Mining Large Dynamic Graphs and Tensors

Kijung Shin
Ph.D. Student
Carnegie Mellon University
(kijungs@cs.cmu.edu)
Thesis Committee

• Prof. Christos Faloutsos (Chair)
• Prof. Tom M. Mitchell
• Prof. Leman Akoglu
• Prof. Philip S. Yu
Mining Large Dynamic Graphs and Tensors
Graphs: Social Networks

[Diagram of social network with icons for Facebook, LinkedIn, and Google+]

Mining Large Dynamic Graphs and Tensors (by Kijung Shin)
Graphs: Purchase History

[Diagram showing the purchase history of items by different users on Amazon, eBay, and Alibaba.com]
Graphs: Many More
Properties of Real-world Graphs

• **Large**: many nodes, more edges

 - [WWW](#) 40B+ web pages
 - [Amazon](#) 500M+ products
 - [Facebook](#) 2B+ active users
 - [Wikipedia](#) 5M+ articles

• **Dynamic**: additions/deletions of nodes and edges
Properties of Real-world Graphs

- Rich with Attributes: timestamps, scores, text, etc.
Matrices for Graphs

Graph

- Person
- Hat
- Mug
- Person
- Shoe
- Person
- Person
- Shirt

Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The adjacency matrix represents the connections between the objects in the graph.
Tensors for Rich Graphs

- **Tensors**: multi-dimensional array

- 3-order tensor
 - (3-dimensional array)
- 4-order tensor
 - + Stars ★★★★
- 5-order tensor
 - + Text ...

3-order tensor
(3-dimensional array)
Research Goal and Tasks

• Goal:

To Understand
Large Dynamic Graphs and Tensors
on User Behavior

• Tasks

◦ T1. Structure Analysis
◦ T2. Anomaly Detection
◦ T3. Behavior Modeling
Tasks

Structure

Anomaly & Fraud

Behavior Model

Contrast
Completed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>Tensors</td>
<td></td>
</tr>
<tr>
<td>Triangle Count</td>
<td>Summarization</td>
<td>Purchase Behavior</td>
</tr>
<tr>
<td>[ICDM17][PAKDD18]</td>
<td>[WSDM17]</td>
<td>[IJCAI17]</td>
</tr>
<tr>
<td>[submitted to KDD]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degeneracy</td>
<td>Dense Subtensors</td>
<td>Progressive Behavior</td>
</tr>
<tr>
<td>[ICDM16]* [KAIS18]*</td>
<td>[PKDD16][WSDM17]</td>
<td>[WWW18]</td>
</tr>
<tr>
<td></td>
<td>[KDD17][TKDD18]</td>
<td></td>
</tr>
</tbody>
</table>

* Duplicated
Approaches (Tools)

- A1. Distributed or external-memory algorithms
 - Hadoop
 - Spark

- A2. Streaming algorithms based on sampling

- A3. Approximation algorithms
 - and their combinations
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion
Completed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ICDM17] [PAKDD18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[submitted to KDD]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degeneracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ICDM16]* [KAIS18]*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summarization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[WSDM17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense Subtensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PKDD16] [WSDM17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[KDD17] [TKDD18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase Behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[IJCAI17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive Behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[WWW18]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Duplicated
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ▪ T1.1 Waiting-Room Sampling
 ▪ T1.2-T1.3 Related Completed Work
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion

Kijung Shin, “WRS: Waiting Room Sampling for Accurate Triangle Counting in Real Graph Streams”, ICDM 2017
Graph Stream Model

- Widely-used data model for graphs

- **Sequence of edges**
 - graph is given over time as a sequence of edges
 - appropriate for **dynamic graphs**

- **Limited memory**
 - cannot store all edges in the stream
 - only samples or summaries
 - appropriate for **large graphs**
Relaxed Graph Stream Model

- **Chronological order**
 - edges are streamed in the order that they are created
 - natural for *dynamic graphs*
 - *temporal patterns can* exist
 - algorithms can *exploit* the patterns

Created at 9:21 AM
Created at 9:08 AM
Created at 9:02 AM
Triangles in a Graph

- **A triangle** is 3 nodes connected to each other.

