Parallelised Bayesian Optimisation via Thompson Sampling

Kirthevasan Kandasamy

Akshay Krishnamurthy

Jeff Schneider

Barnabás Póczos

AISTATS 2018
Black-box Optimisation

Expensive Blackbox Function

Examples:
- Hyper-parameter Tuning
- ML estimation in Astrophysics
- Optimal policy in Autonomous Driving
Black-box Optimisation

\[f : \mathcal{X} \rightarrow \mathbb{R} \text{ is an expensive, black-box, noisy function.} \]
Black-box Optimisation

\(f : \mathcal{X} \to \mathbb{R} \) is an expensive, black-box, noisy function.
Black-box Optimisation

$f : \mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \arg\max_x f(x)$.

\[f(x) \]

\[f(x_\star) \]

\[x_\star \]

\[x \]
Black-box Optimisation

\(f : \mathcal{X} \rightarrow \mathbb{R} \) is an expensive, black-box, noisy function. Let \(x_\star = \arg\max_x f(x) \).

Simple Regret after \(n \) **evaluations**

\[
SR(n) = f(x_\star) - \max_{t=1,\ldots,n} f(x_t).
\]
Gaussian Processes (\mathcal{GP})

$\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.
Gaussian Processes (\mathcal{GP})

$\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Functions with no observations

$$f(x)$$

$$x$$
Gaussian Processes (\mathcal{GP})

$\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Prior \mathcal{GP}
Gaussian Processes (\mathcal{GP})

$\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Observations
Gaussian Processes (\mathcal{GP})

$\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Posterior \mathcal{GP} given observations
Gaussian Processes (\mathcal{GP})

$\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Posterior \mathcal{GP} given observations

After t observations, $f(x) \sim \mathcal{N}(\mu_t(x), \sigma_t^2(x))$.
Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{GP}(0, \kappa)$.

Several criteria for picking next point:
- GP-UCB (Srinivas et al. 2010),
Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{GP}(0, \kappa)$.

Several criteria for picking next point:
- GP-UCB (Srinivas et al. 2010),

1) Compute posterior \mathcal{GP}.
Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{GP}(0, \kappa)$.

Several criteria for picking next point:
- **GP-UCB** (Srinivas et al. 2010),

1) Compute posterior \mathcal{GP}.
2) Construct acquisition φ_t.

$$\varphi_t = \mu_{t-1} + \beta_t^{1/2} \sigma_{t-1}$$
Gaussian Process Bandit (Bayesian) Optimisation

Model \(f \sim \mathcal{GP}(0, \kappa) \).

Several criteria for picking next point:
- **GP-UCB** (Srinivas et al. 2010),

\[
\phi_t = \mu_{t-1} + \beta_t^{1/2} \sigma_{t-1}
\]

1) Compute posterior \(\mathcal{GP} \).
2) Construct acquisition \(\phi_t \).
3) Choose \(x_t = \arg\max_x \phi_t(x) \).
Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{GP}(0, \kappa)$.

Several criteria for picking next point:

1) Compute posterior \mathcal{GP}.
2) Construct acquisition φ_t.
3) Choose $x_t = \arg\max_x \varphi_t(x)$.
4) Evaluate f at x_t.

\[\varphi_t = \mu_{t-1} + \beta_t^{1/2} \sigma_{t-1} \]
This work: Parallel Evaluations

Sequential evaluations with one worker

Parallel evaluations with \(M \) workers (Asynchronous)

Parallel evaluations with \(M \) workers (Synchronous)
This work: Parallel Evaluations

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)
This work: Parallel Evaluations

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)
This work: Parallel Evaluations

Sequential evaluations with one worker

- j^{th} job has feedback from all previous $j - 1$ evaluations.

Parallel evaluations with M workers (Asynchronous)

- j^{th} job missing feedback from exactly $M - 1$ evaluations.

