Flow-based Video Synthesis and Editing

Kiran S. Bhat Steven M. Seitz*

Carnegie Mellon University

Jessica K. Hodgins

Pradeep K. Khosla
*University of Washington

Figure 1: Synthesizing new video by manipulating flow lines. Images from left to right: one frame of input video, flow lines marked by the
user, flow lines marked on the edited video and one frame of the edited video.

Abstract

This paper presents a novel algorithm for synthesizing and editing
video of natural phenomena that exhibit continuous flow patterns.
The algorithm analyzes the motion of textured particles in the in-
put video along user-specified flow lines, and synthesizes seamless
video of arbitrary length by enforcing temporal continuity along a
second set of user-specified flow lines. The algorithm is simple to
implement and use. We used this technique to edit video of water-
falls, rivers, flames, and smoke.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image Gener-
ation; 1.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques; 1.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Motion;

Keywords: Texture and Video Synthesis, Particle Systems, Image
and Video Processing

1 Introduction

Real footage of natural phenomena has a complexity and beauty
that is rarely matched in synthetic footage in spite of many recent
advances in simulation, rendering, and post-processing. Leveraging
real footage for special effects is difficult, however, because a nat-
ural scene may not match the director’s intentions and modifying
the physical setting may be expensive or impossible. In this paper,
we present a technique that allows the user to modify real footage
while maintaining its natural appearance and complexity.

The key to our approach is the observation that video of a class
of natural phenomena can be approximated by continuous motion
of particles along well-defined flow lines. First, we capture the dy-
namics and texture variation of the particles along user-defined flow
lines in the input video. To generate video of arbitrary length, we
synthesize particles such that they complete their full paths along

each flow line. Playing back these particles along new flow lines
allows us to make interesting edits to the original video (Figure 1).
The user defines flow lines on both the input and output video and
we leverage his or her visual intuition to create a wide range of
edits. We demonstrate the power of this approach by modifying
scenes of waterfalls, a river, flames, and smoke.

2 Related Work

Creating realistic animations of fluid flow is an active area of re-
search in computer graphics. Physically based simulation tech-
niques have been successfully applied to simulate and control fluids
(e.g., [Treuille et al. 2003]). However, these techniques are compu-
tationally expensive and are usually tailored for a single type of
natural phenomena such as smoke, water, or fire.

Recently, several researchers have attempted to model the tex-
tured motion of fluidic phenomena in video and synthesize new
(and typically longer) image sequences. Non-parametric models
for texture synthesis have been applied to create 3D temporal tex-
tures of fluid-like motion (e.g., [Wei and Levoy 2000]). The video
textures algorithm creates long videos from short clips by con-
catenating appropriately chosen subsequences [Schodl et al. 2000].
Video sprites extend video textures to allow for high level con-
trol over moving objects in video [Schodl and Essa 2002]. Wang
and Zhu [2002] model the motion of texture particles in video us-
ing a second order Markov chain. Doretto et al. [2003] use Auto-
Regressive filters to model and edit the complex motion of fluids in
video. The graph cuts algorithm combines volumes of pixels along
minimum error seams to create new sequences that are longer than
the original video [Kwatra et al. 2003].

Our synthesis approach is very simple and produces comparable
results to the best of these on sequences with continuous flow. Ad-
ditionally, our technique allows an artist to specify edits intuitively
by sketching input and desired flow lines on top of an image.

3 Approach

Some natural phenomena such as waterfalls and streams have
time-varying appearance but roughly stationary temporal dynam-
ics [Doretto et al. 2003]. For example, the velocity at a single fixed
point on a waterfall is roughly constant over time. Consequently,
these phenomena can be described in terms of particles moving

A AT A A

A AL il e

BRI EPEER LT
(d)

Figure 2: A particle-based representation for video. (a) A particle
moving along its flow line. (b) Particle texture moving along the
same flow line over time. (c) Texture variation of a real particle
from the Niagara sequence (Figure 6). For clarity, we show the
particle texture every 6th frame as it moves along the flow line. The
particle velocity increases as the particle moves downward as would
be expected due to gravity. (d) A filmstrip (left-right, top-bottom)
showing the particle texture for each frame as the particle travels
downward along the flow line. The texture of two adjacent cells
is similar, which facilitates tracking. However, the texture varies
significantly between the beginning and end of the flow line.

along fixed flow lines (possibly curved) that particles follow from
the point at which they enter the image to the point where they leave
or become invisible. For instance, the flow lines in the waterfall in
Figure 1 are mostly vertical. Each particle also has an associated
texture (a patch of pixels), which changes as the particle moves
along the flow line. Our video texture synthesis technique produces
seamless, infinite sequences by modelling the motion and texture of
particles along user-specified flow lines. We first describe the way
in which the particles move in video, and then describe how they
are rendered using texture patches.