- **The count of triangles** has many applications:
 - Community detection, spam detection, query optimization.

- **Global triangle count**: count of all triangles in the graph.
- **Local triangle count**: count of the triangles incident to each node.
Problem Definition

• Given:
 ◦ a sequence of edges in the chronological order
 ◦ memory budget k (i.e., up to k edges can be stored)

• Estimate: count of global triangles

• To Minimize: estimation error

“What are temporal patterns in real graph streams?”

“How can we exploit the patterns for accurate triangle counting?”
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ▪ T1.1 Waiting-Room Sampling
 ◦ Temporal Pattern
 ◦ Algorithm
 ◦ Experiments
 ▪ T1.2-T1.3 Related Completed Work
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion
Time Interval of a Triangle

- **Time interval** of a triangle:

arrival order of its last edge - arrival order of its first edge

Time interval: $7 - 2 = 5$
Time Interval Distribution

• Temporal Locality:
 ◦ average time interval is
 ◦ **2X shorter** in the chronological order
 ◦ than in a random order
Temporal Locality

• One interpretation:
 ◦ edges are more likely to form
 ◦ triangles with edges close in time
 ◦ than with edges far in time

• Another interpretation:
 ◦ new edges are more likely to form
 ◦ triangles with recent edges
 ◦ than with old edges

“How can we exploit temporal locality for accurate triangle counting?”
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ▪ T1.1 Waiting-Room Sampling
 ◦ Temporal Pattern
 ◦ Algorithm <<
 ◦ Experiments
 ▪ T1.2-T1.3 Related Completed Work
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion
Algorithm Overview

- \(\Delta \): estimate of triangle count
- \(p_{uvw} \): probability that triangle \((u, v, w)\) is discovered

(1) Arrival Step

new edge \(u - v \)

\[
\begin{array}{c|c|c|c|c}
 u & u & v & v \\
 | & | & | & |
 x & y & x & y \\
\end{array}
\]

memory

(2) Counting Step

\[
\Delta \leftarrow \Delta + 1/p_{uvy}
\]

\[
\begin{array}{c|c|c|c|c}
 u & u & v & v \\
 | & | & | & |
 x & y & x & y \\
\end{array}
\]

(3) Sampling Step

\[
\begin{array}{c|c|c|c|c}
 u & u & v & v \\
 | & | & | & |
 x & v & x & y \\
\end{array}
\]
Algorithm Overview (cont.)

- Δ: estimate of triangle count
- p_{uvw}: probability that triangle (u, v, w) is discovered

(1) Arrival Step

new edge $u - v$

<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

memory
Algorithm Overview (cont.)

• Δ: estimate of triangle count

• p_{uvw}: probability that triangle (u, v, w) is discovered

(1) Arrival Step

New edge: $u - v$

(2) Counting Step

- $u - v$ discover!
- $u - v \backslash x$/

```
<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>
```

$\Delta \leftarrow \Delta + 1/p_{uvx}$
Algorithm Overview (cont.)

- Δ: estimate of triangle count
- p_{uvw}: probability that triangle (u, v, w) is discovered

(1) Arrival Step

new edge $u - v$

<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

memory

(2) Counting Step

$\Delta \leftarrow \Delta + 1/p_{uvy}$

$u - v$ discover!

$u - v$

\[
\begin{array}{cccc}
 u & u & v & v \\
 \mid & \mid & \mid & \mid \\
 x & y & x & y \\
\end{array}
\]
Algorithm Overview (cont.)

- Δ: estimate of triangle count
- p_{uvw}: probability that triangle (u, v, w) is discovered

(1) Arrival Step

New edge $u - v$

Memory

<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

(2) Counting Step

$\Delta \leftarrow \Delta + 1/p_{uvy}$

<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

(3) Sampling Step
Goal of Sampling Step

- to maximize discovering probability p_{uvw}

Theorem. Variance of our estimate:

$$\text{Var}[\Delta] \approx \sum_{(u,v,w)} \left(\frac{1}{p_{uvw}} - 1 \right)$$

Theorem. Unbiasedness of our estimate:

$$\text{Bias}[\Delta] = \text{Exp}[\Delta] - \text{True count} = 0$$

Estimation Error = Bias + Variance

- Estimation Error = 0
Increasing Discovering Prob.

