CoreScope: Graph Mining Using k-Core Analysis -
Patterns, Anomalies and Algorithms

Kijung Shin
Carnegie Mellon University
Pittsburgh, PA, USA
kijungs @cs.cmu.edu

Abstract—How do the k-core structures of real-world graphs
look like? What are the common patterns and the anomalies?
How can we use them for algorithm design and applications? A
k-core is the maximal subgraph where all vertices have degree
at least k. This concept has been applied to such diverse areas
as hierarchical structure analysis, graph visualization, and graph
clustering. Here, we explore pervasive patterns that are related
to k-cores and emerging in graphs from several diverse domains.

Our discoveries are as follows: (1) MIRROR PATTERN: core-
ness of vertices (i.e., maximum £ such that each vertex belongs
to the k-core) is strongly correlated to their degree. (2) CORE-
TRIANGLE PATTERN: degeneracy of a graph (i.e., maximum £k
such that the k-core exists in the graph) obeys a 3-to-1 power law
with respect to the count of triangles. (3) STRUCTURED CORE
PATTERN: degeneracy-cores are not cliques but have non-trivial
structures such as core-periphery and communities.

Our algorithmic contributions show the usefulness of these
patterns. (1) CORE-A, which measures the deviation from MIR-
ROR PATTERN, successfully finds anomalies in real-world graphs
complementing densest-subgraph based anomaly detection meth-
ods. (2) CORE-D, a single-pass streaming algorithm based on
CORE-TRIANGLE PATTERN, accurately estimates the degeneracy
of billion-scale graphs up to 7x faster than a recent multi-
pass algorithm. (3) CORE-S, inspired by STRUCTURED CORE
PATTERN, identifies influential spreaders up to 17 x faster than
top competitors with comparable accuracy.

Index Terms—Graphs, k-cores, degeneracy, influential nodes,
anomaly detection

I. INTRODUCTION

Given an undirected graph G, the k-core is the maximal
subgraph of GG in which every vertex is adjacent to at least k
vertices [1]. As discussed in Section VI, this concept has been
used extensively in diverse applications, including hierarchical
structure analysis [2], graph visualization [3], protein function
prediction [4], and graph clustering [5]. An equally useful and
closely related concept is the degeneracy of G, that is, the
maximum k such that the k-core exists in G. For example, a
clique of 5 vertices itself is a 4-core and thus has degeneracy
4; aring of 10 vertices has degeneracy 2; a star of 100 vertices
has degeneracy 1. The simplest algorithm to compute k-cores,
is the so-called “shaving” method: repeatedly deleting vertices
with degree less than & until no such node is left.

Despite the huge interest in k-cores and their applications,
it is not known whether k-cores or degeneracy follow any
patterns in real graphs. Our motivating questions are: (1)
what are common patterns regarding k-cores or degeneracy

Tina Eliassi-Rad
Northeastern University
Boston, MA, USA
eliassi @ccs.neu.edu

Christos Faloutsos
Carnegie Mellon University
Pittsburgh, PA, USA
christos @cs.cmu.edu

occurring across graphs in diverse domains? (2) are there
anomalies deviating from these patterns? (3) how can these
patterns and anomalies be used for better algorithm design?

To answer these questions, we present three empirical
patterns that govern k-cores or degeneracy, across a wide
variety of real-world graphs, including social networks, web
graphs, internet topologies, and citation networks. We also
show the practical use of these patterns.

Our first MIRROR PATTERN states that the coreness of a
vertex (i.e., the maximum £ such that the vertex belongs to
the k-core) is strongly correlated to its degree, as seen in
Figure 1(a). We also observe that anomalies (e.g., the CEO in
Figure 1(a) and accounts using ‘follower-booster’ in Twitter)
tend to deviate from this pattern. This observation leads to
CORE-A, our anomaly detection method based on the degree
of deviation from MIRROR PATTERN. We show that CORE-A
is complementary to recent densest-subgraph based anomaly
detection methods [6], [7], and their combination has the best
of the two approaches.

Our second discovery, CORE-TRIANGLE PATTERN, states
that, in real-world graphs, the degeneracy and the triangle-
count obey a power-law with slope 1/3, as seen in Figure 1(b).
This relation is theoretically analyzed in very realistic Kro-
necker graphs [8], and also utilized in CORE-D, our single-
pass streaming algorithm for estimating degeneracy. CORE-D
is up to 7x faster than a recent multi-pass algorithm [9], while
providing comparable accuracy (see Figure 1(c)).

Our last discovery, STRUCTURED CORE PATTERN, states
that degeneracy-cores in real-world graphs are not cliques but
have non-trivial structures (core-periphery, communities, etc.),
as seen in Figure 1(d). We also show that vertices central
within degeneracy-cores are particularly good spreaders up to
2.6 x more influential than the average vertices in degeneracy-
cores, which are already known as good spreaders [10]. Those
spreaders are spotted by CORE-S, our influential spreader
identification method, which is up to 17X faster than top
competitors with similar accuracy.

In summary, the contributions of our work are as follows:

o Patterns: We discover three empirical patterns that hold

across several real-world graphs from diverse domains.

« Anomalies: We detect various interesting anomalies (e.g.,

accounts involved in a ‘follower-boosting’ service in
Twitter) from vertices deviating from the patterns.

2 5 (Communities)
10 o}\‘z"b 10 - Real-world data
@ 4 3 [Empirical relation P Core-D
@ 10 § 10°1-- Theoretical / 83 (Proposed): ®
q:" 1 g? ® 10° [9) relation : |-|-|2 Overall 3
o101 & $CEO of th 2 %102 o Triangle =
o &/ mmmee ompan 10)] 51 Basic =
O [se o pany 10! 8 . % LogPass: %
N/ o 10'L2N0 tan 6 =1/3 o a=8 A6 s
10%+ 10 4 2 3
10° 10" _10® 10® 10* 10° 10 _10° 10" 0 100 200 300 e

Degree

(a) P1: MIRROR PATTERN
Al: Anomaly Detection

Fig. 1:

Number of Triangles

(b) P2: CORE-TRIANGLE PATTERN

—_—
(Degeneracy-Core)

Wall-Clock Time (sec)

(c) A2: CORE-D Algorithm (d) P3: STRUCTURED

CORE PATTERN

Three patterns (P1-P3) discovered in real-world graphs, and their applications (A1-A3). (a) P1: Coreness and degree are

strongly correlated. A1: Anomalies deviate from this pattern. (b) P2: Degeneracy and the number of triangles in graphs obey a 3-fo-1 power
law, which is theoretically supported. (c) A2: Our CORE-D algorithm (with OVERALL MODEL) estimates the degeneracy in a graph stream
6x faster and 2Xx more accurately than its state-of-the-art competitor. (d) P3: As seen in the sparsity pattern of the given degeneracy-core,
degeneracy-cores have structure, such as core-periphery and communities, which can be exploited for identifying influential spreaders (A3).

o Algorithms: The patterns are practically used in our
algorithms for detecting anomalies (CORE-A), estimating
degeneracy (CORE-D), and identifying influential spread-
ers (CORE-S). Our experiments show that our algorithms
complement or outperform state-of-the-art algorithms.

