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ABSTRA CT 

Solid bodies roll and tumble  through space.  In 
computer  an imat ion ,  so do cameras.  The ro ta t ions  of 
these objects  are best  described using a four coordinate  
system, quaternions,  as is shown in this paper .  Of all 
quaternions,  those on the unit  sphere are most sui table  
for an imat ion ,  but  the question of how to const ruct  
curves on spheres has not  been much explored. This 
paper  gives one answer by present ing a new kind of 
spline curve, c rea ted  on a sphere,  sui table  for smoothly  
in-hetweening (i.e. in terpola t ing)  sequences of a r b i t r a r y  
ro ta t ions .  Both theory  and exper iment  show tha t  the 
motion genera ted  is smooth and na tura l ,  wi thout  quirks 
found in ear l ier  methods.  
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1. I n t r o d u c t i o n  

Computer  an imat ion  of three dimensional  objects  
imi ta tes  the key .frame techniques of t rad i t iona l  
an imat ion ,  using key posi t ions in space ins tead  of key 
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drawings.  Physics says t ha t  the general  posit ion of a 
rigid body can be given by  combining a t r ans la t ion  with 
a ro ta t ion .  Compute r  an imators  key such 
t r ans fo rmat ions  to control  both  s imula ted  cameras  and 
objects  to be rendered.  In following such an approach,  
one is na tu ra l ly  led to  ask: W h a t  is the best  
represen ta t ion  for general  ro ta t ions ,  and how does one 
in-between them? Surpris ingly l i t t le has been publ ished 
on these topics,  and the answers are not tr ivial .  

This paper  suggests t h a t  the common solution, using 
three Euler ' s  angles in te rpo la ted  independent ly ,  is not 
ideal.  The  more recent  (1843) nota t ion  of quaternions 
is proposed ins tead,  along with in te rpola t ion  on the 
quaternion unit  sphere.  Al though quaternions are less 
familiar ,  conversion to quaternions and genera t ion  of 
in-between frames can be completely au tomat ic ,  no 
m a t t e r  how key frames were original ly specified, so 
users don ' t  need to k n o w - - o r  c a r e - - a b o u t  inner detai ls .  
The same cannot  be sa id  for Euier ' s  angles, which are 
more difficult to use. 

Spherical  in te rpola t ion  itself can be used for purposes 
besides an ima t ing  ro ta t ions .  For example,  the set  of all 
possible directions in space forms a sphere,  the so-called 
Gauss ian  sphere,  on which one might  want  to control  
the posi t ions of infini tely d i s tan t  light sources. 
Modell ing fea tures  on a globe is another  possible 
appl ica t ion .  

It is simple to  use and to program the method proposed 
here. i t  is more difficult to follow its development .  
This s tems from two causes: 1) rota t ions  in space are 
more confusing t han  one might think,  and  2) 
in te rpola t ing  on a sphere is t r ickier  t han  in te rpola t ing  
in, say,  a plane.  Readers  well acquain ted  with splines 
and the i r  use in computer  an imat ion  should have l i t t le  
difficulty, a l though e~en they  may  s tumble  a bit  over 
quaternions.  

2.  D e s c r i b i n g  r o t a t i o n s  

2.1 Rigid  m o t i o n  

Imagine hurling a brick towards  a p la te  glass window. 
As the brick flies closer and closer, a nearby  physicist  
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might  observe tha t ,  while it  does not  change shape or 
size, it  can tumble  freely. Leonhard  Euler  proved two 
centur ies  ago t h a t ,  however the br ick tumbles ,  each 
posi t ion can be achieved by a single ro ta t ion  from a 
reference posit ion.  [Euler,1752] [Goldstein] The same is 
t rue for any rigid body. (Sha t te r ing  glass is obviously 
not  a single rigid body.)  

Whi le  t r ans la t ions  are well a n i m a t e d  by using vectors,  
ro ta t ion  an ima t ion  can be improved by  using the 
progeni tor  of vectors ,  quaternions.  Quatern ions  were 
discovered by  Sir Wi l l iam Rowan  Hami l ton  in October  
of 1843. The moment  is well recorded,  for he 
considered them his most impor t an t  contr ibut ion ,  the 
inspi red  answer to a f i f teen-year  search for a successor 
to  complex numbers .  [Hamilton] By an odd quirk of 
ma themat i c s ,  only systems of two, four, or eight 
components  will mul t ip ly  as Hami l ton  desired; t r ip les  
had  been his s tumbl ing  block. 

Soon a f te r  quaternions  were in t roduced,  A r t h u r  Cayley 
publ ished a way  to describe ro ta t ions  using the new 
mul t ip l ica t ion .  [Cayley] The no ta t ion  in his paper  so 
closely an t i c ipa tes  mat r ix  nota t ion ,  which he devised 
several  years  la ter ,  t h a t  it may  be t aken  as a formula  
for convert ing a quaternion to a ro ta t ion  matr ix .  It 
t u rns  out  t ha t  the four values making up a quaternion 
describe ro ta t ion  in a na tu ra l  way: three  of them give 
the  coordinates  for the  axis of ro ta t ion ,  while the  
four th  is de te rmined  by the  angle ro ta t ed  through.  
[Courant  & Hilbert] 

Since compute r  graphics  leans heavi ly on vec tor  
opera t ions ,  it  is perhaps  easiest  to explain quaternlons 
and ro ta t ion  matr ices  in terms of these,  reversing 
history.  However quaternions  can s t a n d  on their  own 
as an e legant  a lgebra  of space.  [Herstein] [Pickert] 
[MacLane] 

2.2  R o t a t i o n  m a t r i c e s  

Tha t  a tumbl ing  br ick does not change size, shape,  nor 
"handedness"  is m a t h e m a t i c a l l y  expressed as the 
preserva t ion  of dot  products  and  cross products ,  since 
these measure  lengths,  angles,  and handedness .  And  
since the  de t e rminan t  of a 3X3 mat r ix  can be computed  
as the  dot  p roduc t  of one column wi th  the cross 
produc t  of the o ther  two, de te rminan t s  are also 
preserved.  Symbolical ly:  

Rot(~l) 'Rot(-u2) = ~i'~2 

Rot(-/11)XRot(~2) = Rot(.121)O22) 

det(Rot(_ul),Rot(~2),Rot(.u3) ) ---- det(.ul,.U2,~3) 

An immedia te  consequence is t ha t  o r ien ta t ion  changes 
must  be l inear  opera t ions ,  since the preserved 
opera t ions  are; hence they  have a mat r ix  
represen ta t ion ,  M.  Using the mat r ix  form of a dot  
p roduc t ,  32~ a22, we can say  more precisely t h a t  
(M a21) t (M 322) = 32~ J22, from which it follows t h a t  

M t M = I .  