Particle Dynamics: To begin, consider the case of a single flow
line in the image, as shown in Figure 2(a). Any particle that begins
at the start of the flow line d; will pass through a series of positions
d,,d,,...,dy during its trajectory. The particle’s velocity along the
flow line may be time-varying; thus the positions d; need not be
evenly spaced. The particle’s texture may vary as it moves along
the flow line (Figure 2(b,c,d)).

We represent the temporal evolution of particles along this flow
line as follows. Define a matrix M(d,t) = (p, f), where p refers to
a specific particle, and f specifies the frame in the input sequence
where that particle appears at d. Figure 3(a) plots M(d,t) for the
input sequence, where the number in each cell corresponds to f and
the color to p. The first column of this matrix shows the particles
and their positions on the flow line in frame 1 of the input (hence
these entries have f = 1). The red numbers, for example, show the
path of a single particle during the course of the input sequence.

When the sequence is looped, there is a discontinuity (vertical
black line) between frames 5 and 6 because particles abruptly move
to different locations or disappear altogether. This discontinuity
appears simultaneously for every pixel in the image making it a
very noticeable artifact.

We can reduce this discontinuity by a simple change to the en-

—K—>

d 23 2|5/ 1|2/ 345 2| 3| 1] 2| 3| 1] 2| 3
dg 1.2 3 a45|1 2|3 4 3l 4| 2| 3[4 2| 3
i g, 1 2 3 45|12 345 4 5| 3| 4 5

Simple loop Our algorithm

(@) (b)

Figure 3: (a) Plot of M(d,t) showing the particles on a single flow
line over time in the input sequence. Numbers specify frames, and
colors specify particles. Note that there is a discontinuity for each
particle along the flow line between time ¢t = 5 and # = 6 when the
input sequence is looped. (b) In contrast, our synthesis algorithm
maintains temporal continuity along flow lines. Although there is
a discontinuity along the diagonal stepped line, it is less noticeable
because all particles complete their paths along the flow line.

tries of M(d,t). The modified matrix is obtained by repeating the
first K diagonals of the original matrix. For example, the shaded
entries of Figure 3(a) are repeated to produced Figure 3(b). While
the modified matrix is composed of a subset of the same entries as
in (a), it enforces temporal continuity because each particle com-
pletes its full path along the flow line. The vertical discontinuity
in Figure 3(a) is replaced with a ladder-shaped discontinuity pat-
tern in Figure 3(b), with one spatial discontinuity in each column,
corresponding to an abutting pair of patches in the output sequence
that were not adjacent in the input sequence. These spatial dis-
continuities are difficult to detect, however, because the abutting
pair of patches move together in the output sequence. This simple
procedure lets us create a matrix of arbitrary width that preserves
temporal continuity for all particles along the flow lines.

We implement the procedure in Figure 3(b) by sequentially gen-
erating particles at d; from a subset of K input particles (shaded
in Figure 3(a)), and moving them along the flow line over time.
First, an artist sketches a dense set of flow lines over the input
video. Then, we compute and store the particle velocities and tex-
tures along these flow lines. The particle velocities are computed
as follows. For a given particle location in the current frame, we
search along the flow line for a corresponding location in the next
frame that best matches the texture of the current particle.! The
rectangular patch of pixels around the best match location becomes
the particle texture for the next frame. All the synthesis parameters,
including the number and spacing of flow lines and the size of the
particle texture (Figure 2(c,d)) are controlled by the artist.

Particle Rendering: Once the particle positions along the flow
lines in each new image are determined, the system blends their tex-
tures to produce the rendered result. Recall that we store the particle
texture as it evolves along the flow line in the input sequence. Ren-
dering simply involves drawing the patch of texture around each
particle, and using feathering to blend the overlapping regions from
different patches. The feathering method assigns a weight to each
pixel in the overlapping region that is inversely proportional to its
distance to the edges of the overlapping region.