Reproducibility: Our open-sourced code and the data we

used are at http://www.cs.cmu.edu/~kijungs/codes/kcore/.

In Section II, we give preliminaries on k-cores. In Sec-

tion III, we present MIRROR PATTERN and its application
to anomaly detection. In Section IV, we describe CORE-
TRIANGLE PATTERN and CORE-D, a streaming algorithm for
estimating degeneracy. STRUCTURED CORE PATTERN and its
application to influential spreader detection are presented in
Section V. After discussing related work in Section VI, we
make a conclusion in Section VII.

II. PRELIMINARIES

In this section, we provide the definitions of k-core and
related concepts. We also discuss algorithms for computing
k-cores and degeneracy.

A. Definitions and Notations

Let G(V, E) be an undirected unweighted graph. We define
n = |V| and m = |E|. We denote the neighbors of a vertex
v € V by N(w) = {u € V|(u,v) € E} and its degree by
d(v) = |N(v)|. Likewise, for a subgraph G'(V', E’) of G, we
use Ng/(v) = {u € V'|(u,v) € E'} and dgr(v) = |Ng (v)].

The k-core or the core of order k [1] is the maximal
subgraph G'(V', E’) where Vv € V', dg/(v) > k. Notice
that, for each k, there exists at most one k-core, and it is
not necessarily a connected subgraph. In addition, cores are
nested. The kj-core is a subgraph of the ko-core if k1 > ko.
The coreness or core number of a vertex v [1], denoted by
¢(v), is the order of the highest-order core that v belongs to.
A vertex v has coreness k iff v belongs to the k-core but not
to the (k + 1)-core. By definition, coreness is upper bounded
by degree, i.e., ¢(v) < d(v). The degeneracy of a graph G,
defined as k4, = max,ecy ¢(v), is the maximum coreness.
The k.,,qz-core is also called degeneracy-core. If we let 1,4z
and m,,,q, be the number of vertices and that of edges in the
degeneracy-core, the density of the degeneracy-core is defined
as Dyar = mmaw/(nnéaz)‘

TABLE I: Table of symbols.

Symbol Definition
G(V,E) undirected and unweighted graph
A adjacency matrix of G
n number of vertices in G
m number of edges in G
kmazx degeneracy of G
Nomazx number of vertices in the degeneracy-core
Mmaz number of edges in the degeneracy-core
Dmax density of the degeneracy-core

davg average degree of G
c(v) coreness of vertex v

d(v) degree of vertex v
r Pearson correlation coefficient
P Spearman’s rank correlation coefficient
dmp(v) vertex v’s degree of deviation from MIRROR PATTERN
DSM densest-subgraph based anomaly detection methods
a-score(G’) anomaly score of subgraph G’
#A number of triangles in G
Ai i-th largest eigenvalue of A
i(v in-core centrality of vertex v

infection rate in the SIR Model

Additionally, we denote the number of triangles (i.e., com-
plete subgraphs with three vertices) in a graph G by #A. The
eigenvalues of the adjacency matrix A of G are denoted by
(A1, ., An) where \; > A if ¢ < j. Table I lists the symbols
frequently used in the paper.

B. Algorithm for k-Cores and Degeneracy

The k-core remains if we remove vertices with degree less
than k£ and edges incident to them recursively from G until
no vertex has degree less than k. The (k + 1)-core can be
computed in the same way from the k-core since the (k4 1)-
core is a subgraph of the k-core. Likewise, by computing k-
cores sequentially from k£ = 1 to k = kjyq., we divide all
vertices according to their coreness. This process, called core
decomposition, runs in O(n+m) [1] if a graph fits in memory.

However, if a graph does not fit in memory, the com-
putational cost grows. For example, in a graph stream, a
recent method LOGPASS [9] requires O(log,, /5(n)) passes of
the entire graph and n memory space for a-approximation
of the degeneracy. In Section IV-C, however, we propose a
single-pass algorithm for estimating degeneracy. Other k-core
algorithms for large graphs are discussed in Section VI.

http://www.cs.cmu.edu/~kijungs/codes/kcore/

10%; 10* 107 10°
t f 4
2, 0° 9 10
@107 o 10°
& | 102 G10'}
2 o 102
0101 3 1 Q
o 10 (& 10!
0 0 0 0
100 W g 10 ST R - [
10° 10" 102 10% 10* 10° 10 10" 102 10% 10* 10°
Degree Degree
(a) Catster (p = 0.95) (b) Stanford (p = 0.86)
2 5 4 7
10 10 19 B 107
104 - boosting 10
] A9 4xI s, o0 iy’ 10°
8101 4 o 10 8102 107
o . WU § CEO of the 102 [103
Q / ammen® company Q 102
(&) fmmmse o 10! ©10 0,
0 0 0 - 100
100 £ B g 10 10
10° 10" 10% 10° 10* 10°10"10210%10%10%108 107
Degree Degree

(e) Email (p = 0.99)

(f) Twitter (p = 0.95)

10% . 10° 10°
i 5
» 2[104 104
310 E 10 i
c - 3
] 10 2
510‘L 102 10
© — M 10 i 10"
100 A R TEPRE S| 100 100 T N SN | 100
10° 10" 102 10% 10* 10° 10° 10" 10% 10° 10* 10°
Degree Degree
(c) Skitter (p = 0.99) (d) Orkut (p = 0.91)
2 7 3 6
10 ‘Copy-and‘-paste’ vl 106 10 Isolated A 10
bibliograph: 10 near-clique gt 105
(2] 5 (%))
a 10 9102 . 10*
(0] 4 *
Cond 10 c 3
310 0 9 10
/s) 2 910! 102
(&) 101]
G 10 ~— 10
0 0 0 0
10 ‘ . 10 10 10
10°© 10! 102 10° 10° 10" 10% 10° 10* 10°
Degree Degree

(g) Patent (p = 0.56)

(h) LiveJournal (p = 0.93)

Fig. 2: Our MIRROR PATTERN is pervasive in real-world graphs; exceptions signal anomalies. p (€ [—1,1]) indicates Spearman’s
rank correlation coefficient; and colors are for heatmap of point density. Degree and coreness have strong positive correlation; exceptions
(in red circles) are “strange”: the vertex ranked first in terms of degree but relatively lower in terms of coreness corresponds to an email
account of the company’s CEO in (e); vertices ranked first in terms of coreness but relatively lower in terms of degree indicate accounts
involved in a ‘follower-boosting’ service in (f), ‘copy-and-paste’ bibliography in (g), and an isolated near-clique in (h).

TABLE II: Summary of the datasets used in the paper. All graphs

are considered undirected and unweighted.