Tha t  is, the  change mat r ix  M is orthogonal; its columns 
(and rows) are  mutua l ly  perpendicu la r  unit  magni tude  
vectors.  Because M must  also preserve de te rminan ts ,  i t  
is a special orthogonal matr ix ,  sat isfying 

de t (M)  = +1 

It  is well known, and a n y h o w  easy to show, t h a t  the  
special  or thogonal  mat r ices  form a group, SO(3),  under  
mul t ip l ica t ion .  [MacLane][Goldstein][Misner] In this  
ro ta t ion  group, the inverse of M is jus t  M t, the  
opposi te  ro ta t ion .  

To i l lus t ra te ,  the  mat r ix  

M = 

1 0 0 ] 

0 cos ~ --sin 

0 sin ~ cos 

effects a ro ta t ion  th rough  an angle of ~9 a round  the  x 

axis. Af te r  verifying the proper t ies  discussed so far ,  
note t h a t  the d iagonal  entr ies  sum to l + 2 c o s  0. While  
it  is too lengthy to show here, the diagonal  sum 
measures  the  same quan t i t y  for mat r ices  genera t ing  
ro ta t ion  a round  any axis. [MaeLane] 

2.3  Q u a t e r n i o n s  

Quatern ions ,  like ro ta t ions ,  also form a non- 
commuta t ive  group under  thei r  mul t ip l ica t ion ,  and  
these two groups are closely re la ted.  [Goldstein] 
[Pickert][Misner] In fact ,  we can subs t i tu t e  quaternion 
mul t ip l ica t ion  for ro ta t ion  mat r ix  mul t ip l ica t ion,  and  
do less comput ing  as a resul t .  [Taylor] 

To perform quaternion a r i thmet ic ,  group the four 
components  into a real p a r t - - a  scalar ,  and  an 
imaginary  p a r t - - a  vector.  Addi t ion  is easy:  add  sca la r  
to  sca lar  and  vec tor  to vector.  But  our ma jo r  in teres t  
is in mul t ip l ica t ion .  S t a r t  wi th  a simple case: mul t ip ly  
two quaternions  wi thout  real  par t s ,  or more precisely,  
wi th  zero real  par t s .  The  result  quaternion has a 
vector  t h a t  is the cross produc t  of the two vector  par t s ,  
and a sca la r  t ha t  is the i r  dot  product ,  negated:  

• 1~2 = [ ( - a l " ~ ) , ( ~ l x - ~ ) ]  

It  is cer ta in ly  convenient  to  eheompass  both  vec tor  
products  wi th  a single quaternion product .  (One ear ly  
lover of quaternion a lgebra  called vec tor  a lgebra  a 
"hermaphrod i te  monster" ,  since it required two kinds of 
product ,  each yielding a different type  of result . )  If one 
quatern ion  has only a sca la r  par t ,  wi th  its vec tor  
components  all zero, mul t ip l ica t ion  is jus t  real 
mul t ip l ica t ion  and vector  scaling. Combining the two 
effects gives the  general  rule [Brady]: 

[81,~1] ['52,.-/22] = [(8182--121".122),(81.122+82jj.1-Jr-.illX222)]. 
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Except  for the cross product  this  looks like complex 
mul t ip l ica t ion ,  (al+ibl)(a2+ib2) ---- (ala2--blb2) + 
i (a  lb2Wa2bl), as Hami l ton  intended,  t 

Quatern ions  mul t ip ly  wi th  a cross product  because 
ro ta t ions  confound axes. To i l lus t ra te  , place a book in 
front of you, face up, wi th  the  top fa r thes t  away.  Use 
this or ientat ior i  as a reference. Now hold the sides and 
flip it  t oward  you onto its face, ro ta t ing  180 degrees 
a round  a lef t - to-r ight  axis, y.  Then,  keeping it face 
down, spin it clockwise 180 degrees a round an up-down 
z axis. Two rota t ions  a round  two perpendicular  axes; 
yet  the to ta l  change in or ien ta t ion  must  be, according 
to Euler,  a single ro ta t ion .  Indeed,  if you hold the ends 
of the spine and flip the book 180 degrees a round  this 
th i rd ,  ou tward-poin t ing ,  x axis, you should restore the 
original or ienta t ion .  As quaternions,  this is 
- - a n t i c i p a t i n g  developments  a h e a d - -  [0,(0,1,0)] t imes 
[0,(0,0,1)] equals [0,(1,0,0)]; the  cross product  is 
essential .  

Notice how quaternion opera t ions  give a new 
or ienta t ion ,  in "quaternion coordinates",  much as 
t rans la t ions  give a position, relat ive to some s ta r t ing  
reference. A central  message of this paper  is t ha t  
quaternlon coordinates  are best  for in terpola t ing  
or ienta t ions .  For  comparison,  imagine using spherical  
coordinates  for t rans la t ions!  Quatern ions  represent  
o r ien ta t ion  as a single ro ta t ion ,  jus t  as rec tangula r  
coordinates  represent  posit ion as a single vector.  
Trans la t ions  combine by adding vectors; rotat ions,  by 
mult iplying quaternions.  The separa te  axes of 
t rans la t ions  don ' t  in terac t ;  the axes of ro ta t ions  must .  
Quatern ions  preserve this in terdependence  na tura l ly ;  
Euler ' s  angle coordinates  ignore it. 

