularities, we specify an index for each

primal vertex. The index determines the number of full rotations experienced by a

vector transported along a small loop around the vertex (Figure 3.4); most vertices

16

Figure 3.4: On most surfaces, a direction field must have at least one singularity.

Here we see a few examples (left to right): saddle (-1), tripod (-1/2), thorn (+1/2),

focus (+1), apple (+3/2) [16].

will have index zero. We can also specify the number of rotations experienced by

vectors transported around generators (Figure 3.5). In our algorithm, we simply

specify a vector k ∈ Z|V |+2g of indices corresponding to the cycles in our basis. The

only requirement is that
∑

i ki = χ over vertices and boundary loops (Section 3.7),

where χ = |V | − |E| + |F | is the Euler characteristic–indices of the remaining

generators may be assigned arbitrarily. These indices are used to modify angle

defects around basis cycles: K̃i = Ki − 2kiπ, and z̃i = zi − 2kiπ. We then

concatenate these values into a single vector b ∈ R|V |+2g of modified defects b =

[K̃ z̃]T .

So far, direction fields have been considered consistent only if directions are

mapped to themselves modulo 2π by parallel transport. More flexibility is achieved

by allowing directions to be mapped to themselves modulo 2π/N for some fixed

N ∈ N (e.g., N = 4 for cross fields–see Figure 4.3). This is achieved by simply

setting fractional singular indices ki = ni/N, ni ∈ Z and proceeding as before.

Singularities can be placed by hand or determined by an automatic method such

as [20].

17

Figure 3.5: Our method gives control over the holonomy around generators –

note that there are no singularities as the field direction “spins” along one of the

generators (left to right: no turn, one turn, two turns, three turns).

3.5 Optimization

Finally, to compute the adjustment angles we solve the convex problem

argmin
x

||x||2 s.t. Ax = −b, (3.2)

whose only local minimum is the unique global minimizer. Further, the constraints

encode the index prescribed at each vertex (see Section 5.3), so we cannot end up

with more singularities than we asked for.

At this point, standard algorithms for convex problems (e.g., equality-constrained

Newton’s method) could be applied to obtain the minimizer. However, the simple

structure of this problem permits a more efficient approach. Since the system of

constraints is underdetermined, the minimizer x∗ of (3.2) is the unique solution

to Ax = −b that has no component in the kernel of A – all other solutions have

larger `2 norm. One way to compute x∗ is to first find any solution x̃ to the con-

straint equation Ax = −b and then project out its null space component. Since

the null space is spanned by the columns of d1 (i.e., the discrete exterior derivative

on 1-forms [7]), the optimal solution is given by x∗ = x̃ − dT1 (d1d
T
1)−1d1x̃, which

entails an additional linear solve. However, a number of efficient linear solvers

directly compute solutions with no nullspace component – in practice, we use the

multifrontal sparse QR factorization method implemented in SuiteSparseQR [4].

18

3.6 Area Weights

We can easily include a diagonal matrix D ∈ R|E|×|E| in our objective to control

the importance of smoothness over the mesh. In particular, we use the standard

cotangent weights

Dkk =
√

2(cotϕi + cotϕj)−1,

to get proper area weighting over the diamond areas associated with each dual

edge (see [5]). Here ϕi and ϕj are the angles opposing edge k. To solve the

augmented problem, we apply the change of variables y = Dx and solve for y

exactly as before, recovering the final solution via x∗ = D−1y∗. (Note that in this

case we never have to explicitly evaluate the reciprocal of cotϕi + cotϕj , which

avoids potential instability.)

3.7 Surfaces with Boundary

For surfaces with boundary our constraint matrix A needs to include boundary

loops and omit cycles around boundary vertices. This requirement entails only

three simple modifications to our algorithm:

• Skip dual cells along the boundary when building the basis for contractible

cycles;

• Skip boundary vertices when constructing the primal spanning tree T ;

• Skip dual edges that cross the boundary when extracting loops from the

tree-cotree decomposition.

The (modified) tree-cotree decomposition will now yield a generator from every

class of noncontractible cycles, including boundary loops.

At this point there are a number of ways one could modify the vector b to

control behavior at the boundary. Perhaps the simplest is to require only that the

19

sum of the indices of singular vertices equals zero – Figure 4.7 demonstrates the

resulting effect on parallel transport.