Name | n m #A kmaz Mmaz Dmaz
Social Network
Hamster 1.86K 12.6K 16.8K 20 130 0.24
Email 36.7K 184K 727K 43 275 0.26
Catster 150K 545M 185M 419 1.28K 0.48
YouTube 1.13M 2.99M 3.06M 51 845 0.10
Flickr 1.72M 15.6M 548M 568 1.75K 0.49
Orkut 3.0’'M 117TM 628M 253 15.7K 0.03
LiveJournal | 4.00M 347M 178M 360 377 0.99
Twitter 417M 1.20B 34.8B 249K 3.19K 0.90
FriendSter | 65.6M 1.81B 4.17B 304 24.5K 0.02
Web Graph
Stanford 282K 1.99M 11.3M 71 387 0.29
NotreDame 326K 1.0OM 89IM 155 1.37K 0.12
Internet Topology
Caida 26.5K 534K 36.3K 22 64 0.53
Skitter 1.70M 11.1IM 28.8M 111 222 0.68
Citation Network
HepTh 27.8K 352K 1.48M 37 52 0.86
Patent 37IM 16.5M 7.52M 64 106 0.73

III. PATTERN 1: “MIRROR PATTERN”
In this section, we describe MIRROR PATTERN and its

application to anomaly detection. Table II lists the datasets we
use in this work, with more details about them in Appendix A.

A. Observation: Pattern in Real-world Graphs

What are the key factors determining the coreness of the
vertices in real graphs? We find out a strong positive correla-
tion between coreness and degree, which is an upper bound
of coreness. As seen in Figure 2, Spearman’s rank correlation
coefficient p is significantly higher than 0 (no correlation) in
all the considered graphs and close to 1 (perfect correlation) in
many of them. Isolated vertices are ignored when computing
p. This empirical pattern is described in Observation 1.

Observation 1. (MIRROR PATTERN) [In real-world graphs,
coreness has a strong positive correlation with degree.

B. Application: Anomaly Detection in Real-World Graphs

MIRROR PATTERN implies that vertices with high coreness
have tendency to have high degree and vice versa. However,
the degree-coreness plots in Figure 2 highlight some vertices
deviating from the pattern, i.e., vertices ranked first in terms of
degree but relatively lower in terms of coreness, and vice versa.
In this section, we take a close look at these vertices and show
that they indicate two different types of anomalies: ‘loner-
stars’ (i.e., vertices mostly connected to ‘loners’) or ‘lockstep
behavior’ (i.e., a group of similarly behaving vertices).

1) Second Email Account of the CEO (Loner-Star): In the
Email dataset, the vertex marked in Figure 2(e) has the highest
degree 1,383 but relatively low coreness 12, deviating from
MIRROR PATTERN. This vertex corresponds to the second
email account of the former CEO of the company. This account
was used only to receive emails, and not a single email was
sent from this account. The former CEO used the other email
account when sending emails. The 99.6% of the sources of the
received emails are outside the company, while only 0.4% are
inside. Since email accounts outside the company mostly have
small coreness in the dataset (they are ‘loners’), this anomalous
email account has small coreness despite its high degree.

2) ‘Follower-Boosting’ Service in Twitter (Lockstep Behav-
ior): In Twitter, the vertices with the highest coreness, marked
in Figure 2(f), have relatively low degrees, deviating from
MIRROR PATTERN. We find out that at least 78% of the
vertices with the highest coreness were directly involved in
a ‘Follower-Boosting’ service (i.e., following ‘@TwitterFol-
lower’ in Figure 4) when the Twitter dataset was crawled.
Since the accounts involved in the service are densely con-
nected with each other (D,,,,, = 0.90) to boost the followers,

Core-A + DSM (Proposed) [[] Core-A (Proposed)

DSM

[oal o foa o o

& 1 2.8X & 2.8X & 1ol '.3x & & 1o 2.4X

D08 F e Dos 508 T F5-o Dos 208" T mfy
<06 e 208 Z 06 SN <06

.04 >0 G\B\B\B\B\E‘ > 0.4 - > 0.4

002 004 Q02 004 9

€00 So2 S 0o S 02 g 0.2

8 Smaller «—— Larger 8 0.01Smaller «—— Larger 8 Smaller «—— Larger 8 0.0 8 0.0{Smaller «—— Larger
£ 50K 100K _ 150K & 200K 400K _ 600K 2 2K 4K 6K § 100K 200K 300K 400K 2 2K 3K 4K

of Injected Edges # of Injected Edges # of Injected Edges # of Injected Edges # of Injected Edges
(a) Orkut (b) Flickr (c) YouTube (d) Catster (e) Email

Fig. 3: CORE-A is complementary to DSM; their combination has the best of the two. In social networks, our CORE-A method

accurately detects small dense subgraphs that cannot be detected accurately by DSM. The combination of CORE-A and DSM successfully
detects both small and large subgraphs. The combination detects up to 3.3 x smaller subgraphs than DSM with near-perfect accuracy.

1 will follow you

@TwitterFollower

Follow us, we follow you. Unfollow us, we unfollow you. Want
another follower? Click the link above. To contact, DM
GetFollowed

USA

2
I will follow you
Check out how | got 500 followers in ONE day! http://www.extrafollowers.com
-

Fig. 4: Vertices deviating from MIRROR PATTERN are involved
in a ‘Follower-booster’ in Twitter. 78% of the vertices in the
degeneracy-core were following the above Twitter account when the
data were crawled. The account still exists without being suspended.

they have the highest coreness despite their relatively low
degrees. Surprisingly, this misbehavior has been undetected
by Twitter, and ‘@TwitterFollower’ account has not been
suspended or removed since the data was crawled in 2009.

3) ‘Copy-and-Paste’ Bibliography (Lockstep Behavior):
As in Twitter, the vertices with the highest coreness in the
Patent dataset have relatively low degrees, deviating from
MIRROR PATTERN (see Figure 2(g)). We find out that 88% of
these vertices are patents owned by the same pharmaceutical
company, and bibliography in previous patents of the company
has been reused repeatedly in a ‘copy-and-paste’ manner in
later patents of the company. This results in a dense subgraph
in the citation network, and the patents in the subgraph have
the highest coreness despite their relatively low degrees.

4) Isolated Near-Clique in Live Journal (Lockstep Behav-
ior): Vertices with the highest coreness but relatively low
degrees are also found in the LiveJournal dataset, as marked
in Figure 2(h). Although we could not identify actual accounts
corresponding to these 377 vertices, their abnormality was
supported by the following facts: (1) The vertices form a near-
clique with density 99.7%, unlikely to occur naturally. (2)
The group formed by the vertices is isolated as judged from
the fact that 88% of the neighbors of the vertices are also in
the group, while only 12% are outside. (3) The vertices have
suspicious uniformity. Specifically, 127 vertices (one third of
the considered vertices) have degrees between 387 and 391.

C. CORE-A: Algorithm for Anomaly Detection

Inspired by the observations in the previous section, we
propose CORE-A, an anomaly detection method based on the
deviation from MIRROR PATTERN. We show that CORE-A is
complementary to densest-subgraph based anomaly detection,
and their combination has the best of the two methods.

1) Algorithm: In the previous section, we show that vertices
deviating from MIRROR PATTERN are worth noticing, as they
indicate the two types of anomalies: ‘loner-stars’ (e.g. the CEO
in Figure 2(e)) and ‘lockstep behavior’ (e.g., an isolated near-
clique in Figure 2(g)). What scoring function gives a high
score, to both types of anomalies? Deviation from MIRROR
PATTERN (dmp) in Definition 1 gives an answer. CORE-A,
our proposed anomaly detection method, ranks vertices in
decreasing order of dmp. The main idea behind our proposed
dmp measure, is to use the rank of each vertex, and since we
expect power-laws, the log of the rank. Specifically, we use
rankq(v), the fractional rank of vertex v in decreasing degree
order, and similarly, rank.(v), in decreasing coreness order
(in case of the same coreness, in decreasing degree order).