2.4 Euler ' s  angles  

Why,  then,  do so many  an imators  use Euler ' s  angles? 
Mostly,  I suspect ,  because quaternions are unfamil iar .  
Unlike Euler ' s  angles, quaternions are not t augh t  ear ly 
in s t a n d a r d  m a t h  and physics curricula.  Cer ta in ly  
there is a p le thora  of a rguments  aga ins t  angle 
coordinates .  Euler ' s  angle coordinates  specify 
orientation as a series of three independent, rotations 
about pre-chosen axes. For example, the orientation of 
an airplane is sometimes given as "yaw" (or "heading") 
around a vertical axis, followed by "pitch" around a 
horizontal axis through the wings, followed by "roll" 
around the nose-to-tail line. These three angles must 
be used in exactly the order given because rotations do 
not commute. The ordering of rotation axes used is a 
matter of convention, as is the particular set of axes, 
no matter what the order. For instance some physicists 
use the body centered axes z-x-z, in contrast to the 
aeronautics z-y-x. At least a dozen different 
conventions are possible for which series of axes to use. 
[Kane][Goldstein] The geometry  of or ienta t ions  in 
Euler ' s  angle coordinates  is contor ted,  and  varies with 
choice of ini t ial  coordinate  axes. There is no 

Hamilton wrote a quaternion as s+iv~÷jv~+kv ~, with i 2=  
jq = k 2 = i j k  ---- --1. The multiplication rules given before are 
consequences of this elegant formulation. 

reasonable  way  to "mul t ip ly"  or otherwise combine two 
rota t ions .  Even convert ing between ro ta t ion  mat r ices  
and angle coordinates  is difficult and  expensive, 
involving a rb i t r a ry  assumpt ions  and t r igonometr ic  
functions.  In thei r  defense, it must  be said t h a t  t hey  
are handy  for solving differential  equa t ions - -which  is 
how Euler  used them. [Euler,1758] 

3. I n - b e t w e e n i n g  a l t e r n a t i v e s  

3.1 S t r a i g h t  l ine i n - b e t w e e n i n g  

It is not  immedia te ly  obvious how to in-between even 
two ro ta t ion  keys. W h a t  or ien ta t ions  should an ob jec t  
assume on its journey  between them? A na tu ra l  answer 
is: t ake  the first key as a reference, and  represent  the  
second by  describing the single ro ta t ion  t ha t  takes  you 
to it, according to Euler ' s  theorem. The in-between 
or ien ta t ions  should be posi t ioned along t ha t  ro ta t ion .  

If we plot quaternions as points in four-dimensional  
space,  the  s t ra igh t  lines between them give or ienta t ions  
in te rpola t ing  the end points  in exact ly  the above sense. 
If we plot Euler ' s  angle coordinates  instead,  the in- 
between or ienta t ions  will t ry  to twist  a round three 
different axes s imultaneously.  This angle in te rpola t ion  
t r ea t s  the three angles of ro ta t ion  at  each key 
or ien ta t ion  as a three-dimensional  vector  whose 
components  are in te rpo la ted  independent ly  from key to  
key. Paradoxica l ly ,  we can not ro ta te  simply except 
a round  the special  axes chosen for composit ion.  We 
may  even encounter  so-called "gimbal lock", the loss of 
one degree of ro ta t iona l  freedom. Gimbal  lock results  
from trying to ignore the cross product  in te rac t ion  of 
ro ta t ions ,  which can align two of the three  axes. 
Quatern ions  are safe from gimbal lock, and  so have 
been used for years  to handle spacecraf t ,  where it is 
unacceptable .  [Kane][Mitchell] 

3.2 H o w  q u a t e r n i o n s  r o t a t e  

Stra ight  lines between quaternions,  however, ignore 
some of the na tu ra l  geometry  of ro ta t ion  space.  If our 
in te rpo la ted  points  were evenly spaced along a line, the 
an ima ted  ro ta t ion  would speed up in the middle.  To 
see why,  we must  look a t  how a quaternion converts  to 
a ro ta t ion  matr ix .  We ro ta te  a vector  by  a quaternion 
so: mul t ip ly  it on the right by the quaternion and on 
the left by the  inverse of the quaternion,  t r ea t ing  the 
vector  as [0,~]. 

v r = Rot(v)  = q--I 32 q 

Though it is not obvious, the result  will a lways be a 
vector,  wi th  a zero sca la r  component .  Notice how this 
guaran tees  

Rot (v l )  Rot(v2) = Rot(.ul V2) 

which implies t h a t  dot  and cross products  are 
preserved,  embedded  in the  quatern ion  product .  

The inverse of a quaternlon is ob ta ined  by negat ing its 
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vector  par t  and dividing both par ts  by the magni tude 
squared.  For  q ~ [s,_~], 

q - 1  1 ; [ [ q I [2 = s2"4".IZ'.IZ . 
I t lql l  2 

Because all effects of magni tude are divided out,, any 
scalar  mult iple of a quaternlon gives the same rota t ion.  
(This kind of behavior  is not unknown in computer  
graphics;  any scalar  mult iple of a point in homogeneous 
coordinates  gives the same non-homogeneous point.) 

If the scalar  pa r t  has value w, and the vector  par t  
values x, y, and z, the corresponding matr ix  can be 
worked out to be 

M = 

1--2y2--2z 2 2 x y + 2 w z  2xz - -2wy  

2 x y - - 2 w z  1--2x2--2z 2 2yz++2wx 

2xz.+2wy 2 y z - - 2 w x  1--2x2--2y 2 

when the magni tude  w2-l-x2-4-y2.+z2 equals 1. The 
magni tude  restr ict ion implies tha t ,  p lot ted in four- 
dimensional space, these quaternions lie on a sphere of 
radius  one. Deeper invest igat ion shows tha t  such unit  
quaternions carry  the amount  of rota t ion in w, as 
cos 0/2, while the vector par t  points along the ro ta t ion  
axis wi th  magni tude sin 0/2. The axis of a rota t ion is 
t ha t  line in space which remains unmoved; but  notice 
t h a t ' s  exact ly  wha t  happens  when scalar  multiples of .u 
are ro ta ted  by [s,~]. Because the cross product  drops 
out,  mul t ipl icat ion commutes,  q- !  meets q, mutual  
annihi la t ion occurs, and  the vector  emerges unscathed.  
Summing the matr ix  diagonal leads to the formula 
s t a t ed  for w.  The sum equals 4w2~1,  but  must also be 
l + 2 c o s  0. A tr ig identi ty,  cos 2t9 = 2cos 2 0--1, finishes 
the demonsta t ion.  