“How can we increase discovering probabilities of triangles?”

• Recall Temporal Locality:
 ◦ new edges are more likely to form triangles with recent edges
 ◦ than with old edges

• Waiting-Room Sampling (WRS)
 ◦ treats recent edges better than old edges
 ◦ to exploit temporal locality
Waiting-Room Sampling (WRS)

- Divides memory space into two parts
 - Waiting Room: latest edges are **always stored**
 - Reservoir: the remaining edges are **sampled**

New edge: e_{80}

Waiting Room (FIFO):
- e_{79}, e_{78}, e_{77}, e_{76}

Reservoir (Random Replace):
- e_{61}, e_{7}, e_{18}, e_{25}, e_{40}, e_{1}, e_{28}

α% of budget

(100 $-$ α)% of budget
WRS: Sampling Steps (Step 1)

New edge e_{80}

Waiting Room (FIFO)

e_{79} e_{78} e_{77} e_{76}

Reservoir (Random Replace)

e_{61} e_{7} e_{18} e_{25} e_{40} e_{1} e_{28}

Popped edge e_{76}

Waiting Room (FIFO)

e_{80} e_{79} e_{78} e_{77}

Reservoir (Random Replace)

e_{61} e_{7} e_{18} e_{25} e_{40} e_{1} e_{28}
WRS: Sampling Steps (Step 2)

Popped edge e_{76}

Waiting Room (FIFO)

e_{80} e_{79} e_{78} e_{77}

Reservoir (Random Replace)

e_{61} e_{7} e_{18} e_{25} e_{40} e_{1} e_{28}

store

or

discard

replace!
Summary of Algorithm

(1) Arrival Step
new edge $u - v$

<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

memory

<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

(2) Discovery Step
discover! $u - v$

$\Delta \leftarrow \Delta + \frac{1}{p_{uvx}}$

<table>
<thead>
<tr>
<th>u</th>
<th>u</th>
<th>v</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>v</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

(3) Sampling Step

Waiting-Room Sampling!

Completed / Proposed | T1.1 / T1.2 / T1.3
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ▪ T1.1 Waiting-Room Sampling
 ◦ Temporal Pattern
 ◦ Algorithm
 ◦ Experiments <<
 ▪ T1.2-T1.3 Related Completed Work
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion
Experimental Results: Accuracy

• Datasets: [arXiv.org]

• WRS is most accurate (reduces error up to 47%)
Discovering Probability

• WRS increases discovering probability p_{uvw}
• WRS discovers up to $3 \times$ more triangles
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ▪ T1.1 Waiting-Room Sampling
 ▪ **T1.2-T1.3 Related Completed Work**
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion

Mining Large Dynamic Graphs and Tensors (by Kijung Shin)
T1.2 Distributed Counting of Triangles

• Goal: to utilize *multiple machines* for triangle counting in a graph stream?

Tri-Fly [PAKDD18]

- Sources
- Workers
- Aggregators

 - Broadcast
 - Shuffle

DiSLR [submitted to KDD]

- Sources
- Workers
- Aggregators

 - Multicast
 - Shuffle

Kijung Shin, Mohammad Hammoud, Euiwoong Lee, Jinoh Oh, and Christos Faloutsos, “Tri-Fly: Distributed Estimation of Global and Local Triangle Counts in Graph Streams”, PAKDD 2018
T1.2 Performance of Tri-Fly and DiSLR

- Estimation Error = Bias + Variance

![Graph showing comparison between Tri-Fly and DiSLR]
T1.3 Estimation of Degeneracy

• Goal: to estimate the *degeneracy* in a graph stream?

• *Core-Triangle Pattern*
 ◦ 3:1 power law between the triangle count and the degeneracy

degeneracy: maximum k such that a subgraph where every node has degree at least k exists.

Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos, “Patterns and Anomalies in kCores of Real-world Graphs with Applications”, KAIS 2018 (previously ICDM 2016)
T1.3 Core-D Algorithm

- **Core-D**: one-pass streaming algorithm for degeneracy

\[\hat{d} = \exp(\alpha \cdot \log(\hat{\Delta}) + \beta) \]

Estimated Degeneracy

Estimated Triangle Count (obtained by WRS, etc.)

Completed / Proposed
Structure Analysis of Graphs

Models:
- Relaxed graph stream model
- Distributed graph stream model

Patterns:
- Temporal locality
- Core-Triangle pattern

Algorithms:
- WRS, Tri-Fly, and DiSLR
- Core-D

Analyses: bias and variance
Completed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Count</td>
<td>✓</td>
<td>skip</td>
</tr>
<tr>
<td>[ICDM17] [PAKDD18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[submitted to KDD]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degeneracy</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>[ICDM16] [KAIS18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summarization</td>
<td>skip</td>
<td></td>
</tr>
<tr>
<td>[WSDM17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense Subtensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PKDD16] [WSDM17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[KDD17] [TKDD18]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Duplicated

Mining Large Dynamic Graphs and Tensors (by Kijung Shin)
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ◦ T2. Anomaly Detection
 ▪ T2.1 M-Zoom
 ▪ T2.2-T2.3 Related Completed Work
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion

Motivation: Review Fraud

Alice’s

🌟🌟🌟🌟 8 reviews

Bob’s

🌟🌟🌟🌟🌟 149 reviews

Carol’s

🌟🌟🌟🌟🌟 239 reviews

Get more 5-star Yelp reviews for your business

Alice
Fraud Forms Dense Block

Restaurants

Accounts

Completed / Proposed

T2.1 / T2.2 / T2.3
Problem: Natural Dense Subgraphs

• Question. How can we distinguish them?

natural dense blocks (core, community, etc.)

suspicious dense blocks formed by fraudsters

Completed / Proposed | **T2.1 / T2.2 / T2.3**
Solution: Tensor Modeling

- Along the time axis...
 - Natural dense blocks are sparse (formed gradually)
 - Suspicious dense blocks are dense (synchronized behavior)

- In the tensor model
 - Suspicious dense blocks become denser than natural dense blocks
Solution: Tensor Modeling (cont.)

• High-order tensor modeling:
 ◦ any side information can be used additionally

“Given a large-scale high-order tensor, how can we find dense blocks in it?”
Problem Definition

• Given: (1) R: an N-order tensor,
 (2) ρ: a density measure,
 (3) k: the number of blocks we aim to find

• Find: k distinct dense blocks maximizing ρ
Density Measures

• How should we define “density” (i.e., ρ)?
 ◦ no one absolute answer
 ◦ depends on data, types of anomalies, etc.

• Goal: flexible algorithm working well with various reasonable measures
 ✓ Arithmetic avg. degree ρ_A
 ✓ Geometric avg. degree ρ_G
 ✓ Suspiciousness (KL Divergence) ρ_S
 ✗ Traditional Density: $\rho_T(B) = \frac{\text{EntrySum}(B)}{\text{Vol}(B)}$
 - maximized by a single entry with the maximum value
Clarification of Blocks (Subtensors)

- The concept of blocks (subtensors) is independent of the orders of rows and columns
- Entries in a block do not need to be adjacent
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ◦ T2. Anomaly Detection
 ▪ T2.1 M-Zoom [PKDD 16]
 ◦ Algorithm <<
 ◦ Experiments
 ▪ T2.2-T2.3 Related Completed Work
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion
Single Dense Block Detection

- Greedy search
- Starts from the entire tensor

\[\rho = 2.9 \]

\[
\begin{array}{ccc}
5 & 3 & 0 \\
4 & 6 & 1 \\
2 & 0 & 0 \\
\end{array}
\]
Single Dense Block Detection (cont.)

- Remove a slice to maximize density ρ
Single Dense Block Detection (cont.)

- Remove a slice to maximize density ρ

$\rho = 3.3$
Single Dense Block Detection (cont.)