Definition 1 (Deviation from MIRROR PATTERN). A vertex
v’s degree of deviation from MIRROR PATTERN in graph G is

dmp(v) = |log(rankq(v)) — log(rank.(v))|.

CORE-A has time complexity O(n + m) since the dmp
scores of all vertices can be computed in O(n) using ‘counting
sort” once we compute core decomposition in O(n + m) [1].

2) Complementarity of CORE-A: Anomaly detection in
graphs (especially in social networks) has been extensively
researched (see Section VI), and many of them detect dense
subgraphs since anomalies tend to form dense subgraphs, as
we also show in Section III-B. Especially, the latest methods
[6], [7] are based on densest subgraphs (i.e., subgraphs with
maximum average degree). We show that CORE-A and these
densest-subgraph based methods (DSM) are complementary
as they are good at detecting different-size dense subgraphs.

To demonstrate that CORE-A and DSM (specifically M-
Z0OOM [6], which includes FRAUDAR [7] as a special case)
are complementary, we compare their performances when
different-size subgraphs are injected into social networks. We
randomly choose k vertices and inject (g) edges among them
into each network. Then, we compare how precisely and
exhaustively each method detects the k& chosen vertices using
Area Under the Precision-Recall Curve (AUCPR) [11].

As seen in Figure 3, DSM cannot detect small dense
subgraphs accurately, while it detects large ones with near-
perfect accuracy. In contrast, CORE-A is more accurate for
smaller subgraphs that cannot be detected by DSM. This is
explained by the fact that the k& chosen vertices have degree

and coreness at least Kk — 1. If k = cez DUt & < daz,
the vertices tend to have high dmp scores since they have
small rank,. but are likely to have large ranky. However, if
k =~ dpqz, the vertices have low dmp scores since they have
small rankg as well as small rank..

3) Combination with DSM: We can have the best of
CORE-A and DSM by combining them. Specifically, we
propose to define the anomaly score (a-score) of a subgraph
G'(V',E') in a graph G based on dmp scores in G as follows:

a-score(G') = |E'|/|V'| +w ZUGV, dmp(v)/[V'] (1)

where w > 0 is a parameter for balancing the two factors:
|[E'|/|V'| and }7 . dmp(v)/|V'|. We set w to the ratio
of the maximum values of the factors in the given graph
G(V, E). The maximum value of |E’|/|V’] is close (within
a factor of 2) to |[E*|/|V*|, where G*(V*, E*) is the densest
subgraph detected by DSM; and the maximum value of
> wey dmp(v)/|V'] is max,eyv dmp(v). We set w to their
ratio, i.e., w = (|E*|/|V*|)/ max,ecy dmp(v). Once we set
w, we use [6] to identify the subgraph maximizing a-score (Eq
(1)). The vertices in the subgraph are classified as anomalies.
This entire process takes O(mlogn), as DSM does [6], [7].

Figure 3 illustrates the success of our proposal to combine
the scores (Eq (1)): our combination successfully detects
both small and large subgraphs injected into social networks,
outperforming both its component methods (CORE-A and
DSM), and it detects up to 3.3x smaller subgraphs than
DSM, with near-perfect accuracy.

IV. PATTERN 2: “CORE-TRIANGLE PATTERN”

In this section, we present CORE-TRIANGLE PATTERN (C-
T PATTERN) in real-world graphs and provide mathematical
analysis of the pattern. Then, we propose a single-pass stream-
ing algorithm for estimating degeneracy, based on the pattern.

A. Observation: Pattern in Real-world Graphs

What are the major factors determining degeneracy, the
maximum coreness, in real-world graphs? We investigate the
relation between degeneracy and various graph measures in
real-world graphs. As seen in Figure 5, the number of triangles
has a particularly strong correlation (r = 0.94) with degen-
eracy in log scale, compared with the node-count (r = 0.75)
and the edge-count (r = 0.83). Moreover, the slope is 0.32,
which is very close to 1/3. This leads to Observation 2.

Observation 2. (CORE-TRIANGLE PATTERN) (C-T PATTERN
in short). In real-world graphs, the triangle count and the
degeneracy obey a 3-to-1 power law. That is,

kemaz < (#A)5.

B. Analysis in Kronecker Model

Why do real graphs obey C-T PATTERN? Here we show
that C-T PATTERN holds for the so-called ‘Kronecker Model’
(Definition 2), which is considered as a very realistic graph
model obeying common patterns in real-world networks [8].

§1 0 Social Network
%02 [l Web Graph

I Citation Network
D101 tan 6 =173 Internet Topology

10° 10 _ 10° 10"
Number of Triangles

Fig. 5 CORE-TRIANGLE PATTERN: triangle count and degen-
eracy obey a 3-to-1 power law. Each point corresponds to a graph
dataset in Table II. The count of triangles has a strong correlation
(r = 0.94) with degeneracy in log scale. Moreover, the slope is very
close to the theoretical slope 1/3 (dashed line).

Definition 2 (Kronecker Graph [8]). Let G, be the gq-th
power Kronecker graph of a seed graph Gi. If we denote
the adjacency matrix of G4 by A,, A4 is defined as:

A=A, 1 @A =A®A®...0 A,

q times
where ® denotes Kronecker Product.

C-T PATTERN in the model is defined formally in Defini-
tion 3, where we ignore constant factors for ease of analysis.

Definition 3. (C-T PATTERN in Kronecker Model). A Kro-
necker model with seed graph G follows C-T PATTERN if
(2) holds in {Gy}4>1, graphs generated by the model.

kmar = @(#A%) or equivalently #A = @(kiar)‘ 2)

Lemmas 1 and 2 state how rapidly degeneracy and triangle
count increase in Kronecker Model. Both of them increase
exponentially with ¢, the power of Kronecker products, and
the base numbers depend on seed graphs.

Lemma 1. (Degeneracy in Kronecker Model). Degeneracy
in {Gq}q>1 increases exponentially with q. Let dg.g be the
average degree and)\ be the largest eigenvalue of the
adjacency matrix. Then,

D) kmaz(Gq) = Q(maz{(davg(G1))?, (kmaz(G1))})-

2) kmax(Gq) = O((A1(G1))?).

Proof. See the supplementary document [12]. |

Lemma 2. (Triangles of Kronecker Model). The number
of triangles in {Gg}q>1 increases exponentially with q. Let
AMG1) = (M1, ey An) be the eigenvalues of the adjacency ma-
trix of the seed graph Gy. Then, #A(G,) = O((321, A)9).

Proof. See the supplementary document [12]. |

Based on the speed of increase in degeneracy and triangle
count given in Lemmas 1 and 2, Theorem 1 states a sufficient
and a necessary condition for C-T PATTERN to hold in Kro-
necker Model. Note that Y- ; A=A% in (3) and D" | A3 <A}
in (4) can hold since the eigenvalues can be negative.