3.3 G r e a t  a rc  in-betweening 

This sphere of unit  quaternions forms a sub-group, S 3, 
of the quaternion group. Fur thermore ,  the spherical  
metric of S 3 is the  same as the angular  metric of 
SO(3). [Misner] F rom this it follows tha t  we can rota te  
wi thout  speeding up by in terpola t ing  on the sphere.  
Simply plot the two given or ientat ions on the sphere 
and draw the great  circle arc between them. Tha t  arc 
is the curve where the sphere intersects  a plane through 
the two points and the origin. We sped up before 
because we were cut t ing across ins tead of following the 
arc; otherwise the pa ths  of rota t ion are the same. 

A formula for spherical  l inear  in terpola t ion  from ql to 
q2, with pa rame te r  u moving from 0 to 1, can be 
ob ta ined  two different ways. From the group s t ructure  
we find 

Slerp(ql ,q2;u ) = q l (q~ lq2)  ~ ; 

while from the 4-D geometry comes'~ 

Slerp(ql ,q2;u)  _-- sin (1 - -u )~  sin u_.~ 
s i n 0  q l +  s in0  q2' 

where ql'q2 ~ cos 0. The first is simpler for analysis,  
while the second is more pra.ctical for applicat ions.  

But an imat ions  typica l ly  have more t han  two key poses 
to connect,  and here even our spherical  e laborat ion of 
simple l inear in terpola t ion shows flaws. While  
or ienta t ion  changes seamlessly,  the direction of ro ta t ion  
changes abrupt ly .  In mathemat ica l  terms,  we want  
higher order  continui ty.  There are lots of ways to 
achieve it---off the sphere; unfor tunate ly  we've learned 
too much. 

3.4 Rotat ion geometry and topology 

No m a t t e r  what  we do in general quaternion space,  the 
u l t imate  effect must  be in terpre ted  via  the sphere; so 
we had  best  work there in spite of the difficulty. It is 
impor tan t  to  grasp this point.  The metric s t ructure ,  
hence the intrinsic geometry,  of the rota t ion group 
SO(3) is t ha t  of a sphere.  Over small regions, meaning 
in this case small ro ta t ion angles, a sphere looks as if it  
is flat. But  if we go far  enough along a "s t ra ight  line", 
we end up back where we s ta r ted .  W h a t  could be more 
evident about  rotat ions? Their  very essence is moving 
in circles. Looking back  to the  book-turning 
experiment ,  the confounding of axes is like t ravel ing on 
a sphere:  if we go in some direction to a quar ter  of the  
way around the sphere,  turn  90 degrees, t ravel  the 
same distance,  then tu rn  and travel  again,  we will 
arrive back  home, coming in at  right angles to the 
direction we headed  out.  Even more revealing, we can 
leave the north pole in any direction and end up at  the 
south pole, jus t  as we can ro ta te  360 degrees around 
any axis and end up or iented the same way. 

Local geometry does not, however, determine global 
topology. Cont rad ic to ry  though it may  seem, the 
geometry curves like a sphere, but  the topology says 
north and south poles are the same! In fact ,  each pair  
of opposi te  points  represents  the same rotat ion.  The 
reader  may  preserve san i ty  through two expedients.  
One is to  see t ha t  this,  like homogeneous coordinates,  is 
geometry under  perspective projection. The second is 
to restore spherical  topology • by including 
"entanglements" .  Physical ly ,  tak ing  an object  with 
str ings a t t ached  and rota t ing it 360 degrees leaves the 
str ings tangled;  y e t - - m o s t  o d d - - r o t a t i n g  720 degrees 
does not. [Misner][Gardner] 

Accept ing the topological oddi ty  is more useful here, 
but  it  leaves a minor inconvenience. Namely,  when 
converting an or ienta t ion  in some foreign form, such as 
a matr ix ,  to a quaternion form, which quaternion 
should we choose? Which  side of the sphere? An  
answer t h a t  works well is this. Construct  a string of 
quuternions through which to in terpola te  by choosing 

t Glenn Davis suggested this formula. 
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each added  quaternion on the side closest to the one 
before. Then  small  changes in or ien ta t ion  will yield 
small  d isp lacements  on the sphere.  

\ 

points at 

Rep,-eSenti~ a proje~ive pJa~e 

3.5 Splines 

We are left with the problem of constructing smooth 
curves on spheres. About a hundred years after 
quaternions appeared, Isaac Schoenberg published a 
two pa r t  a t t a c k  on ball is t ics and  ac tuar ia l  problems,  
using wha t  he called splines. [Schoenberg] Named  by 
analogy to a d r a f tman ' s  tool,  these are in te rpola t ing  
curves cons t ruc ted  from cubic polynomial  pieces, with 
second order  cont inu i ty  between pieces. Cubic spllnes 
solve an integral  equat ion which says to minimize the 
to ta l  "wiggle" of the curve, as measured by the second 
der ivat ive.  These in te rpolan ts  are very popular ,  and 
the equat ion can be augmented  with Lagrange  
mult ipl iers  to  const ra in  the  solut ion curves to  lie on a 
sphere [Courant  h: Hilbert];  ye t  there  are problems.  
F i rs t ,  the augmented  equat ion is much more difficult 
and  expensive to  solve. Second, the curve must  ad jus t  
everywhere if one of the points  changes; t ha t  is, we 
have no local control.  

3.6 B~zier curves 

While Schoenberg invented splines based on numerical 
analysis ,  P ier re  Bdzier invented a class of curves, now 
called by his name,  based on geometrical  ideas. In fact ,  
he showed how to find points  on such a curve by 
drawing lines and spl i t t ing them in regular  proport ions.  
[Bdzier] This is exac t ly  wha t  is needed. We a l ready  
know how to do the equ iva l en t - -d r aw  grea t  arcs and 
propor t ions  of arcs---on a sphere.  A complete solution 
needs only a l i t t le  more. 

4. Spherical  B~zier curves  

4.1 Joining curves  

Bgzler curves go through only the i r  first and last  
defining points,  but  we want  to in terpola te  all our 
or ien ta t ions .  The t r i ck  is to splice together  shor t  
Bdzier curves in the  manner  of splines. Their  c rea tor  
showed an easy way  to do this which guarantees  first 

order  cont inui ty ,  p robab ly  enough for us. As the curve 
goes th rough  i ts  end points  it  is t angen t  to i ts end 
segments .  Line up the segments across a join, ma tch  
the i r  lengths, and  the curves will piece toge ther  
smoothly.  If the key or ienta t ions  are placed at  jo ints ,  
then  each short  curve moves us from one key to the  
next,  because each piece passes through its ends. 