- Remove a slice to maximize density ρ

$\rho = 3.6$
Single Dense Block Detection (cont.)

- Until all slices are removed
Single Dense Block Detection (cont.)

- Output: return the densest block so far

\[\rho = 3.6 \]
Speeding Up Process

- Lemma 1 [Remove Minimum Sum First]

Among slices in the same dimension, removing the slice with smallest sum of entries increases ρ most
Accuracy Guarantee

• Theorem 1 [Approximation Guarantee]

\[\rho_A(B) \geq \frac{1}{N} \rho_A(B^*) \]

M-Zoom Result
Order
Densest Block

• Theorem 2 [Near-linear Time Complexity]

\[O(NM \log L) \]

Order
Non-zeros
Entries in each mode
Optional Post Process

• Local search
 ◦ grow or shrink until a local maximum is reached

\[\rho = 2 \]
\[
\begin{array}{c|c}
 1 & 0 \\
 3 & 4 \\
 5 & 7 \\
 1 & 0 \\
\end{array}
\]
grow

\[\rho = 1.8 \]
\[
\begin{array}{c|c}
 1 & 0 \\
 3 & 4 \\
 5 & 7 \\
 1 & 0 \\
\end{array}
\]
shrink

\[\rho = 3.29 \]
\[
\begin{array}{c|c}
 1 & 0 \\
 3 & 4 \\
 5 & 7 \\
 1 & 0 \\
\end{array}
\]
result of our previous greedy search
Optional Post Process (cont.)

• Local search
 ◦ grow or shrink until a local maximum is reached

\[\rho = 3.29 \]

\[\begin{array}{ccc}
1 & 0 & 3 \\
3 & 4 & 0 \\
5 & 7 & 0 \\
1 & 0 & 1 \\
\end{array} \]

\[\rightarrow \]

\[\begin{array}{ccc}
1 & 0 & 3 \\
3 & 4 & 0 \\
5 & 7 & 0 \\
1 & 0 & 1 \\
\end{array} \]

\[\rho = 3.33 \]

\[\rho = 3.25 \]
Optional Post Process (cont.)

• Local search
 ◦ grow or shrink until a local maximum is reached

\[\rho = 3.29 \]

\[\rho = 3.33 \]

\[\rho = 3.8 \]
Optional Post Process (cont.)

- Local search
 - grow or shrink until a local maximum is reached
- Return the local maximum
Multiple Block Detection

- **Deflation**: Remove found blocks before finding others

Completed / Proposed | T2.1 / T2.2 / T2.3

70/106
Roadmap

- Overview

- Completed Work
 - T1. Structure Analysis
 - T2. Anomaly Detection
 - T2.1 M-Zoom [PKDD 16]
 - Algorithm
 - Experiments <<
 - T2.2-T2.3 Related Completed Work
 - T3. Behavior Modeling

- Proposed Work

- Conclusion
Speed & Accuracy

- Datasets: Y!, Wikipedia, TCP/IP, Yelp, Android, SMS, ...

Density metric: \(\rho_G \)

Density metric: \(\rho_A \)

Density metric: \(\rho_S \)
Discoveries in Practice

Korean Wikipedia
- 11 accounts revised 10 pages 2,305 times within 16 hours

English Wikipedia
- 8 accounts revised 12 pages 2.5 million times
Discoveries in Practice (cont.)

App Market (4-order)
- 9 accounts gives 1 product
- 369 reviews with the same rating within 22 hours

TCP Dump (7-order)
- A block whose volume = 2 and mass = 2 millions

Completed / Proposed | T2.1 / T2.2 / T2.3
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ◦ T2. Anomaly Detection
 ▪ M-Zoom
 ▪ T2.2-T2.3 Related Completed Work
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion
T2.2 Extension to Web-scale Tensors

• Goal: to find dense blocks in a disk-resident or distributed tensor

• D-Cube: gives the same accuracy guarantee of M-Zoom with much less iterations

Entry sum in slices

Average

Elapsed Time (sec)

Number of Non–zeros

100 B nonzeros in 5 hours

Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos,
“D-Cube: Dense-Block Detection in Terabyte-Scale Tensors”, WSDM 2017
T2.3 Extension to Dynamic Tensors