Theorem 1. (C-T PATTERN in Kronecker Model). In Kro-
necker graphs with a seed graph G,
1) A sufficient condition for C-T PATTERN to hold is

n

max(d3, ;. kie,) = A = AL, 3)

i=1

TABLE III: Sample seed graphs for Kronecker Model. All graphs
satisfy the necessary condition for C-T PATTERN, and Mediator
satisfies also the sufficient condition. When computing kp,q, and
davg, we add one to the degree for each self-loop if self-loops exist.

| Core-Periphery Mediator Triangle Star
w8 N
[1 8 8 1
d3yg 3.38 8 18.96 5.36
Sy A 4 8 20 10
A7 4.24 8 20.39 12.21
2 s Core-Periphery
E10 - (slope = 0.32)
2 rol=1g ’ O Mediator
Q10? 5 Ay~ (slope = 0.33)
o) o¥, - Triangle
Qo430 tang=13 (slope = 0.32)
10°10°10°10° 107 10° 10°10% | © Star
Number of Triangles (slope = 0.34)

Fig. 6: CORE-TRIANGLE PATTERN holds in Kronecker Model.
Points represent graphs generated by Kronecker Model with different
seed graphs. The slopes between the triangle count and degeneracy
are close to 1/3 (dashed line) in log scale regardless of seed graphs.

2) A seed graph satisfying the sufficient condition exists.
3) A necessary condition for C-T PATTERN to hold is

max(ds, , kinae) < DA <AL 4)
=1

Proof. Assume that the sufficient condition holds, and ¢ =
max(dgvg’kﬁnaw) = Z?:l)‘? = /\? Then’ (kmaw(GQ))s =
©(c?) by Lemma 1, and #A(G,) = O(c?) by Lemma 2.
Therefore, #A(G,) = O((kmax(G4))?), and C-T PATTERN
holds. The Mediator seed graph in Table III satisfies this
sufficient condition.

Assume that the necessary condition is not met. By Lem-
mas 1 and 2, (kmas(G,))? increases faster than #A(G,)
if Yi AP < max(d},,, k.,). Instead, #A(G,) increases
faster than (kp,qz(Gg))? if A3 < -1 A2 Hence, #A(Gy) #
O((kmaz(Gyq))?), and C-T PATTERN does not hold. |

Many realistic seed graphs satisfy the necessary condition
for C-T PATTERN, as listed in Table III. Especially, Mediator
satisfies also the sufficient condition. Even seed graphs that
do not satisfy the sufficient condition empirically follow C-T
PATTERN, as seen in Figure 6. The slope of regression line
between the number of triangles and degeneracy is very close
to 1/3 in log scale with all the seed graphs considered.

In addition to Kronecker Model, C-T PATTERN is proved
also in Erd6s-rényi (ER) Model (Theorem 2), another math-
ematically tractable graph generation model where each of

possible (g) edges occurs independently with probability p.

Theorem 2. (C-T PATTERN in ER Model). Graphs generated
by ER Model with probability p follow C-T PATTERN in terms
of expected values if p = Q(logn/n). That is,

B[#A] = O(Elkmaal’).

Proof. See the supplementary document [12]. |

TABLE IV: Models of CORE-D. OVERALL MODEL fits the data
best (i.e., has the highest adjusted R?), and the log triangle-count
is statistically significant with p-value < 0.001.

. Coefficient
Model Variable Estimate Std.Err. p-value
. 1 -0.03 0.43 0.94
B
B2 *f'%) log(n) 035 0.28 0.24
Rag; =0.72) 1550m) 0.62 0.24 0.02 *
Triangle 1 -0.20 0.23 0.40
(R24; = 0.89) log(#A) 0.32 0.03 1.3e-07 #ks
1 0.03 0.20 0.88
Overall log(n) 0.18 0.15 0.26
(R24; = 0.95) log(m) -0.50 0.20 0.03 *
log(#A) 0.59 0.09 3.3e-05 ###*

C. CORE-D: Streaming Algorithm for Degeneracy

Based on C-T PATTERN, we propose CORE-D, a single-
pass streaming algorithm for estimating degeneracy. We empir-
ically show that CORE-D gives a significantly better trade-off
between speed and accuracy than a state-of-the-art method.

1) Algorithm: Computing degeneracy in a graph stream not
fitting in memory remains as a challenge. As explained in
Section II-B, a recent approximate method, LOGPASS, needs
O(log, /5(n)) passes and n memory space for given a (> 2).
However, multiple passes of graph streams are time-consuming
and not even available in many real-world settings.

In contrast, the number of triangles can be estimated accu-
rately even in a single pass [13], [14]. Simply sampling each
edge with probability p from a graph stream and estimating
the number of triangles in the whole graph from that in
the sampled graph [13] also can be thought as a single-pass
streaming algorithm if the sampled graph fits in memory and
needs not be streamed again. This sampling method, which
our CORE-D method uses, estimates triangle-count accurately
even with less than n sampled edges.

CORE-TRIANGLE PATTERN (Observation 2), a high cor-
relation between degeneracy and the number of triangles,
enables using the accurately estimated triangle-count for es-
timating degeneracy. Specifically, we consider the following
models relating the number of triangles and degeneracy:

o BAsIiC MODEL (Baseline):
10g(kmaz) = wo,0 + wo,1 log(n) + wo 2 log(m)
o TRIANGLE MODEL: log(kmqs) = w1,0+ w11 10g(#A)
e OVERALL MODEL: log(émaw) = wa,0 + w1 log(n) +
wa o log(m) + wo 3 log(#A)
Table IV summarizes the estimates of the coefficients obtained
by linear regression on the real-world graphs in Table II. The
OVERALL MODEL has the highest adjusted R-squared (0.95)
among all possible linear models, and the log triangle-count
is statistically significant with p-value < 0.001, proving the
effectiveness of using triangle-count for estimating degeneracy.
Given a new graph stream, we estimate the vertex-count, the
edge-count, and the triangle-count in the graph in a single pass.
Then, by plugging these statistics into one of the models, we
obtain an estimate of degeneracy. Algorithm 1 describes the
details of CORE-D with TRIANGLE MODEL. For estimating
the triangle-count, CORE-D requires O(mp) memory space

Core-D (Proposed): Overall Triangle Basic LogPass: a=8Aha=6 [la=4 a=2
3 5
s S3 S 5 S4
(3 i, (2 (i3 g
22 A gl o 2, [>
1) © © ©1 ©
| A R4 NI g ld B
o 7.1X o 6X o 4.9X o 3.3X o 3.3X
4000 8000 100_ 200 300 0 10 _20 30 0 2 4 6 8 0 2 4 6 8
Wall- Clock Time (sec) Wall- Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec)
(a) Friendster (b) Orkut (¢) Flickr (d) YouTube (e) Catster
25 N .3 C
o [e] o o
=2.0 = = =
& (o (T2 o8
1.5
(I)1 [0 [0 [0 _
219 22 = 204
Sos AN KN T | s
0.0 o Fe A 45y o e 4.5X 0.0{ e 7.1X
f——————— f—————— =
0 10 20 30 02 03 2000 4000 0 50 100 20_40 60 80
Wall-Clock Time (sec) Wall- Clock Time (sec) Wall- Clock Time (sec) Wall-Clock Time (sec) Wall- Clock Time (sec)
(f) Skitter (g) Email (h) Twitter* (i) LiveJournal* (j) Patent*

* Graphs whose degeneracies are known to be affected by anomalies (see Section III-B)
Fig. 7: CORE-D achieves both speed and accuracy. Points in each plot represent the performances of different methods with different
parameters. Lower-left region indicates better performance. Our proposed CORE-D algorithm provided a better trade-off between speed and
accuracy than LOGPASS. Specifically, CORE-D (with OVERALL MODEL) was up to 7x faster than LOGPASS (a = 2), while still providing
comparable accuracy. Among the models of CORE-D, OVERALL MODEL yielded the best performance in most datasets.