3.8 Direction Fields

Once we have a vector x of connection angles, constructing a global direction field

is straightforward: starting at an arbitrary face f0 and initial direction β0, traverse

the primal faces in any order. Across each edge ek, compute the angle in the next

triangle via

βj = βi − θij + θji − xk. (3.3)

Note that Eq. (3.3) is just the operation used to compute angle defects (Eq. (3.1)),

augmented with the adjustment angles x. Because of the way we compute x, the

resulting direction field is independent of traversal order, and is only a function of

the choice of β0 (see Section 5.2).

3.9 Directional Constraints

We can specify a set of faces where the field direction is fixed by prescribing

the angle γ in each of these faces (Figure 4.8). To accommo-

date these constraints we build an additional spanning tree Tc

of the primal faces rooted at one of the constrained faces f0.

Each time we encounter a constrained face fm, we follow the

tree back towards the root until we encounter another con-

strained face fn (possibly the root f0). The sequence σ of dual edges between

fm and fn in Tc forms an additional row in our constraint matrix A. We then

transport the constraint angle γm along σ using Equation (3.1) to get γ′m, and

store the difference γn− γ′m in the corresponding entry of b. Finally, we make sure

to compute our direction field starting at f0 using the initial angle γ0. This way,

all directional constraints are satisfied by construction. Note that constraints on

holonomy and directional constraints are linearly independent since no collection

20

of paths in Tc can be combined to form a cycle.

21

Chapter 4

Results

This chapter examines how our algorithm compares to existing methods in terms

of performance and robustness. Results are shown in figures at the end of the chap-

ter; in all examples we were able to achieve exactly the prescribed field topology

(Figure 1.1). Figure 4.5 demonstrates that fields produced by our method can be

used to drive quadrilateral parameterization algorithms such as QuadCover [11],

which maps a cross field to a vector field on a multiple covering of the input surface.

One benefit of our approach is that it provides exact matchings between different

sheets of the covering, even near singular vertices of large index. Figure 4.12 shows

two artistic applications of our method.

4.1 Performance

We tested performance on a number of standard meshes with varying size and

element quality. Since singularities and constraint directions depend only on the

data vector b, we can prefactor our constraint matrix A and edit direction fields

in real time (Figure 4.1). Adding faces to the constraint set entails updating A;

factorization took no more than 9 seconds on our largest model (lion, 400k faces

– see Figure 4.2). As described in Section 3.5, our solutions are globally optimal

since they are simply the minimum-norm solution to an underconstrained linear

system. Overall we observed very consistent performance, even on fields with

many singularities (Figure 4.10). A large number of directional constraints could

22

0 100 000 200 000 300 000 400 000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

faces

ed
it

tim
e

Hs
L

Figure 4.1: Timings of our implementation for all meshes shown in figures (2.4

GHz Core 2 Duo laptop, single thread). On the largest mesh (lion, 400k faces),

singularities and constraint directions can be edited in roughly 1.3s after 8.2s of

setup time.

considerably increase the size of the system, though by no more than a factor

of two: at worst we have one constraint for each edge in a spanning tree on |V |

vertices.

Relative to the method described in Ray et al. [20] we can edit a mesh with

100k faces roughly 15-48x times faster, depending on the convergence rate of their

nonlinear solver. Note that their method cannot guarantee optimality since it

relies on iterative reprojection onto a nonconvex constraint set. The method in

Lai et al. [13] computes a globally optimal solution via discrete Ricci flow, but

is nonlinear. Hence we can edit singularities about 25-30x faster (using the same

meshes and comparable hardware), and we can additionally edit directional con-

straints at roughly the same rate. Fisher et al. [9] also compute a solution via a

single linear solve, but cannot guarantee the global topology of the resulting field,

nor can they deal with fractional indices.

23

4.2 Robustness

As depicted in Figure 4.11, our results are consistent across different discretizations

of the same surface. More remarkably, fields retain the same qualitative behavior

even after significant noise or distortion has been applied to the mesh (Figure 4.4), a

consequence of the intrinsic, variational nature of our formulation. Note that some

triangles may have negative cotangents; in this case we simply clamp cotangents to

zero when computing area weights (Section 3.6)–alternatively, we can simply use

unit weights on all edges (D = I). In practice these options produce very similar

results; we did not encounter any meshes where bad triangles resulted in a visible

problem.

Finally, our method had no difficulty dealing with singularities of large index

(see Figure 4.9) – even on extremely coarse meshes – since we can encode an arbi-

trarily large amount of “turning” across a single edge (as discussed in Section 2.3).

In comparison, methods that store absolute angles per face [20] or vertex [13] may

need to refine the mesh or cut out a boundary region near such singularities, since

(as noted earlier) the angle defect around a single vertex can only encode so much

curvature.