Now, a l though the two segments  abu t t ing  a curve 
junc t ion  should match  each other,  one of the segments  
can be chosen freely. These choices determine the axis 
and speed of ro ta t ion  as we pass th rough  the keys. 
The burden of choice can be passed to the an ima to r  of 
course, but  au toma t ion  is feasible, and  general ly  
preferable.  

4.2 Choos ing  jo int  s e g m e n t s  

Spherical  l inear  in terpola t ion  gives two conflicting arc 
segments  a t  a joint ,  one on each side. Smooth the  
difference with an  even compromise,  aiming for a point  
ha l fway between where the incoming segment would 
proceed, and  where the outgoing segment must  a r r ive . t  

a~ 

Co~$tt 'u~ft~ g pot~t for fa~er~t  

Given successive key quaternions q n - 1 ,  q n ,  q n + l  

i n t e rp re t t ed  as 4-D unit  vectors,  the computa t ion  for a 
segment  point  a n af ter  q~ is 

a n = B i s e e t ( D o n b l e ( q n _ l , % ) , q , + ] )  ' 

where 

Double (p ,q)  ~. 2(p-q)q - -  p ; 

Bisec t (p ,q)  = t tPWq ,,p+qlZ 

The match ing  point  for the segment  before qn should 
he 

bn -~ D°uble(an ,qn) 

For the numerically knowledgeable, this construction 
approximates the derivative at points of a sampled function by 
averaging the central differences of the sample sequence. 
[Dahlquist & Bj6rk] 
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to ensure a smooth join, regardless of how a n is chosen. 

a~ 

% 

$pliging B¢2iCr 3e3mentS lo~¢¢her 

4.3 Evaluat ing on the  sphere 

Everything is now in hand to imitate B~zier's curve 
technique. Each short curve is defined by four 
quaternions,  qn, an, bn+l, qn+l" Let the parameter  u 
vary from 0 to 1 as the curve departs  qn towards a n 
and arrives at qn+l tangent  to the arc from bn+ 1. 
Spherically interpolate by proportion u between qn and 

an, a n and bn+l, bn+ 1 and qn+l, to obtain three new 
quaternions.  Then interpolate between those to get 
two more; and finally interpolate again, reducing to a 
single point. Abbreviat ing Slerp(p,q;u) as (P:q)=, the 
computat ion looks like this: 

qn =p~0) 

(p~O):piO))u=p~ 1) 

an =P t °) (P~') :P i ') )u =p~2) 

(ptO):plO))u=pt 1) (p;2):pi2))u=p~3)=qn+u 

bn+l----p~ O) (p t1) :phi) )u ~-p t 2) 

qn + 1 =P t 0) 

4 .4  T a n g e n t s  r e v i s i t e d  

A simple check proves the curve touches q,~ and qn+l at 
its ends. A rather  challenging differentiation shows it is 
t angen t  there to the segments determined by a n and 
bn+ 1. However, as with B6zi~r's original curve, the 
magni tude of the tangent  is three times tha t  of the 
segment itself. Tha t  is, we are spinning three times 
faster than  spherical interpolat ion along the arc. 
For tuna te ly  we can correct the speed by merely 
t runca t ing  the end segments to one third their original 
length, so tha t  a n is closer to qn and b,+ 1 closer to 

qn+l" 

b~÷j = ~2 (o) 

C=lcvl$tingg a B~zier  ct)rve polnf recursivel y 

5, R e s u l t s  

5.1 The g rand  s c h e m e  

What  have we ended up with? An animator  sits at a 
workstat ion and interact ively establishes a sequence of 
keys for, say, camera orientation.  The interpolat ing 
algorithm does not depend on the nature  of the 
interface the animator  sees; all needed information is 
contained in the sequence of keys. Probably  the 
orientat ions will be represented internal ly as matrices, 
so a conversion step follows. The matrices are "lifted" 
to a sequence of neighboring quaternions,  qn, on the 
unit  sphere. Each quaternion within the sequence will 
become the endpoint  of two spherical B6zier curves. 
Between each quaternion pair, qn and qn+l, two 

addit ional  points, a n and bn+l, are added to control 
motion through the joints.  At this point,  time becomes 
a parameter  along the composite curve. As the frame 
number  increments,  the parameter  enters and leaves 
successive curve pieces. Within each piece a local 
version of the parameter  is adjusted to run from 0 to 1. 
Now the B6zier geometric construction comes into play, 
producing an  interpolated quaternion, qn+~, from qn, 
an, bn+l, qn+l, and the local parameter,  u. Final ly  the 
mint-fresh interpolated quaternion is t r ansmuted  into a 
matrix, to be used in rotat ing a list of object vectors 
for rendering. 

5.2 Propert ies  

A look at one special case is revealinG. Suppose all the 
points to interpolate  are spread along a single arc. 
This means they represent different amounts  of rotat ion 
around a single axis, in which case quaternion 
mult ipl icat ion commutes. Under these special 
conditions, the formula for the curve sections reduces to 

qn+u qn (l-u)8 a :  (1-u)~ bn3~'l] -~)u~ us  = qn+l 

When this is compared to the s tandard  B6zier 
polynomial, pn(1--u)  3 + an3(1--u)2u + bn+13(1--u)u ~ + 
q,,+lu 3 , it is apparent  tha t  addition and mult ipl icat ion 
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have become mul t ip l ica t ion  and exponent ia t ion.  Of 
course, when the points  are not on one arc,  
commuta t i v i t y  fails, so the  formula looks much messier. 

In  the  in teres t ing res t r ic ted  case when the points  are 
spaced  evenly and consecutively around an arc, the 
result ing an imat ion  behaves exact ly  as we would hope: 
we get smooth, ,  cons tan t  speed ro ta t ion  a round  the 
app rop r i a t e  axis. Notice t ha t  we can choose any  axis 
for this  ro ta t ion .  This is clearly preferable  to  
in te rpola t ion  with Euler ' s  angles, where the coordinate  
axes are special .  A more subt le  p roper ty  of all 
quaternion in te rpola t ion  is t h a t  the motion is 
independent  of coordinate  axes. So, for example,  if we 
design a move, then  ro ta te  the  coordinate  system 
arb i t ra r i ly ,  the  geometry  of the motion will not  change.  
Euler  in te rpolan ts ,  unfor tuna te ly ,  will do wildly 
different things. 