Algorithm 1: CORE-D with TRIANGLE MODEL
Input: Graph stream: G, Sampling probability : p
Output: Estimated degeneracy: kmaax

: GSample = @
for each edge e in G do
add e to G'sampie With probability p
end for
#ASQ,,Lple — InMemoryTrlangleCountmg(GSample) [13]
#A — #ASample (1/])) R
¢ kmas < exp(wio + w11 log(#A4))
: return Kogq

PRI AEBLRE

on average to store sampled edges. The memory requirement
becomes O(n) if we set sampling probability p = n/m.

We also need n and m for BASIC MODEL and OVERALL
MODEL. We obtain m by simply counting edges in the
graph stream. In many real-world settings, n is available or
is easily computed from the difference between maximum
and minimum vertex ids. Otherwise, we obtain n by counting
distinct vertex ids with O(n) space. Even when n and m are
needed, CORE-D still requires only one pass because both
graph sampling (in Algorithm 1) and computing n and m can
be conducted at the same time within one pass.

2) Experiments: We compare the performances of CORE-
D and LOGPASS. We used a desktop with a 3.6GHz cpu and
16GB memory space, and graphs (see Table II) were streamed
from disk whose speed is 192MB/sec for sequential read. We
assumed that n is known or is computed easily from vertex
ids in all methods. We set p = n/m so that on average n
memory space is required in CORE-D!, as in LOGPASS. We
compared accuracy using relative error defined as:

]%mam |/k7ma:v~

IFigure 1 in the supplementary documenet [12] shows that CORE-D works
reliably even with smaller number of samples.

relative_error(kmag, l%maw) = |kmaz —

Note that, in order to fairly evaluate accuracy in a new graph,
we excluded the graph being tested from training sets when
estimating coefficients of the models.

Experimental results in the largest datasets are presented in
Figure 7, where CORE-D provided a significantly better trade-
off between accuracy and speed than LOGPASS. Specifically,
CORE-D (with OVERALL MODEL) was up to 7x faster than
LOGPASS (a = 2) with similar accuracy. Noteworthy, CORE-
D with OVERALL MODEL was more accurate than LOGPASS
in all the datasets except the ones whose degeneracies are
known to be affected by anomalies (see Section III-B).

Among the models of CORE-D, OVERALL MODEL con-
sistently yielded the best performance in all the datasets
except the Email dataset. BASIC MODEL, solely based on the
numbers of vertices and edges, showed the lowest accuracy
especially in the Friendster dataset and the Patent dataset. This
supports the effectiveness of using the number of triangles for
estimating degeneracy, based on CORE-TRIANGLE PATTERN.

V. PATTERN 3: “STRUCTURED CORE PATTERN”

In this section, we describe STRUCTURED CORE PATTERN
and discuss its application to influential spreader identification.

A. Observation: Pattern in Real-world Graphs

How do the degeneracy-cores in real-world graphs look
like? Are they cliques? Our observation indicates that
degeneracy-cores in real-world graphs are not cliques but
have structural patterns such as core-periphery [15] (i.e.,
have a cohesive core and a loosely connected periphery) and
communities [16] (i.e., consist of groups of vertices with
dense connections internally and sparser connections between
groups). This leads to Observation 3, which is supported by
the following facts:

o As shown in Table II, degeneracy-cores have density

much less than one in all datasets (e.g., 0.02 in Friendster

o
=]

Social Network
M Web Graph
Citation Network

v Caida
., Hamster

" Internet Topology

X Clique (Synthetic)

® 1 s
Email
><‘(Clique (synthetic)

o
=)

Clear Core and Periphery
Core—PeripcI;ery Score
o

0.0 05
Modularity

Clear =2 Communities
(a) Structural Property of Real-world Graphs
(C1)(C2)(CB)

(C1)(CZ)‘(C3)g@(CS)

(Core) (Periphery)
—— e |

(Periphery) (Core)
I

(c) Communities
(Email)

(d) Core-Periphery with
Communities (Caida)

(b) Core-Periphery
(Hamster)

Fig. 8: Degeneracy-cores of real-world graphs are not cliques but
have structural patterns such as core-periphery and communities.
(a) Core-periphery score (€0, 1]) and modularity (€[—0.5,1]) mea-
sure the strength of core-periphery and community structure, resp., in
graphs. (b), (c), and (d) show the sparsity patterns of the adjacency
matrices of three degeneracy-cores. C'i denotes the i-th community.

and 0.03 in Orkut) except LiveJournal and Twitter, whose
degeneracy-cores include anomalies (see Section III-B).

« In all datasets, degeneracy-cores have significantly higher
core-periphery score? (e.g., 0.54 in Skitter and 0.49 in
Stanford) than cliques, as shown in Figure 8(a).

o Figure 8(a) also indicates that many datasets have sig-
nificantly higher modularity® than cliques (e.g., 0.85 in
NotreDame and 0.47 in Orkut).

« Reordering vertices in the sparsity patterns of degeneracy-
cores reveals structural patterns such as core-periphery
and communities. Figures 8(b)-8(d) show some examples.

Observation 3 (STRUCTURED CORE PATTERN). In real-
world graphs, degeneracy cores have structural patterns such
as core-periphery and communities.

B. Application: Finding Influential Spreaders

The problem of identifying influential spreaders in social
networks has gained considerable attention due to its wide
applications, including information spreading, viral marketing,
and epidemic disease control (see Section VI for related work).
For the problem of finding individual spreaders (instead of a
set of spreaders, which is another well-studied problem), [10]
showed that the ability of vertices to spread information to
the large portion of a network is more closely related to their
coreness rather than other centrality measures such as degree

2Strength of core-periphery structure. The correlation between the adja-
cency matrix of the measured graph and that of a graph with perfect core-
periphery structure. See [15] for details.

3Strength of community structure. The fraction of the edges within com-

munities minus such fraction expected in a randomly connected graph. See
[16] for details.

[0} [0]
c < o
£ gaw =g
8 G 150 8 (O]

[0] (0]
§*§ 100 § £
Eu 50140 gu

02 04 06 0 01 02 03 04

)6 . 0.8 1
Centrality in the
Degeneracy-Core

(a) Email (r = 0.84)

Centrality in the
Degeneracy-Core

(b) Orkut (r = 0.92)

Fig. 9: Vertices central in degeneracy-cores are influential in
entire graphs. 300 vertices randomly picked in the degeneracy-
core of each graph are plotted. r denotes the correlation coefficient.
Influence is measured using SIR Model simulation (see Appendix B),
and in-core centrality (Definition 4) is used for centrality.