24

Figure 4.2: Even meshes with a large number of faces (lion, 400k faces) can be

edited in about a second on a standard laptop.

Figure 4.3: Our algorithm generates direction fields that are smooth up to local

rotations by multiples of 2π/N .

25

Figure 4.4: Because our method is purely intrinsic, it is robust to noise (center)

and extreme perversions of the input mesh (right).

Figure 4.5: The fields we generate can be used as input to QuadCover [11]. Here

a small set of hand-picked singularities of index ±1/4 yields a parameterization

with very little distortion.

26

Figure 4.6: Real-time editing makes it easy to place singularities in locations that

are geometrically uninteresting but artistically relevant.

Figure 4.7: Fields on surfaces with boundary do not require singularities (left),

but we can easily add singularities and still get natural boundary behavior (right).

27

Figure 4.8: We can fix the direction of the field at specified faces by constraining

transport between pairs of fixed faces. Notice that we still obtain a smooth field

with only specified singularities.

Figure 4.9: Since our method does not need to explicitly compute a metric, we

have no trouble handling singularities of arbitrarily large index (above: singularity

of positive index 20).

28

Figure 4.10: Our method has no difficulty with high genus or a large number of

singularities – here we see a direction field with 60 singularities on a surface of

genus 11.

Figure 4.11: Our discretization yields similar results on different meshes of the

same surface.

29

Figure 4.12: Fast direction field editing makes it easy to wrap a T-rex in ribbon

(top) or build a horse out of flexible drinking straws (bottom).

30

Chapter 5

Discussion

This chapter gives an interpretation of the algorithm described in Chapter 3 in

terms of the discrete connections defined in Chapter 2.

5.1 Connections on Surfaces

As mentioned earlier, direction fields computed by our algorithm can be viewed as

sections of the unit tangent bundle SO(2)→ E
π→M, i.e., an angle at each point

of the surface M giving the direction of the field. A connection ω on this bundle

therefore maps each direction of motion to an infinitesimal rotation. Formally, ω

defines a principal connection on the frame bundle of a smooth surface, which is

encoded by an so(2)-valued 1-form.

When developing a discrete representation of ω, the first question is: how

should we represent tangent vectors? Storing tangents on faces is perhaps most

natural because, as pointed out by Kircher and Garland, “it avoids the need to

invent tangent planes that lie outside the surface” [12]. In other words, tan-

gent directions in faces are intrinsic, which means that they are well-defined even

on poorly discretized surfaces (see especially Figure 4.4). This setup leads to a

semi-discrete fiber bundle SO(2) → Ê
π→ M̂, where M̂ is a simplicial surface

(Chapter 2.3).

Within this framework, a discrete connection ω̂ has a particularly simple rep-

resentation: for each dual edge e?k we store a single angle ω̂k which represents the

31

Figure 5.1: On a surface, holonomy is given by the difference in angle after a vector

is parallel transported around a closed loop.

total (i.e., integrated) rotation of a vector as we travel from one face to the next

(see Figure 5.2, right). In terms of our algorithm, this angle is given explicitly by

ω̂k = θji − θij − xk, i.e., a change of frame followed by an “adjustment.” In the

language of DEC, a value per dual edge is a (dual) discrete 1-form [5], which in

our case is angle valued. Note that these angles can take any value in R, and can

therefore be thought of as elements of the Lie algebra so(2).

Discrete parallel transport via ω̂ is also simple: starting with an initial direction

α0, we add consecutive angles ω̂k along a sequence of dual edges. Again, since each

value ω̂k represents the integral of infinitesimal rotations along a path from one

face to the next, this sum can be thought of as piecewise integration of a smooth

connection. The holonomy of ω̂ is thus given by sums of angles around cycles,

and the total curvature over a region is given by the holonomy around the region

boundary. (Figure 5.3). However, curvature does not tell us everything about

holonomy since not every cycle is a boundary–this fact plays a critical role in the

formulation of our algorithm.