Generality: Our approach works best for input sequences that
have stationary temporal dynamics. Waterfalls and rivers are exam-
ples of continuous phenomena where the velocity (magnitude and
direction) at any fixed point in the image is roughly constant over
time. Phenomena like flames rising upward or smoke from a chim-
ney (without wind) can also be modelled with a simple extension
to our method for defining particle dynamics. For such input se-

I'This procedure performs a constrained form of optical flow along the
flow line, e.g., [Trucco and Verri 1998].

t,---a

Input Edited

Figure 4: Schematic showing the transformations used to transfer
texture from an input flow line to an edited flow line. For example,
the green and red pixels in the edited flow line are obtained from the
input particle texture using the tangent information at correspond-
ing points.

Figure 5: Result of editing a smoke sequence by manipulating flow
lines. Corresponding flow lines have the same color in this picture.
The flow lines from the second and third chimney in the edited se-
quence shown with letter S are scaled because the edited flow lines
are of different length than the input.

quences, we allow the velocity magnitude at each fixed point on a
flow line to vary over time. Unlike Figure 2(a), particles that begin
at the start of the flow line d; at different times ¢ will pass through a
different series of positions d,(t),d,(t +1),... ,d,(t +n—1) along
the same trajectory. This modified procedure uses the steps for dy-
namics and rendering described in the previous paragraphs, how-
ever, particles with different frame indices f may now have differ-
ent velocity magnitudes along the flow line. Although this exten-
sion is an approximation to input video with non-stationary dynam-
ics, it seems to work well in practice for video of flames and smoke
where the overall direction of flow remains almost constant.

4 Editing

The synthesis algorithm described in the previous section can be
extended to support editing by synthesizing texture over a new set
of flow lines. We warp the texture along the input flow line to syn-
thesize texture over the edited flow line, using the tangent informa-
tion between corresponding points of the two curves (Figure 4). A
simple scheme for assigning corresponding points between the two
flow lines is to choose points of equal arclengths (from the start of
the flow line) along the two curves. An alternative is to add a term
to the warping function that scales the arclengths of the input to be
equal to the edited flow lines. This modification produces edited
textures that are scaled and warped versions of the texture from the
input flow line. The animator chooses between these two schemes
to create different effects in the edited sequence (Figure 5).

In our editing framework, the animator first draws a dense set
of input flow lines. Then, she draws a sparse set of flow lines cor-
responding to the desired edited sequence, and specifies the cor-
respondence between the input and edited flow lines. To create a

Figure 6: The left figure shows an input waterfall sequence and the
right shows an edited waterfall created using our algorithm. The
animator draws the flow lines in the input image, shown in blue.
She then draws a sparse set of flow lines in the edited image in red
and specifies the correspondences between the edited and input flow
lines. The system generates a set of interpolated flow lines (shown
in green) and computes their correspondences with the input flow
lines automatically using dynamic programming.

Yy y x-1)x\
Input (Y) Edited (X)
Figure 7: For a set of neighboring edited flow lines (x — 1,x) and
their corresponding input flow lines (), y), the patch overlap error

computes a least square difference between the colors of overlap-
ping regions, shown in green.

dense set of edited flow lines, the system interpolates the flow lines
spatially, as shown in Figure 6. We use dynamic programming to
find a globally optimal set of correspondences between the interpo-
lated flow lines and the input flow lines. Let Y be the dense set of
input flow lines and X be the set of edited flow lines. For every pair
(x—1,x) of neighboring edited splines, we compute the patch over-
lap error E(x—1,y, x,y) for all possible pairs (y',y) of input splines
(Figure 7). We evaluate the overlap error term by synthesizing the
flow line x — 1 using texture from y’ and the neighboring flow line
x using texture from y. The error is defined as the sum-squared er-
ror in color in the overlapping regions of the two textures, averaged
over a fixed number of frames (30 in our experiments). To compute
the correspondences, we minimize the following cost function:

C(x,y) :H;in[C(x—1,y’)+E(x—1,y’,x,y)] (1)

where x € X,y €Y and y’ € Y. Although the dynamic programming
approach is computationally intensive, it produces a set of interpo-
lated flow lines whose colors match well.

5 Experimental Results

We applied our algorithm to footage of waterfalls, a river, smoke,
and flames. For most of these examples, we create a long temporal
sequence from a short (2 second) clip of video and show a num-
ber of interesting edits (see accompanying video). We used texture
patches of 24 x 24 pixels for all sequences except flame, where the
patch size was 100 x 100 pixels. All the sequences took a few sec-
onds per frame to render in Matlab, for frame sizes of 320 x 240
pixels.