Algorithm 2: CORE-S for top-k spreaders

Input: Graph: G, Number of spreaders: k& (< nmaz)
Output: £ influential spreaders

1: run the core decomposition of G

2: extract the degeneracy-core G'(V', E') from G

3: compute the in-core centrality of the vertices in V' using
power iteration in G’

4: return top-k vertices with the highest in-core centralities

and betweenness centrality. This implies that the vertices in
the degeneracy-core tend to be good spreaders,

Our STRUCTURED CORE PATTERN reveals that even ver-
tices belonging to the degeneracy-core can be further divided
into those in core and those in periphery; or those connecting
communities and those inside a community. We observe that
this position of a vertex within the degeneracy-core is highly
related to its ability to spread information not just in the
degeneracy-core but in the entire graph. Specifically, we find
out a strong correlation between influence (see Appendix B
for the measurement method) and in-core centrality, which
we define in Definition 4, as shown in Figure 9.

Definition 4 (In-Core Centrality). Let G'(V',E’) be the
degeneracy-core of graph G, Then, for each vertex v in V',
v’s in-core centrality in G is defined as

i(v) = v’s eigenvector centrality in G'.

Among many centrality measures, eigenvector centrality
(i.e., entries of the eigenvector corresponding to the largest real
eigenvalue) is used since it is computationally efficient and is
known to be effective in identifying influential spreaders (see
Section VI).

This observation is used to further refine influential spread-
ers in the degeneracy-core in the following section.

C. CORE-S: Algorithm for Influential Spreader Identification

Inspired by STRUCTURED CORE PATTERN, we propose
CORE-S, a top-k influential spreader identification algorithm
based on in-core centrality. We show that CORE-S gives a bet-
ter trade-off between speed and accuracy than top competitors.

1) Algorithm: As outlined in Algorithm 2, CORE-S first
runs core decomposition and extracts the degeneracy-core
G'(V', E'). Then, the in-core centralities of the vertices in V"’
are computed using power iteration. As the last step, CORE-S

Core-S (Proposed) [] K-Core

® ideal

Influence

11213 10101

Wall-Clock Time (sec)
(a) Orkut (B = 0.002)

_10° 10°
Wall-Clock Time (sec)

(b) Flickr (5 = 0.001)

K-Truss

-1 100 101 12 0 11

Wall-Clock Time (sec)
(c) Catster (8 = 0.002)

Eigenvector Centrality (EC)

Influence

-2 10—1

10
Wall-Clock Time (sec)

10 0
Wall-Clock Time (sec)

(d) YouTube (8 = 0.01) (e) Email (8 = 0.01)

Fig. 10: CORE-S achieves both speed and accuracy. 5 denotes the infection rate in SIR Model. Points in each plot represent the
performances of different methods. Upper-left region indicates better performance. CORE-S provided the best trade-off between speed and
accuracy. Specifically, it found up to 2.6 x more influential vertices than K-CORE with similar speed. Compared with EC, CORE-S was
up to 17x faster, while still finding vertices with comparable (98-104%) influence.

returns the top-k vertices with the highest in-core centralities.
The time complexity of CORE-S is O(n + m + Tmas +
Nmag 10g k), where (n+m) is for core decomposition, T'm,q.
is for power iteration, and n,,., logk is for top-k selection.
T denotes the number of iterations in the power iteration.

2) Experiments: The experimental settings were the same
with those in Section IV-C2. We compared the average influ-
ence of ten vertices (see the supplementary document [12] for
results with different numbers of spreaders) chosen by CORE-
S with that of the vertices chosen by the following methods:

o K-CORE [10]: all vertices with the highest coreness.

o K-TRruss [17]: all vertices with the highest truss number.

o Eigenvector Centrality (EC) [18]: top-ten vertices with
the highest eigenvector centralities in the entire graph.

The influence of each vertex was measured using SIR simula-
tion (see Appendix B for details). We also compared the time
taken for choosing influential vertices in each method.

As seen in Figure 10, CORE-S provided the best trade-off
between speed and accuracy in social networks. Specifically,
the average influence of the vertices chosen by CORE-S was up
to 2.6 x higher than that of all the vertices in the degeneracy-
core (K-CORE). However, additional time taken in CORE-
A for further refining vertices in degeneracy-cores was at
most 12% of the time taken for the core decomposition of
entire graphs. Besides, CORE-S was up to 17x faster, than
EC, which has to compute the eigenvector centrality in entire
graphs (instead of only in degeneracy-cores). However, the
average influence of the vertices chosen by CORE-S was
comparable (98-104%) with that of the vertices found by EC.

VI. RELATED WORK

Related work forms the following groups: applications of
k-core analysis, algorithms for k-core analysis, graph-based
anomaly detection, and influential spreader identification.

Applications of k-core Analysis. The concept of k-core
has been applied to hierarchical structure analysis [2], graph
visualization [3], densest subgraph detection [19] (a special
case of DSM in Section III-C2), important protein identifica-
tion [4], influential spreader detection [10] (K-CORE method
in Section V-C2), and graph clustering [5]. Degeneracy also
has been used as a graph-sparsity measure in many domains
such as Al [20] and Bioinformatics [21].

Algorithms for k-core Analysis. Core decomposition can
be computed in O(n + m) by repeatedly removing vertices
with the smallest degree [1]. [22] proposed an incremental
algorithm, while [23] proposed an external memory algorithm,
which requires O(kyqz) scans of graphs. For degeneracy, [9]
proposed a streaming algorithm requiring O(log,, /»(n)) passes
of a graph and n memory space for «(> 2)-approximation.
Our CORE-D, however, requires only one pass of a graph and
n memory space for accurately estimating degeneracy.

Graph-based Anomaly Detection. There have been diverse
approaches (belief propagation [24], egonet features [25],
spectral methods [26], etc.) for anomaly detection in graphs
(see [27] for a survey). Recently, many methods focus on dense
subgraphs, which anomalies tend to form [6], [7], [28], [29].
Especially, the latest methods [6], [7] are based on densest
subgraphs (i.e., subgraphs with maximum average degree). We
show that our CORE-A, which detects smaller dense subgraphs
consisting of low-degree vertices, is complementary to these
densest-subgraph based methods, and their combination has
the best of both approaches.

Influential Spreader Identification. The problem of iden-
tifying influential spreader is sub-categorized into (1) finding
a group of spreaders (see [30]) and (2) finding individual
influential spreaders. For the second problem, which we focus,
vertices with high coreness [10], truss number [17], and
eigenvector centrality [18] are known as good spreaders. Our
CORE-S combines these measures so that only the advantages
of each measure (i.e., low computational cost of coreness and
high accuracy of eigenvector centrality) are taken.

VII. CONCLUSION

We discover three empirical patterns in real-world graphs
related to k-cores, and utilize them for several applications.

MIRROR PATTERN and CORE-A (Section III): We ob-
serve a strong correlation between the coreness and the degree
of vertices. CORE-A, which measures the deviation from this
trend, successfully detects anomalies in real-world graphs and
complements a state-of-the-art anomaly detection method.