Parallel evaluations with M workers (Synchronous)

- j^{th} job missing feedback from $\leq M - 1$ evaluations.
Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

- First worker: maximise acquisition, \(x_{t1} = \arg\max \varphi_t(x) \).
Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

- First worker: maximise acquisition, $x_{t1} = \arg\max \varphi_t(x)$.
- Second worker: acquisition is the same! $x_{t1} = x_{t2}$
Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

\[\varphi_t = \mu_{t-1} + \beta_{t}^{1/2} \sigma_{t-1} \]

- First worker: maximise acquisition, \(x_{t1} = \arg\max \varphi_t(x) \).
- Second worker: acquisition is the same! \(x_{t1} = x_{t2} \)
- \(x_{t1} = x_{t2} = \cdots = x_{tM} \).
Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

\[f(x) \]

- First worker: maximise acquisition, \(x_{t1} = \text{argmax} \varphi_t(x) \).
- Second worker: acquisition is the same! \(x_{t1} = x_{t2} \)
- \(x_{t1} = x_{t2} = \cdots = x_{tM} \).

Direct application of popular (deterministic) strategies, e.g. GP-UCB, GP-EI, etc. do not work. Need to “encourage diversity”.

\[\varphi_t = \mu_{t-1} + \beta_t^{1/2} \sigma_{t-1} \]
Challenges in parallel BO: encouraging diversity

- Add hallucinated observations.
 (Ginsbourger et al. 2011, Janusevkis et al. 2012)
- Optimise an acquisition over \mathcal{X}^M (e.g. M-product UCB).
 (Wang et al. 2016, Wu & Frazier 2017)
- Resort to heuristics, typically requires additional hyper-parameters and/or computational routines.
Challenges in parallel BO: encouraging diversity

- Add hallucinated observations.
 (Ginsbourger et al. 2011, Janusevkis et al. 2012)
- Optimise an acquisition over \mathcal{X}^M (e.g. M-product UCB).
 (Wang et al. 2016, Wu & Frazier 2017)
- Resort to heuristics, typically requires additional hyper-parameters and/or computational routines.

Our Approach: Based on Thompson sampling (Thompson, 1933).
- Conceptually simple: *does not require explicit diversity strategies.*
Challenges in parallel BO: encouraging diversity

- Add hallucinated observations.

 (Ginsbourger et al. 2011, Janusevkis et al. 2012)

- Optimise an acquisition over \mathcal{X}^M (e.g. M-product UCB).

- Resort to heuristics, typically requires additional hyper-parameters and/or computational routines.

Our Approach: Based on Thompson sampling (Thompson, 1933).

- Conceptually simple: *does not require explicit diversity strategies*.

- Asynchronicity

- Theoretical guarantees
GP Optimisation with Thompson Sampling (Thompson, 1933)

1. Construct posterior GP.
2. Draw sample g from posterior.
3. Choose $x_t = \text{argmax}_x g(x)$.
4. Evaluate f at x_t.

Take-home message: In parallel settings, direct application of sequential TS algorithm works. Inherent randomness adds sufficient diversity when managing M workers.
1) Construct posterior P.
GP Optimisation with Thompson Sampling
(Thomson, 1933)

1) Construct posterior \mathcal{GP}.
2) Draw sample g from posterior.

$f(x)$

x
1) Construct posterior GP.
2) Draw sample g from posterior.
3) Choose $x_t = \text{argmax}_x g(x)$.
1) Construct posterior \mathcal{GP}.
3) Choose $x_t = \text{argmax}_x g(x)$.
2) Draw sample g from posterior.
4) Evaluate f at x_t.

Take-home message: In parallel settings, direct application of sequential TS algorithm works. Inherent randomness adds sufficient diversity when managing M workers.
GP Optimisation with Thompson Sampling

(Thompson, 1933)

1) Construct posterior \mathcal{GP}.
2) Draw sample g from posterior.
3) Choose $x_t = \arg\max_x g(x)$.
4) Evaluate f at x_t.

Take-home message: In parallel settings, direct application of sequential TS algorithm works. Inherent randomness adds sufficient diversity when managing M workers.
Parallelised Thompson Sampling

Asynchronous: \(\text{asyTS} \)

At any given time,
1. \((x', y') \leftarrow \text{Wait for a worker to finish.}\)
2. Compute posterior \(\mathcal{GP} \).
3. Draw a sample \(g \sim \mathcal{GP} \).
4. Re-deploy worker at \(\text{argmax } g \).