5.2 Trivial Connections

With all of this machinery in place, we arrive at the central question: which

connection should we use to construct direction fields? One answer is given by

32

Figure 5.2: Left: in the continuous setting, a connection on the unit tangent

bundle determines how tangent directions change along a curve. Right: a discrete

connection on this bundle is represented by a rotation angle ωij = −ωji at each

oriented dual edge e?ij of a triangulated surface.

the canonical Levi-Civita connection [6]. Parallel transport via the discrete Levi-

Civita connection is computed as in Equation (3.1), and the resulting holonomy

or “angle defect” δ around a dual cell corresponds to the standard discretization

of Gaussian curvature in terms of vertex tip angles (Figure 3.3). One way to

see that this procedure corresponds to a proper discretization of the Levi-Civita

connection is to consider that Levi-Civita on a surface is given by the pullback

under the Gauss map of Levi-Civita on the sphere. Since parallel transport on the

sphere maps one tangent plane to another via rotation along a great arc, we can

transport a tangent vector from a triangle to one of its neighbors by rotating it

Figure 5.3: Curvature of the unit tangent bundle. In the discrete case, the total

curvature of a region is simply the angle “defect” of a unit vector transported

around the region’s boundary.

33

Figure 5.4: The Levi-Civita connection on a discrete surface is induced by the

pullback under the Gauss map N of the Levi-Civita connection on the sphere.

around their shared edge (Figure 5.4). This choice is popular in computer graphics

because it is easy to compute and agrees with our usual notion of straightness [18].

However, in many practical situations this simple scheme is problematic: since

the holonomy of the Levi-Civita connection equals the Gaussian curvature, a vector

transported around a closed loop is not mapped back to itself. As a consequence,

transport from one point to another will depend on the choice of path, since we

can “pick up” additional curvature along the way (see Figure 5.5, left).

Instead, we seek a trivial connection, i.e., a connection where the holonomy

around every cycle is zero. It is easy to see that transport via a trivial connection

is path-independent: in particular, consider transport along any two paths f and

g from a point x to a point y (Figure 5.5, right) – the only way the total change

around the combined loop f -g can be zero is if change along f equals the change

along g.

Though not formulated explicitly in terms of connections, this basic premise is

the underlying idea in recent work on direction field design [20, 13]. Ray et al. [20]

effectively compute a connection where curvature vanishes and then apply smooth-

ing to obtain a globally consistent result. The reason smoothing is needed here is

34

Figure 5.5: Left: transporting a vector v0 from a to b along two different paths

may yield different results (v′ resp. v′′) because we can pick up different amounts

of curvature along the way. Right: a trivial connection guarantees that transport

is path-independent since any loop f − g must have zero holonomy.

that curvature alone is not sufficient to characterize consistency – as noted earlier,

it describes holonomy only around boundary cycles (see Figure 5.6). More recently,

Lai et al. [13] acknowledge the importance of the holonomy around generators, but

are concerned that constraining the holonomy around all loops is computationally

infeasible. Like Ray, their solution is to first eliminate curvature (by computing a

flat metric with cone singularities), and then account for the generator holonomy

with a “rotation compensation” field.

In fact, the holonomy around any cycle can be easily expressed in terms of the

curvature and the holonomy around a set of generators. In the discrete case, it is

especially straightforward to compute a small set of basis cycles that encode this

information, which is the approach we take in our algorithm (Section 3.2). More

specifically, the “adjustment angles” in our algorithm (or what Ray et al. call

the “field curvature”) actually describe the deviation of our discrete connection ω̂

from the (discrete) Levi-Civita connection. Hence, our linear constraint Ax = −b

states that the sum of these deviations along any cycle should exactly cancel the

holonomy we find with Levi-Civita (Section 3.3). Implicitly, we are constructing

a connection for a surface with a flat metric, but expressing this connection with

respect to the given embedding. This way we do not need to explicitly determine

35

the edge lengths that define the new metric. Notably, however, a trivial connection

is more specific than a flat metric since a trivial connection also has zero holonomy

around generators.

We can now give an interpretation of the objective in our algorithm as well:

||Dx||2 is the distance from the Levi-Civita connection with respect to the norm

induced by the Hodge inner product, i.e., the standard 2-norm on differential

forms. The diagonal factor D – or ?1/2
1 in the language of DEC – simply gives the

appropriate area weighting (Section 3.6). Overall, then, our optimization problem

seeks a globally consistent way to transport vectors that agrees with our usual

notion of “straight” as much as possible.

Figure 5.6: Left: parallel transport via the Levi-Civita connection is not globally

consistent, and yields discontinuities in direction fields (displayed in red). Center:

using a flat metric improves the situation, but inconsistencies remain. Right: a

trivial connection achieves global consistency by constraining all cycles–including

generators.

5.3 Singularities

Not every surface admits a trivial connection, however. Consider the Gauss-Bonnet

theorem, which states that the total curvature of a surface equals 2πχ, where the

36

Euler characteristic χ is a topological invariant. In other words, our surface must

have curvature somewhere, but we get to choose where this curvature goes.