Edited

Input

Figure 8: Editing results for a river and a flame, where a trunk is
inserted into a river and a flame is bent to the left.

Niagara Falls: This sequence has several distinct texture re-
gions, with clear water on the top, foamy water on the left and
spray on the bottom (Figure 6). As shown in Figure 2(d), the tex-
ture changes dramatically along flow lines. Because our algorithm
does not model transparency, we observe some visual artifacts at
the interface between water and spray in the synthesized infinite se-
quences. We edited the Niagara sequence to change the landscape
and remove the foamy portion of the waterfall. The resulting edited
sequence and the corresponding flow lines are shown in Figure 6.

Waterfall: In this example, we added two extra channels to a
waterfall sequence (Figure 1). We mark a set of vertical flow lines
to capture the water moving down and another set of radial flow
lines to model the collisions at the bottom of the fall. The interface
between the waterfall and the lake at the bottom causes interesting
foam patterns, which are captured in the temporally extended and
edited sequences.

Stream: Here, we edit a stream sequence to simulate the effect
of water colliding against a trunk (Figure 8). We edit the water flow
lines to curve around the trunk and use the foamy texture (where
water collides with rocks in the input video) to create the effect of
water colliding against the trunk.

Smoke: This example shows an edit of smoke from a chimney
that exhibits non-stationary motion along constant flow lines (Fig-
ure 5). We add an extra chimney and change the direction of the
smoke.

Flame: We model the input flame video using particles moving
on a single vertical flow line. Figure 8 shows one frame of an edited
sequence, where we simulate the effect of wind blowing to the left
by specifying an edited flow line that curves left.

6 Discussion

This paper describes a simple algorithm for creating and editing
arbitrarily long videos from short input clips for a variety of natu-
ral phenomena. We applied this technique on image sequences of
waterfalls, rivers, flames, and smoke. For these phenomena, our
synthesis results are comparable to the best existing video texture
synthesis techniques. Our system also provides an intuitive inter-
face for editing video. Most of the editing examples took a few

iterations of interaction (refining the edited flow lines) to achieve
the desired result.

Although our approach has been successfully used to edit a num-
ber of sequences, it is limited to input sequences with nearly sta-
tionary flow patterns. Better results would likely be obtained by
using graph cuts instead of feathering to blend overlapping particle
texture patches, possibly enabling application to more structured
scenes such as cars moving on a highway. Extending the algorithm
to handle transparency is an important and interesting avenue for
future work. In this work, we leveraged the artist’s intuition about
the flow of particles in the scene to specify flow lines in the in-
put and desired sequences. Devising robust techniques to compute
good flow lines automatically would be a useful improvement, as
would devising ways to animate the flow lines temporally to create
a broader set of interesting edits. We do not desire, however, to
create a fully automatic technique but instead wish to create a tech-
nique that leverages the artist’s visual judgment by allowing her the
greatest control over the resulting footage.

References

DORETTO, G., CHIUSO, A., SOATTO, S., AND WU, Y. 2003.
Dynamic textures. International Journal of Computer Vision 51,
2,91-109.

KWATRA, V., SCHODL, A., EsSsA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. ACM Transactions on Graphics, SSIGGRAPH 2003,
22,3,277-286.

SCHODL, A., AND ESsA, I. A. 2002. Controlled animation of
video sprites. In ACM SIGGRAPH Symposium on Computer An-
imation, 121-128.

SCHODL, A., SZELISKI, R., SALESIN, D. H., AND EssA, 1.
2000. Video textures. In Proceedings of ACM SIGGRAPH 2000,
489-498.

TREUILLE, A., MCNAMARA, A., POPOVIC, Z., AND STAM, J.
2003. Keyframe control of smoke simulations. ACM Transac-
tions on Graphics, SIGGRAPH 2003, 22, 3, 716-723.

Trucco, E., AND VERRI, A. 1998. Introductory Techniques
for 3-D Computer Vision. Prentice-Hall, Inc, New Jersey, ch. 7,
146-148.

WANG, Y., AND ZHU, S.-C. 2002. A generative model for textured
motion: Analysis and synthesis. In Proc. European Conference
on Computer Vision (ECCV), 582-598.

WEIL, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. In Proceedings of ACM
SIGGRAPH 2000, 479-488.