Synchronous: \(\text{synTS} \)

At any given time,
1. \(\{ (x'_m, y'_m) \}^M_{m=1} \leftarrow \text{Wait for all workers to finish.}\)
2. Compute posterior \(\mathcal{GP} \).
3. Draw \(M \) samples \(g_m \sim \mathcal{GP} \), \(\forall m \).
4. Re-deploy worker \(m \) at \(\text{argmax } g_m \), \(\forall m \).

Parallelised Thompson Sampling

Asynchronous: \(\text{asyTS} \)

At any given time,
1. \((x', y') \leftarrow \text{Wait for a worker to finish.}\)
2. Compute posterior \(GP\).
3. Draw a sample \(g \sim GP\).
4. Re-deploy worker at \(\text{argmax } g\).

Synchronous: \(\text{synTS} \)

At any given time,
1. \(\{(x'_m, y'_m)\}_{m=1}^{M} \leftarrow \text{Wait for all workers to finish.}\)
2. Compute posterior \(GP\).
3. Draw \(M\) samples \(g_m \sim GP, \forall m\).
4. Re-deploy worker \(m\) at \(\text{argmax } g_m\), \(\forall m\).
Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,
1. \((x', y') \leftarrow \text{Wait for a worker to finish.}\)
2. Compute posterior \(GP\).
3. Draw a sample \(g \sim GP\).
4. Re-deploy worker at \(\text{argmax } g\).

Synchronous: synTS

At any given time,
1. \(\{(x'_m, y'_m)\}_{m=1}^{M} \leftarrow \text{Wait for all workers to finish.}\)
2. Compute posterior \(GP\).
3. Draw \(M\) samples \(g_m \sim GP, \forall m\).
4. Re-deploy worker \(m\) at \(\text{argmax } g_m, \forall m\).

Simple Regret in Parallel Settings

Simple regret after n evaluations,

$$\text{SR}(n) = f(x_\star) - \max_{t=1,...,n} f(x_t).$$

$n \leftarrow$ # completed evaluations by all workers.
Simple Regret in Parallel Settings

Simple regret after \(n \) evaluations,

\[
\text{SR}(n) = f(x_\star) - \max_{t=1,\ldots,n} f(x_t).
\]

\(n \leftarrow \# \text{ completed evaluations by all workers.} \)

Simple regret with time as a resource,

Asynchronous

\[
\text{SR}'(T) = f(x_\star) - \max_{t=1,\ldots,N} f(x_t).
\]

\(N \leftarrow \# \text{ completed evaluations by all workers in time } T. \)

(possibly random).
Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al. 2012, Kaufmann et al. 2012, Russo & van Roy 2016)

\[E[SR(n)] \lesssim \sqrt{\Psi n \log(n)} \]

Maximum information gain (Srinivas et al. 2010) GP with SE Kernel in d dimensions, $\Psi_n(X) \approx d^d \log(n)$.

Theorem: \[E[SR(n)] \lesssim M \sqrt{\log(M)} n + \sqrt{\Psi n \log(n + M)} n \]

Theorem: \[E[SR(n)] \lesssim M \text{polylog}(M) n + \sqrt{C \Psi n \log(n)} n \]
Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al. 2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS

\[\mathbb{E}[\text{SR}(n)] \lesssim \sqrt{\frac{\psi_n \log(n)}{n}} \]
(Russo & van Roy 2014)

\[\psi_n \leftarrow \text{Maximum information gain} \]
(Srinivas et al. 2010)

GP with SE Kernel in \(d \) dimensions, \(\psi_n(\mathcal{X}) \asymp d^d \log(n)^d \).
Theoretical Results SR(\(n\))

Several results for sequential Thompson sampling (Agrawal et al. 2012, Kaufmann et al. 2012, Russo & van Roy 2016)

\[
\mathbb{E}[SR(n)] \lesssim \sqrt{\frac{\psi_n \log(n)}{n}}
\]

(seqTS) (Russo & van Roy 2014)

\(\psi_n \leftarrow\) Maximum information gain (Srinivas et al. 2010)

GP with SE Kernel in \(d\) dimensions, \(\psi_n(\mathcal{X}) \approx d^d \log(n)^d\).