Ideally, we would like to put this curvature where it will not interfere with the

transport of vectors. Remembering that Gaussian curvature is given by the holon-

omy around region boundaries (Section 5.1), this means we want the curvature of

every region to be an integer multiple of 2π, so that vectors transported around

closed loops are mapped back to themselves–even if they experience a number of

full rotations along the way. If we can do this, then transport from one point to

another is still consistent up to rotations by 2kπ, hence the vector we end up with

will remain the same.

An easy way to achieve this goal is to concentrate all of our curvature at a

set of isolated points or singularities, in increments of 2π. In the discrete case,

this is equivalent to constraining the holonomy around some small set of vertices

(possibly just one) as done in Section 3.4. For surfaces with boundary, we can

also concentrate curvature on boundary loops. (Note, however, that these consid-

erations place no restriction on the holonomy around generators.) Further, if we

instead use increments of 2π/N , then transport will be consistent up to rotations

by 2kπ/N–suitable for line fields, cross fields, etc.. Thus, from the perspective

of connections, the generalization of the Poincaré-Hopf theorem given in Ray et

al. [21] is a straightforward consequence of the Gauss-Bonnet theorem.

5.4 Summary

On the unit tangent bundle, our computational setup can easily be seen as a pro-

jection of the smooth theory onto discrete meshes. Dual edges carry finite angles

which equal path integrals of incremental rotations between neighboring faces. A

zero-holonomy condition on the space of loops (including noncontractible loops)

results in a finite dimensional linear system of sum conditions around discrete cy-

cles of dual edges. The minimum `2 norm solution of this linear system is the

minimum L2 norm solution of the projected energy on the underlying smooth 1-

37

form. The result is a trivial connection with curvature that vanishes everywhere

except at a fixed set of singularities and boundary loops with specified indices.

38

Chapter 6

Conclusion

We have described a theory of discrete connections which is suitable for computa-

tions where parallel transport, holonomy, and curvature are of primary importance.

Our framework for computing trivial connections provides a simple, effective foun-

dation for geometry processing tasks that need to compare frames or directions

on surfaces. Although our algorithm is quite simple from the perspective of mesh

processing, it comes from a solid geometric foundation that links together several

aspects of discrete differential geometry. On the practical side of things, we be-

lieve that robustness, efficiency, and ease of implementation make our framework

a valuable tool for a number of graphics-related applications.

39

Bibliography

[1] R. Abraham, J. E. Marsden, and R. Ratiu. Manifolds, tensor analysis, and

applications: 2nd edition. Springer-Verlag New York, Inc., New York, NY,

USA, 1988.

[2] A. Bloch. Manifolds, tensor analysis, and applications: 2nd edition. Springer-

Verlag New York, Inc., New York, NY, USA, 2003.

[3] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-Integer Quadran-

gulation. ACM Trans. Graph., 28(3):art. 77, 2009.

[4] Tim Davis. SuiteSparseQR: A multithreaded multifrontal sparse QR factor-

ization. http://www.cise.ufl.edu/research/sparse/SPQR/.

[5] Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete Differential Forms

for Computational Modeling.

[6] Manfredo P. DoCarmo. Riemannian Geometry. Birkhäuser, 1992.

[7] Sharif Elcott and Peter Schröder. Building your own DEC at home. In ACM

SIGGRAPH Course Notes on Discrete Differential Geometry, pages 55–59,

2006.

[8] David Eppstein. Dynamic Generators of Topologically Embedded Graphs. In

Proc. ACM-SIAM Symp. on Discr. Alg., pages 599–608, 2003.

[9] Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. De-

sign of Tangent Vector Fields. ACM Trans. Graph., 26(3):art. 56, 2007.

http://www.graphics.rwth-aachen.de/uploads/media/bommes_zimmer_2009_siggraph_01.pdf
http://www.graphics.rwth-aachen.de/uploads/media/bommes_zimmer_2009_siggraph_01.pdf
http://www.cise.ufl.edu/research/sparse/SPQR/
http://geometry.caltech.edu/pubs/DKT05.pdf
http://geometry.caltech.edu/pubs/DKT05.pdf
http://multires.caltech.edu/pubs/scomplex.pdf
http://arxiv.org/abs/cs.DS/0207082
http://multires.caltech.edu/pubs/VFDesign.pdf
http://multires.caltech.edu/pubs/VFDesign.pdf

40

[10] Aaron Hertzmann and Denis Zorin. Illustrating Smooth Surfaces. In Proc.