5.3 App l i cab i l i t y  

Rota t ions  in space are s ignif icant ly more compl ica ted  
t han  ro ta t ions  in a plane.  It is easy to deal  with the 
la t te r ,  since only one p a r a m e t e r  is involved. 
Quate rn ions  are out  of place in a plane.  Joint control  
in robot ics  s imulat ions  has i ts own highly special ized 
body of techniques; and though quaternions have shown 
up in the  l i te ra ture ,  they  seem less useful in t ha t  
context .  [Brady] [Taylor] However, B.K.P.  Horn has 
used a tessel la t ion of the quaternion unit  sphere to 
ident i fy the or ien ta t ion  of an object  from its extended 
Gauss ian  image; a good reference is [Brou]. Non-rigid 
mot ion obviously needs to be hand led  special ly.  But  for 
moving a camera  eye-point ,  and  for many  kinds of 
objec t  motion, quaternion in terpola t ion  has s trong 
advan tages .  

5.4 Comparisons and complaints 

Cost advan tages  are difficult to es t imate .  Convert ing a 
mat r ix  to a quaternion requires only one square root 
and  three  divides plus some adds,  at  worst .  Convert ing 
back  requires g mult ipl ies  and 15 adds.  While  the 
conversions don ' t  use t r igonometr ic  functions,  the arc 
propor t ioning does. Fo r  comparison,  angle 
in te rpo la t ion  requires several  t r igonometr ic  functions as 
well as quite a few mult ipl ies  and  adds  to create  each 
in t e rpo la t ed  matr ix .  My experience is t ha t  the  B6zier 
scheme is comfor tab ly  fast  enough for design work, 
which is the only t ime speed has  mat te red .  (If, for 
some appl ica t ion ,  more speed is essential ,  non-spherical  
quaternion splines will undoub ted ly  be fas ter  t han  
angle in terpola t ion ,  while stil l  free of axis bias  and  
glmbal  lock.) 

These in te rpo lan ts  are not perfect ,  of course. Like all 
in te rpolan ts ,  they  can develop kinks between the 
in te rpo la ted  points.  There are simple a lgori thms for 
adding new sequence points  to o rd inary  splines wi thout  
a l ter ing the original curve [Boehm]; they  do not work 
for this  in terpolant .  And  if these curves can be shown 
to sa t i s fy  some var ia t iona l  pr incipal ,  it  will be by  
chance.  It is useful to do this,  because any solut ion to 
an integral  equat ion like t ha t  for splines admi ts  
subdivis ion [Lane et all; minimum curva ture  between 

end points  implies minimum curvature  between 
in te rmedia te  points  as well. Along these lines, Gabr ie l  
and K a j i ya ,  mo t iva t ed  by  quaternions,  have been 
developing a technique to find splines on a r b i t r a r y  
Re imann ian  manifolds by  solving differential equations.  
[Gabriel & Kaj iya]  

6. Questions 

Fu tu re  research could answer some interest ing prac t ica l  
questions. W h a t  are these spherical  B6zier curves? Is 
there  some abs t r ac t  charac te r iza t ion  of them? Or is 
there  some re la ted  in te rpolan t  t ha t  is well- 
character ized? In light of the success of the geometric  
a d a p t a t i o n  approach ,  it  appears  reasonable  to app ly  
the  idea to B-splines, which also have a known 
geometric eva lua t ion  technique.  [Cordon & Riesenfeld] 
How do spherical  B-splines behave? Is it possible to 
add new points  to a sequence for ei ther  kind of curve 
wi thout  d is turbing it? How? Can B-.splines be made  to 
in te rpola te ,  not jus t  approx imate ,  with a simple 
ad jus tmen t  of control  points? Is there  a way  to 
const ruct  a curve pa rame te r i zed  by arc length? This 
would be very useful. W h a t  is the  best  way  to allow 
varying intervals  between sequence points  in p a r a m e t e r  
space? Abandon ing  the unit  sphere,  one could work 
with  the  four-dimensional  Eucl idean space of a r b i t r a r y  
quaternlons.  How do s t a n d a r d  in terpola t ion  methods  
appl ied  there  behave when mapped  back to matr ices? 
Note t h a t  we now have li t t le guidance in picking the 
inverse image for a matr ix ,  and t ha t  cusp-free 1~ 4 pa ths  
do not a lways project  to  cusp-free S 3 paths .  

However these questions are answered,  quaternion 
spline in te rpo lan ts  a l ready  offer a wel l -behaved 
improvement  over t r ad i t iona l  techniques.  They are 
simple to use, simple to implement ,  robust ,  efficient, 
consis tent ,  and  flexible. More research would make  
them even more so. 

7. Acknowledgments 

This work was begun for an an imat ion  sys tem I 
designed and implemented  a t  Singer-Link. Several  
people there deserve thanks ,  but  I especial ly t hank  
Glenn Davis,  who befr iended me with his good humor 
and ma the ma t i c a l  efforts as I s t ruggled through trying 
times. 

I prefer  not  to  invent the  wheel if I can find the plans; 
so I pes tered  Don Venhaus,  Br ian Bar~ky, Tom Duff, 
Lance Wil l iams,  and Jim Blinn, whom I t h a n k  for thei r  
t ime,  thei r  comments ,  and  the i r  assurances t ha t  they  
had  not seen this  pa r t i cu la r  wheel roll pas t  PDI,  
Berkeley,  Lucasfilm, NYIT,  or JPL. 

Thanks  to everyone a t  Pacific D a t a  Images for the 
interest  and  encouragement  t ha t  got me s t a r t ed .  

The folks at  Ridge Compute r  were generous above and 
beyond the call of cus tomer  suppor t  in le t t ing me use 
thei r  Imagen typese t t ing  sys tem to produce this paper .  

Las t ly ,  I t hank  Nori Hail  for commenting on numerous 
draf ts ,  and more. 