Theorem: synTS (Kandasamy et al. 2018)

\[
\mathbb{E}[SR(n)] \lesssim \frac{M \sqrt{\log(M)}}{n} + \sqrt{\frac{\psi_n \log(n+M)}{n}}
\]
Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al. 2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS

\[\mathbb{E}[\text{SR}(n)] \lesssim \sqrt{\frac{\psi_n \log(n)}{n}} \]

(Russo & van Roy 2014)

\(\psi_n \leftarrow\) Maximum information gain

(Srinivas et al. 2010)

GP with SE Kernel in \(d\) dimensions, \(\psi_n(X) \asymp d^d \log(n)^d\).

Theorem: synTS

\[\mathbb{E}[\text{SR}(n)] \lesssim \frac{M \sqrt{\log(M)}}{n} + \sqrt{\frac{\psi_n \log(n+M)}{n}} \]

(Kandasamy et al. 2018)

Theorem: asyTS

\[\mathbb{E}[\text{SR}(n)] \lesssim \frac{M \text{polylog}(M)}{n} + \sqrt{\frac{C \psi_n \log(n)}{n}} \]

(Kandasamy et al. 2018)
Experiment: Park1-4D

Comparison in terms of number of evaluations

$M = 10$
Theoretical Results for SR'(T)

Model evaluation time as an independent random variable

- Uniform \(\text{unif}(a, b) \) bounded
- Half-normal \(\mathcal{HN}(\tau^2) \) sub-Gaussian
- Exponential \(\exp(\lambda) \) sub-exponential

Theorem: TS with \(M \) parallel workers (Kandasamy et al. 2018)

- If evaluation times are the same, \(\text{synTS} \approx \text{asyTS} \).
- When there is high variability in evaluation times, \(\text{asyTS} \) is much better than \(\text{synTS} \).

\[13/15 \]
Theoretical Results for SR′(T)

Model evaluation time as an independent random variable

- Uniform \(\text{unif}(a, b) \)
- Half-normal \(\mathcal{HN}(\tau^2) \)
- Exponential \(\exp(\lambda) \)

Theorem: TS with \(M \) parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, \(\text{synTS} \approx \text{asyTS} \).
When there is high variability in evaluation times, \(\text{asyTS} \) is much better than \(\text{synTS} \).
Theoretical Results for $SR'(T)$

Model evaluation time as an independent random variable

- Uniform: $\text{unif}(a, b)$ bounded
- Half-normal: $\mathcal{HN}(\tau^2)$ sub-Gaussian
- Exponential: $\exp(\lambda)$ sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, $\text{synTS} \approx \text{asyTS}$. When there is high variability in evaluation times, asyTS is much better than synTS.

- Uniform: constant factor
- Half-normal: $\sqrt{\log(M)}$ factor
- Exponential: $\log(M)$ factor
Experiment: Hartmann-18D \(M = 25 \)

Evaluation time sampled from an exponential distribution

Additional synthetic and real experiments in the paper/poster.
Summary

- synTS, asyTS: direct application of TS to synchronous and asynchronous parallel settings.

- Take-aways: Theory
 - Both perform essentially the same as seqTS in terms of the number of evaluations.
 - When we factor time as a resource, asyTS performs best.

- Take-aways: Practice
 - Conceptually simple and scales better with the number of workers than other methods.
Summary

- synTS, asyTS: direct application of TS to synchronous and asynchronous parallel settings.

- Take-aways: Theory
 - Both perform essentially the same as seqTS in terms of the number of evaluations.
 - When we factor time as a resource, asyTS performs best.

- Take-aways: Practice
 - Conceptually simple and scales better with the number of workers than other methods.

Thank you

Poster #49, Session 3 (Tuesday evening).

Code: github.com/kirthevasank/gp-parallel-ts
Appendix
Experiment: Branin-2D

Evaluation time sampled from a uniform distribution
Experiment: Branin-2D

Evaluation time sampled from a uniform distribution
Experiment: Branin-2D \(M = 4 \)

Evaluation time sampled from a uniform distribution
Experiment: Hartmann-6D

Evaluation time sampled from a half-normal distribution.
Experiment: Hartmann-18D \(M = 25 \)

Evaluation time sampled from an exponential distribution
Experiment: Currin-Exponential-14D \(M = 35 \)

Evaluation time sampled from a Pareto-3 distribution
Experiment: Model Selection in Cifar10 \(M = 4 \)

Tune \# filters in in range \((32, 256)\) for each layer in a 6 layer CNN.
Time taken for an evaluation: 4 - 16 minutes.