- Goal: to maintain a dense block in a **dynamic tensor** that changes over time

- **DenseStream**: incrementally computes a dense block with the **same accuracy guarantee** of M-Zoom

Anomaly Detection in Tensors

 Algorithms:
 ◦ M-Zoom, D-Cube, and DenseStream

 Analyses: approximation guarantees

 Discoveries:
 ◦ Edit war, vandalism, and bot activities
 ◦ Network intrusion
 ◦ Spam reviews
Completed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle Count</td>
<td>✓ [ICDM17][PAKDD18]</td>
<td>skip</td>
<td></td>
</tr>
<tr>
<td>Degeneracy</td>
<td>✓ [ICDM16]* [KAIS18]*</td>
<td>skip</td>
<td></td>
</tr>
<tr>
<td>Tensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summarization</td>
<td>skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense Subtensors</td>
<td>✓ [PKDD16][WSDM17][KDD17][TKDD18]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Duplicated
Problem Definition

• **Given:**
 ◦ behavior log
 ◦ number of desired latent stages: k

• **Find:** k progression stages
 ◦ types of actions
 ◦ frequency of actions
 ◦ transitions to other stages

• **To best describe** the given behavior log
Behavior Model

- Generative process:
 - Θ_s: action-type distribution in stage s
 - ϕ_s: time-gap distribution in stage s
 - ψ_s: next-stage distribution in stage s

- Constraint: “no decline” (progression but no cyclic patterns)
Optimization Algorithm

- **Goal:** to fit our model to given data
 - parameters: distributions (i.e., Θ_s, ϕ_s, ψ_s) and latent stages

- **repeat** until convergence
 - **assignment step:** assign latent stages while fixing prob. distributions
 - **update step:** update prob. distributions while fixing latent stages
 - e.g., $\Theta_s \leftarrow$ ratio of the types of actions in stage s

```
1 | 2 | 3
```

"no decline" → Dynamic Programming
Scalability & Convergence

- Three versions of our algorithm
 - In-memory
 - Out-of-core (or external-memory)
 - Distributed

- 1 trillion actions in 2 hours
- 5 latent stages

- Completed / Proposed
Progression of Users in LinkedIn

Join → Build one’s Profile → Onboarding Process

Poke around the service → Grow one’s Social Network → Consume Newsfeeds → Have 30 connections

Completed / Proposed | T3.1 | 85/106
Completed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle Count</td>
<td>✓ [ICDM17]</td>
<td>skip</td>
<td>skip</td>
</tr>
<tr>
<td>[ICDM17]</td>
<td></td>
<td>[submitted to KDD]</td>
<td></td>
</tr>
<tr>
<td>Degeneracy</td>
<td>✓ [ICDM16]* [KAIS18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summarization</td>
<td>skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[WSDM17]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense Subtensors</td>
<td>✓ [PKDD16][WSDM17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[KDD17][TKDD18]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[WWW18]</td>
<td>skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Duplicated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work <<

• Conclusion
Proposed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>P1. Triangle Counting in Fully Dynamic Stream</td>
<td>P3. Polarization Modeling</td>
</tr>
<tr>
<td>Tensors</td>
<td>P2. Fast and Scalable Tucker Decomposition</td>
<td></td>
</tr>
</tbody>
</table>

* Duplicated
Proposed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>P1. Triangle Counting in Fully Dynamic Stream</td>
<td></td>
</tr>
<tr>
<td>P2. Fast and Scalable Tucker Decomposition</td>
<td></td>
<td>P3. Polarization Modeling</td>
</tr>
</tbody>
</table>

* Duplicated
P1: Problem Definition

• Given:
 ◦ a **fully dynamic** graph stream,
 ▪ i.e., list of edge **insertions** and edge **deletions**
 ◦ Memory budget k