251 



Q S I G G R A P H '85 

R e f e r e n c e s  

1. BEZIER, P.E., Numerical Control - -  Mathematics 
and Applications, John Wiley and Sons, London 
(1072). 

2. BOEHM, WOLFGANG, "Inserting new knots into ]3- 
spline curves," Computer-Aided Design 12(4)pp. 
199-201 (July 1980). 

3. BRADY, MICHAEL, "Trajectory Planning," in Robot 
Motion: Planning and Control, ed. Michael Brady, 
John M. Hollerbach, Timothy L. Hohnson, Tomas 
Lozano-Perez and Matthew T. Mason,The M.IT 
Press (1982). 

4. BROU, PHILIPPE, "Using the Gaussian Image to 
Find the Orientation of Objects," The Interna- 
tional Journal off Robotics Research 3(4) pp. 89-125 
(Winter 1984). 

5. CAYLEY, ARTHUR, "On certain results relating to 
quaternions," Philosophical Magazine xxvi  pp. 
141-145 (February 1845). 

6. COURANT, R. AND HILBERT, D., Methods o] 
Mathematical Physics, Volume I, Interscience Pub- 
lishers, Inc., New York (1953). 

7. DAttLQUIST, GERMUND AND BJiSRCK, A_KE, Numer- 
ical Methods, Prentice-Hall, Inc., Englewood CLiffs, 
N.J. (1974). Translated by Ned Anderson. 

8. EULER, LEONHARD, "Decouverte d'un nouveau 
principe de m~canique (1752)," pp. 81-108 in Opera 
omnia, Ser. secunda, v. 5, Orell Ffisli Turici, 
Lausannae (1957). 

9. EULER, LEONItARD, "Du mouvement de rotation 
des corps solides autour d'un axe variable (1758)," 
in Opera omnia, Ser. seeunda, v. 8, Orell F/isli 
Turici, Lausannae 0" 

10. GABRIEL, STEVEN A. AND KAJIYA, JAMES T., 
"Spline Interpolation in Curved Manifolds," , 
(1985). Submitted 

11. GARDNER, MARTIN, New Mathematical Diversions 
from Scientific American, Fireside, St. Louis, Mis- 
souri (1971). Chapter 2 

12. GOLDSTEIN, HERBERT, Classical Mechanics, second 
edition, Addison-Wesley Publishing Company, Inc., 
Reading, Mass. (1980). Chapter 4 and Appendix 
B. 

13. GORDON, WILLIAM J. AND RIESENFELD, RICHARD 
F., "Bernstein-B~zier methods for the computer- 
aided design of free-form curves and surfaces," J. 
A C M  21(2) pp. 293-310 (April 1974). 

14. GORDON, WILLIAM J. AND RIESENFELD, RICHARD 
F., "B-spline curves and surfaces," in Compute~ 
Aided Geometric Design, ed. Robert E. Barnhill 
and Richard F. Riesenfeld,Academic Press, New 
York (1974). 

15. HAMILTON, SIR WILLIAM ROWAN, "On quatern- 
ions; or on a new system of imaginaries in alge- 
bra," Philosophical Magazine xxv pp. 10-13 (July 
1844). 

16. HERSTEIN, I.N., Topics in Algebra, second edition, 
John Wiley and Sons, Inc., New York (1975). 

17. KANE, THOMAS R., LIKINS, PETER W. AND LEVIN- 
SON, DAVID A., Spacecraft Dynamics, McGraw-Hill, 
Inc. (1083). 

18. LANE, JEFFREY M., CARPENTER, LOREN C., 
WHITTED, TURNER, .AND BLINN~ JAMES F., "Scan 
line methods for displaying parametrically defined 
surfaces," Comm. ACM 2a(1)pp.  23-34 (January 
1980). 

19. MACLANE, SAUNDERS AND BIRKHOFF, GARRETT, 
Algebra, second edition, Macmillan Publishing Co., 
Inc., New York (1979). 

20. MISNER, CHARLES W., THORNE, KIP S., AND 
WHEELER, JOHN ARCHIBALD, Gravitation, W.H. 
Freeman and Company, San Francisco (1973). 
Chapter 41 - -  Spinors. 

21. MITCHELL, E.E.L. AND ROGERS, A.E., "Quaternion 
Parameters in the Simulation of a Spinning Rigid 
Body," in Simulation The Dynamic Modeling of 
Ideas and Systems with Computers, ed. John 
McLeod, P.E., (1968). 

22. NEWMAN, WH LIAM M. AND SPROULL, ROBERT F., 
Principles of Interactive Computer Graphics, second 
edition, McGraw-Hill, Inc., New York (1979). 
Chapter 21 - -  Curves and surfaces. 

23. PICKERT, G. AND STEINER; H.-G., "Chapter  8 - -  
Complex numbers and quaternions," in Fundamen- 
tals off Mathematics, Volume I -  Foundations of 
Mathematics: The Real Number System and Alge- 
bra, ed. H. Behnke, F. Bachmann, K. Fladt, and 

W. Sfiss, (1983). Translated by S.H. Gould. 
24. SCHMEIDLER, W. AND DREETZ, W., "Chapter  11 - -  

Functional analysis," in Fundamentals of 
Mathematics, Volume III - -  Analysis, ed. H. 
Behnke, F. Bachmann, K. Fladt, and W. Sfiss,MlT 
Press, Cambridge, Mass. (1983). Translated by 
S.H. Gould. 

25. SCHOENBERG, I.J., "Contributions to the problem 
of approximation of equidistant data by analytic 
functions," Quart. AppL Math. 4 pp. 45-99 and 
112-141 (1946). 

2B. SMITH, ALVY RAY, "Spline tutorial notes," Techni- 
cal Memo No. 77, Computer Graphics Project, 
Lucasfilm Ltd. (May 1983). 

27. SOSS, W., GERICKE, H., AND BERGER, K.H., 
"Chapter  14 - -  Differential geometry of curves and 
surfaces," in Fundamentals of Mathematics, 
Volume II - -  Geometry, ed. H. 'Behnke, F. Bach- 
mann, K. Fladt, and W. S/iss,MIT Press (1983). 
Translated by S.H. Gould. 

28. TAYLOR, RUSSELL H., "Planning and Execution of 
Straight Line Manipulator Trajectories," in Robot 
Motion: Planning and Control, ed. Michael Brady, 
John M. Hollerbach, Timothy L. Hohnson, Tomas 
Lozano-Perez and Matthew T. Mason,The MIT 
Press (1982). 