ACM/SIGGRAPH Conf., pages 517–526, 2000.

[11] Felix Kälberer, Matthias Nieser, and Konrad Polthier. QuadCover - Sur-

face Parameterization using Branched Coverings. Comp. Graph. Forum,

26(3):375–384, 2007.

[12] Scott Kircher and Michael Garland. Free-Form Motion Processing. ACM

Trans. Graph., 27(2):1–13, 2008.

[13] Yu-Kun Lai, Miao Jin, Xuexiang Xie, Ying He, Jonathan Palacios, Eugene

Zhang, Shi-Min Hu, and Xianfeng Gu. Metric-Driven RoSy Field Design and

Remeshing. IEEE Trans. Vis. Comp. Graph., 16:95–108, 2010.

[14] M. Leok, J. E. Marsden, and A. Weinstein. A discrete theory of connections

on principal bundles. (preprint, arXiv:math.DG/0508338), 2004.

[15] Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. Linear

Rotation-Invariant Coordinates for Meshes. ACM Trans. Graph., 24(3):479–

487, 2005.

[16] Igor. Nikolaev. Foliations on Surfaces. Springer, 2001.

[17] Jonathan Palacios and Eugene Zhang. Rotational Symmetry Field Design on

Surfaces. ACM Trans. Graph., 26(3):art. 55, 2007.

[18] Konrad Polthier and Markus Schmies. Straightest geodesics on polyhedral

surfaces. In Math. Vis., pages 391–398, 1998.

[19] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped Textures. In Proc.

ACM/SIGGRAPH Conf., pages 465–470, 2000.

[20] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Lévy. Geometry-Aware

Direction Field Processing. ACM Trans. Graph., 29(1):1–11, 2009.

[21] Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. N-symmetry di-

rection field design. ACM Trans. Graph., 27(2):1–13, 2008.

http://www.mrl.nyu.edu/publications/illustrating-smooth/
http://page.mi.fu-berlin.de/polthier/articles/quadCover/KNP07-QuadCover.pdf
http://page.mi.fu-berlin.de/polthier/articles/quadCover/KNP07-QuadCover.pdf
http://graphics.cs.uiuc.edu/~kircher/defgrad/defgrad.pdf
http://dx.doi.org/10.1109/TVCG.2009.59
http://dx.doi.org/10.1109/TVCG.2009.59
http://arxiv.org/math.DG/0508338
http://cs.nyu.edu/~sorkine/ProjectPages/Editing/rotation_invariant.pdf
http://cs.nyu.edu/~sorkine/ProjectPages/Editing/rotation_invariant.pdf
http://web.engr.oregonstate.edu/~zhange/rotational_symmetry.html
http://web.engr.oregonstate.edu/~zhange/rotational_symmetry.html
http://research.microsoft.com/en-us/um/people/hoppe/proj/lapped/
http://alice.loria.fr/publications/papers/2009/tog_DFD/DFD.pdf
http://alice.loria.fr/publications/papers/2009/tog_DFD/DFD.pdf

41

[22] Yiying Tong, Pierre Alliez, David Cohen-Steiner, and Mathieu Desbrun. De-

signing Quadrangulations with Discrete Harmonic Forms. In Proc. Symp.

Geom. Proc., pages 201–210, 2006.

[23] Greg Turk. Texture Synthesis on Surfaces. In Proc. ACM/SIGGRAPH Conf.,

pages 347–354, 2001.

[24] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector Field Design

on Surfaces. ACM Trans. Graph., 25(4):1294–1326, 2006.

http://geometry.caltech.edu/pubs/TACD06.pdf
http://geometry.caltech.edu/pubs/TACD06.pdf
http://www-static.cc.gatech.edu/~turk/texture_surfaces/texture.html
http://www.math.gatech.edu/~mischaik/papers/vecflddesn.pdf
http://www.math.gatech.edu/~mischaik/papers/vecflddesn.pdf

	Introduction
	Motivation
	Previous Work

	Discrete Connections
	Connections
	Holonomy
	Discrete Connections
	Discrete Holonomy

	Algorithm
	Setup
	Basis Cycles
	Angle Defects
	Singularities
	Optimization
	Area Weights
	Surfaces with Boundary
	Direction Fields
	Directional Constraints

	Results
	Performance
	Robustness

	Discussion
	Connections on Surfaces
	Trivial Connections
	Singularities
	Summary

	Conclusion