• Estimate: the **counts of global and local triangles**

• To Minimize: estimation error
<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>Handle Deletions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triest-FD</td>
<td>Lowest</td>
<td>Yes</td>
</tr>
<tr>
<td>MASCOT</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>Triest-IMPR</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>WRS</td>
<td>Highest</td>
<td>No</td>
</tr>
<tr>
<td>Proposed</td>
<td>Highest</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Proposed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>P1. Triangle Counting in Fully Dynamic Stream</td>
<td>P3. Polarization Modeling</td>
</tr>
<tr>
<td>Tensors</td>
<td>P2. Fast and Scalable Tucker Decomposition</td>
<td></td>
</tr>
</tbody>
</table>

* Duplicated
P2: Problem Definition

- Tucker Decomposition (a.k.a High-order PCA)
 - **Given**: an N-order input tensor X
 - **Find**: N factor matrices $A^{(1)} ... A^{(N)}$ & core-tensor Y
 - **To satisfy**:

\[X \approx Y \]

\[X \approx A^{(1)} A^{(2)} A^{(3)} \]
P2: Standard Algorithms

Input (large & sparse) → Intermediate Data (large & dense) → Output (small & dense)

- Materialized:
 - Input: 2GB
 - Intermediate Data: 400GB - 4TB (Scalability bottleneck)
 - Output: 2GB

- SVD
P2: Completed Work

• Our completed work [WSDM17]

P2: Proposed Work

- Proposed algorithm

Input (large & sparse)
Intermediate Data (small & dense)
Output (small & dense)

- Partially materialize intermediate data!
P2: Expected Performance Gain

- Which part of intermediate data should we materialize?
- Exploit skewed degree distributions!
Proposed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1. Triangle Counting in Fully Dynamic Stream</td>
<td>✔️</td>
<td></td>
<td>P3. Polarization Modeling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensors</th>
<th>P2. Fast and Scalable Tucker Decomposition</th>
</tr>
</thead>
</table>

* Duplicated
P3. Polarization Modeling

- **Polarization** in social networks: division into contrasting groups

Use of marijuana should be: Legal Illegal

OR

- change of beliefs
- change of edges

“How do people choose between *two ways of polarization*?”
P3. Problem Definition

• **Given**: time-evolving social network with nodes’ beliefs on controversial issues
 ◦ e.g., legalizing marijuana

• **Find**: actor-based model with a utility function
 ◦ depending on network features, beliefs, etc.

• **To best describe**: the polarization in data

• **Applications**:
 ◦ predict future edges
 ◦ predict the cascades of beliefs
Proposed Work by Topics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>P1. Triangle Counting in Fully Dynamic Stream</td>
<td>P3. Polarization Modeling</td>
</tr>
<tr>
<td>Tensors</td>
<td>P2. Fast and Scalable Tucker Decomposition</td>
<td></td>
</tr>
</tbody>
</table>

* Duplicated
Timeline

• Mar-May 2018
 ◦ **P1.** Triangle counting in fully dynamic graph streams

• Jun-Aug 2018
 ◦ **P3.** Polarization modeling

• Sep-Oct 2018
 ◦ **P2.** Fast and scalable tucker decomposition

• Nov 2018 –April 2019
 ◦ Thesis Writing & Job Application

• May 2019
 ◦ Defense
Roadmap

• Overview

• Completed Work
 ◦ T1. Structure Analysis
 ◦ T2. Anomaly Detection
 ◦ T3. Behavior Modeling

• Proposed Work

• Conclusion <<
Conclusion

• **Goal:**
 To Understand Large Dynamic Graphs and Tensors

• **Subtasks:**
 ◦ structure analysis
 ◦ anomaly detection
 ◦ behavior modeling

• **Approaches:**
 ◦ distributed or external-memory algorithms
 ◦ streaming algorithms based on sampling
 ◦ approximation algorithms
References (Completed work)

Thank You

• Papers, software, data: http://www.cs.cmu.edu/~kijungs/proposal/

• Email: kijungs@cs.cmu.edu

• Thanks to:
 ◦ Sponsors: NSF, [Other sponsors]
 ◦ Admins: [Names of admin team members]
 ◦ Collaborators: [List of collaborator names and photos]

Mining Large Dynamic Graphs and Tensors (by Kijung Shin)