252 



SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985 

Appendix I--Conversions 

L1 Quatcrnion to matrix 

Using the restriction that  w2-t-x2-Fy2-t-z2= 1 for u 
quaternion q = [w,(x,y,z)], the formula for the 
corresponding matrix is 

M = [ 1--2y2--2z 2 2xy+2wz 2xz--2wy ] 
2xy--2wz 1--2x2--2z 2 2yz+2wx ]. 
2xz+2wy 2yz--2wx 1--2x2--2y 2] 

If the quaternion does not have unit  m~gnitude, an 
additional 4 multiplies and divides, 3 adds, and a 
square root will normalize it. (For the matrix 
conversion, the square root can be avoided in favor of 
divides if desirable.) Now we can obtain the operation 
count for creating the matrix. Most terms of the 
entries are a product of two factors, one of which is 
doubled. So we proceed as follows. First  double x, y, 
and z, and form their products with w, x, y, and z. 
That  will take 3 adds and 9 multiplies. Then form the 
sum for each of the 9 entries using 1 add each, plus an 
extra add for each of the 3 diagonal elements, for a 
total of 12 adds. Thus 9 multiplies and 15 adds suffice 
to convert a unit  quaternion to a matrix. 

L2 Matrix to quaternion 

An efficient way to determine quaternion components 
w, x, y, z from a matrix is to use linear combinations 
of the entries Mra,~. Notice that  the diagonal entries 
are formed from the squares of the quaternion 
components, while off-diagonal entries are the sum of a 
symmetric and a skew-symmetric part .  Thus linear 
combinations of the diagonal entries will isolate squares 
of components; sums and differences of opposite off- 
diagonal entries will isolate products among x, y, and z 
and products with w. Using off-diagonals risks dividing 
by a component that  may be zero, or within ¢ (the 
machine precision) of zero. However we can avoid that  
pitfall, and easily compute all components as follows. 

w 2 ~ 1/4 (1 + Ml l  + M22 + M33) 

w2>e? 
TRUE FALSE 

Z = (MI2  --  M21 ) / 4t.V 

w = O  
X 2 -- --1/2 (M22 + 2~'/33 ) 

TRUE 

z ~ M m / 2:~ 

x 2 > c ?  

FALSE 

!, '2 = 1/2 (1 -- M ~ )  

y 2 > c ?  

TRUE FALSE 

z ~ M~3 / 2y  z = l  

No more than  one square root, three divides, and a few 
adds and binary scales are required for any conversion. 

L8 Euler angles to quaternion 

There are twelve possible axis conventions for Euler 
angles. The one used here is roll, pitch, and yaw, as 
used in aeronautics. A general rotation is obtained by 
first yawing around the z axis by an angle of ¢, then 
pitching around the y axis by 0, and finally rolling 
around the x axis by ¢. Using the way quaternion 
components describe a rotation, we first obta in  a 
quaternion for each simple rotation. 

qrott = [cos@,(sin-~,O,O)] 

qpitch '~ [cos~,(O,sin~,O)] 

q~aw = [c°s 2~,(O,O,sin 2~)] 

Multlplying these together in the right order gives the 
desired quaternion q -- qyaw qpitch qroll, with components 

= c o s  --¢ e o s  --0 cos  --¢ + s in  -C-s ln- -0s in  
2 2 2 2 2 2 

= si.- cos --0cos --¢ - -  c o s  -C-s in - -0s in - -¢  
2 2 2 2 2 2 

y = cos  sin £¢os + sin -C-cos  sin--¢ 
2 2 2 2 2 2 

z = cos -.f-cos 2-s in-¢  - sin -C-sin £eos £ 
2 2 2 2 2 2 

1.4 Euler angles to matrix 

Combining the results of the previous two conversions 
gives 
M = 

cos 8cos ¢ cos 0sin ¢ --sin 0 / 
sin ~bsin 8cos C--cos ~sin ¢ sin ~bsin 0sin ¢+cos ¢cos 8 cos 0sin ~], 
cos Csin 0cos ¢q.-sin Csin ¢ cos ~sin 0sin ¢--sln ¢cos ¢ cos 0cos ~J 

where ~b, 0, and ¢ are the angles of roll, pitch, and yaw, 
respe ctively. 

1.5 Matrix to Euler angles 

While converting a matrix to a unit quaternion only 
involves the sign ambiguity of square roots, converting 
to Euler angles involves inverse trigonometric functions, 
as we con only directly determine the sin's and cos's of 
the angles. Some convention, such as principle angles, 
must be adopted. However interpolation paths will 
vary greatly, depending on choice of angles. Setting 
that  problem aside, here's a way to extract the sin's 
and cos's. Looking at the previous equation, s in0 can 
be read off directly as --M13. Use the trigonometric 
identi ty cos 0 = ::t=%~"~"~0 to compute cos @ to within 
a sign, which is the best we can do. Assuming cos0 is 
not zero, obta in  the sin's and cos's of the other angles 
from 
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sin 0 = --Mi3 

cosO = 

s i n e  = M 2 3 / c o s  

cos~b = Ma3/cos /~  

s ine  = Ml~ / c o s  

~os¢ = M l l / c o s e  

If cos t? is zero, then we must  avoid dividing by zero. It 
also becomes impossible to distinguish roll from yaw. 
Adopt ing the convention tha t  the yaw angle ¢ is 0 
allows 

sin ¢ = --M32 

cos ¢ = M22 

s i n e  = 0 

cos¢ = 1 

From these values a two argument  t an  -1 will give 
angles between --Tr and +Tr, or 0 and 275 or some other 
conventional  range; take your pick. (For a faster 
conversion, jus t  compute, say, sin -1 and check the sign 
of the cosine term with respect to cos6~.) Because of 
the uncer ta int ies  of square roots, inverse trigonometric 
functions,  and yaw-roll separat ion,  matrix to Euler 
angle conversion is inherent ly very ill-defined. 

1.6 Quaternion to Euler angles 

Use the most s traight-forward approach: convert the 
quaternion to a matrix, then the matrix to Euler 
angles. Of course it is unnecessary to compute matrix 
elements tha t  are never used. This conversion is also 
unavoidably  ill-defined, as quaternions contain no more 
information about  angles t han  matrices do. 
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