CORE-TRIANGLE PATTERN and CORE-D (Section IV):
We discover a 3-to-1 power law between degeneracy and
triangle count. Our CORE-D method uses this pattern for
accurately estimating degeneracy in only one pass of a graph
stream and up to 7X faster than a recent multi-pass method.

STRUCTURED CORE PATTERN and CORE-S (Section V):
We observe that degeneracy-cores have non-trivial structures
(core-periphery, communities, etc). CORE-S, which finds ver-
tices central within degeneracy-cores, identifies influential
spreaders up to /7x faster than methods with similar accuracy.

Reproducibility. Our source code and data are publicly
available at http://www.cs.cmu.edu/~kijungs/codes/kcore/.

Acknowledgments*. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
CNS-1314632 and IIS-1408924. Research was sponsored by
the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-09-2-0053. Eliassi-
Rad was supported by NSF CNS-1314603 and by DTRA
HDTRA1-10-1-0120.

REFERENCES

[1] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decompo-
sition of networks,” arXiv preprint cs/0310049, 2003.

[2] J. L. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-
core decomposition of internet graphs: hierarchies, self-similarity and
measurement biases,” NHM, vol. 3, no. 2, pp. 371-393, 2008.

[3] ——, “Large scale networks fingerprinting and visualization using the
k-core decomposition,” in NIPS, 2005.

[4] S. Wuchty and E. Almaas, “Peeling the yeast protein network,” Pro-
teomics, vol. 5, no. 2, pp. 444-449, 2005.

[5] C. Giatsidis, F. Malliaros, D. M. Thilikos, and M. Vazirgiannis,
“Corecluster: A degeneracy based graph clustering framework,” in AAAI,
2014.

[6] K. Shin, B. Hooi, and C. Faloutsos, “M-zoom: Fast dense-block detec-
tion in tensors with quality guarantees,” in ECML/PKDD, 2016.

[71 B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos,
“Fraudar: Bounding graph fraud in the face of camouflage,” in KDD,
2016.

[8] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Real-
istic, mathematically tractable graph generation and evolution, using
kronecker multiplication,” in PKDD, 2005, pp. 133-145.

[9] M. Farach-Colton and M.-T. Tsai, “Computing the degeneracy of large

graphs,” in LATIN, 2014, pp. 250-260.

M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.

Stanley, and H. A. Makse, “Identification of influential spreaders in

complex networks,” Nature Physics, vol. 6, no. 11, pp. 888-893, 2010.

[11] J. Davis and M. Goadrich, “The relationship between precision-recall

and roc curves,” in ICML, 2006, pp. 233-240.

“Supplementary material (proofs and additional experiments).” [Online].

Available: http://www.cs.cmu.edu/~kijungs/codes/kcore/supple.pdf

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:

counting triangles in massive graphs with a coin,” in KDD, 20009.

Y. Lim and U. Kang, “Mascot: Memory-efficient and accurate sampling

for counting local triangles in graph streams,” in KDD, 2015.

S. P. Borgatti and M. G. Everett, “Models of core/periphery structures,”

Social networks, vol. 21, no. 4, pp. 375-395, 2000.

M. E. Newman, “Modularity and community structure in networks,”

PNAS, vol. 103, no. 23, pp. 8577-8582, 2006.

M.-E. G. Rossi, F. D. Malliaros, and M. Vazirgiannis, “Spread it good,

spread it fast: Identification of influential nodes in social networks,” in

World Wide Web Companion, 2015.

B. Macdonald, P. Shakarian, N. Howard, and G. Moores, “Spread-

ers in the network sir model: An empirical study,” arXiv preprint

arXiv:1208.4269, 2012.

M. Charikar, “Greedy approximation algorithms for finding dense com-

ponents in a graph,” in APPROX, 2000.

[10]

[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

4Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, or other funding parties. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

[20] E. C. Freuder, “A sufficient condition for backtrack-free search,” JACM,
vol. 29, no. 1, pp. 24-32, 1982.

G. D. Bader and C. W. Hogue, “An automated method for finding
molecular complexes in large protein interaction networks,” BMC bioin-
formatics, vol. 4, p. 2, 2003.

A. E. Sariyiice, B. Gedik, G. Jacques-Silva, K.-L. Wu, and U. v
Catalyiirek, “Streaming algorithms for k-core decomposition,” PVLDB,
vol. 6, no. 6, pp. 433-444, 2013.

[23] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu, “Efficient core decomposition
in massive networks,” in ICDE, 2011.

S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos, “Netprobe: a fast
and scalable system for fraud detection in online auction networks,” in
WWW, 2007.

L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting anoma-
lies in weighted graphs,” in PAKDD, 2010.

B. A. Prakash, A. Sridharan, M. Seshadri, S. Machiraju, and C. Falout-
sos, “Eigenspokes: Surprising patterns and scalable community chipping
in large graphs,” in PAKDD, 2010.

[27] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: a survey,” Data Min. Knowl. Discov., vol. 29, no. 3, pp.
626-688, 2015.

A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos, “Copy-
catch: stopping group attacks by spotting lockstep behavior in social
networks,” in WWW, 2013.

M. Jiang, A. Beutel, P. Cui, B. Hooi, S. Yang, and C. Faloutsos, “A
general suspiciousness metric for dense blocks in multimodal data,” in
ICDM, 2015.

D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003.

[21]

(22]

[24]

[25]

[26]

[28]
[29]
(30]

APPENDIX A
DESCRIPTION OF REAL-WORLD GRAPH DATASETS

Social Networks. Hamster, Catster, YouTube, Flickr, Orkut,
LiveJournal, and Friendster are friendship networks of users in
the corresponding online communities. Twitter is a subscrip-
tion network among users in a microblogging service. Email
is an email network among employees of Enron Corp. and
between the employees and people outside the company.

Web Graphs. NotreDame and Stanford are hyperlink net-
works of web pages from each university.

Internet Topologies. Caida and Skitter are internet topolo-
gies obtained from routing tables and traceroute data.

Citation Networks. Patent is a citation network among U.S.
patents. HepTh is a citation network of papers submitted to
the HepTh section in arXiv.

All datasets are available at http://www.cs.cmu.edu/
~Kijungs/codes/kcore/.

APPENDIX B
MEASURING INFLUENCE USING SIR MODEL SIMULATION

To evaluate influence as a spreader, we simulate spreading
processes using SIR Model [10], a widely-used epidemic
model. Initially, a vertex chosen as the seed is in the infectious
state (I-state), while the others are in the susceptible state (S-
state). Each vertex in the I-state infects each of its neighbors in
the S-state with probability /3 (infection rate) and then enters
the recovered state (R-state). This is repeated until no vertex
is in the I-state. The influence of a seed, the initially infected
vertex, can be quantified by the number of vertices infected
at any time during the process. To reduce random effects,
we repeat the whole process 100 times, and use the average
number of infected vertices as the measure of influence. 5 is
set close to the epidemic threshold)\fl, as in [17].

http://www.cs.cmu.edu/~kijungs/codes/kcore/
http://www.cs.cmu.edu/~kijungs/codes/kcore/supple.pdf
http://www.cs.cmu.edu/~kijungs/codes/kcore/
http://www.cs.cmu.edu/~kijungs/codes/kcore/

