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ABSTRACT
How can we detect fraudulent lockstep behavior in large-
scale multi-aspect data (i.e., tensors)? Can we detect it
when data are too large to fit in memory or even on a disk?
Past studies have shown that dense blocks in real-world ten-
sors (e.g., social media, Wikipedia, TCP dumps, etc.) sig-
nal anomalous or fraudulent behavior such as retweet boost-
ing, bot activities, and network attacks. Thus, various ap-
proaches, including tensor decomposition and search, have
been used for rapid and accurate dense-block detection in
tensors. However, all such methods have low accuracy, or
assume that tensors are small enough to fit in main mem-
ory, which is not true in many real-world applications such
as social media and web.

To overcome these limitations, we propose D-Cube, a
disk-based dense-block detection method, which also can be
run in a distributed manner across multiple machines. Com-
pared with state-of-the-art methods, D-Cube is (1) Mem-
ory Efficient: requires up to 1,600× less memory and han-
dles 1,000× larger data (2.6TB), (2) Fast: up to 5× faster
due to its near-linear scalability with all aspects of data, (3)
Provably Accurate: gives a guarantee on the densities of
the blocks it finds, and (4) Effective: successfully spotted
network attacks from TCP dumps and synchronized behav-
ior in rating data with the highest accuracy.
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1. INTRODUCTION
Given a tensor which is too large to fit in memory, how

can we find dense blocks in it? A common application of
this problem is review fraud detection, where we want to
detect suspicious lockstep behavior among groups of fraud-
ulent user accounts who review suspiciously similar sets of
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Table 1: Comparison between D-Cube and state-of-the-art
dense-block detection methods. 3represents ‘supported’.
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High-order Data 3 3 3 3
Flexibility in Density Measures 3 3 3 3

Accuracy Guarantees 3 3 3
Out-of-core Computation 3
Distributed Computation 3

products. Typically, for each review, we also have a number
of additional dimensions such as timestamp, review length,
number of stars, review keywords, etc.

Previous work [38, 28, 20] has shown the benefit of incor-
porating all this information by modeling the data as a ten-
sor. Tensors allow us to consider additional dimensions such
as time, in order to identify dense regions of interest more ac-
curately and specifically. Extraordinary dense blocks in the
tensor correspond to groups of users with lockstep behaviors
both in the products they review and along the additional
dimensions (for example, multiple users reviewing the same
products at the exact same time). Dense-block detection
in tensors has also been found effective for network intru-
sion detection [38, 28], retweet boosting detection [20], bot
activities detection [38], and genetics applications [35, 28].

Based on these facts, several approaches have been devel-
oped for rapid and accurate dense-block detection in tensors.
One approach is to use tensor decomposition, such as CP
Decomposition and HOSVD [28]. Such methods based on
tensor decomposition, however, are outperformed by search-
based methods [38, 20] in terms of accuracy and flexibility
with regard to the choice of density metric. Especially, the
latest search method [38] also provides a guarantee on the
densities of the blocks it finds.

However, all existing search-based methods for dense-block
detection in tensors assume that tensors are small enough to
fit in memory. Moreover, they are not directly applicable to
tensors stored in disk since using them for such tensors in-
curs too much disk I/O cost due to their highly iterative na-
ture. However, real-world applications, such as social media
and web, often involve disk-resident tensors with terabytes
or even petabytes, which in-memory algorithms cannot han-
dle. This leaves a growing gap that needs to be filled.

http://dx.doi.org/10.1145/3018661.3018676


Dataset Order Volume Mass Attack Ratio Attack Type

DARPA

1 738 1.52M 100% Neptune
2 522 614K 100% Neptune
3 402 113K 100% Smurf
4 1 10.8K 100% Satan
5 156K 560K 30.4% SNMP

AirForce

1 1 1.93M 100% Smurf
2 8 2.53M 100% Smurf
3 6,160 897K 100% Neptune
4 63.5K 1.02M 94.7% Neptune
5 930K 1.00M 94.7% Neptune

(a) Data scalability (b) Accuracy and (c) Network intrusion detection using D-Cube
Memory Requirements (Densest blocks detected by D-Cube in TCP dumps)

Figure 1: D-Cube outperforms its state-of-the-art competitors in all aspects. The red stop sign denotes ‘out of
memory’. (a) Fast & Scalable: D-Cube was 12× faster and successfully handled 1,000× larger data (2.6TB) than its
competitors, (b) Efficient & Accurate: D-Cube required 47× less memory, and found denser blocks than its competitors
from English Wikipedia revision history, (c) Effective: D-Cube successfully spotted dense blocks consisting of network
attacks, from TCP dumps, with high accuracy. See Section 4 for the detailed experimental settings.

To overcome these limitations, we propose D-Cube, a
dense-block detection method for disk-resident tensors. D-
Cube works under the W-Stream Model [34], where data are
only sequentially read and written during computation. As
seen in Table 1, only D-Cube supports disk-resident (or out-
of-core) computation, allowing it to process data too large to
fit in main memory. D-Cube is optimized for this setting by
carefully minimizing the amount of disk I/O and the num-
ber of steps requiring disk accesses, without losing accuracy
guarantees it provides. Moreover, we provide a distributed
version of D-Cube using the MapReduce framework [15],
specifically its open source implementation, Hadoop [1].

The main characteristics of D-Cube are as follows:

• Memory Efficient: D-Cube requires up to 1,600×
less memory and successfully handles 1,000× larger
data (2.6TB) than in-memory algorithms (Figure 1(a)).
• Fast: D-Cube detects dense blocks up to 5× faster in

real-world tensors and 12 × faster in synthetic tensors
than state-of-the-art methods due to its near-linear
scalability with all aspects of tensors (Figure 1(a)).
• Provably Accurate: D-Cube provides a guarantee

on the densities of the blocks it finds (Theorem 3), and
shows high accuracy similar to state-of-the-art meth-
ods on real-world tensors (Figure 1(b)).
• Effective: D-Cube successfully spotted network at-

tacks from TCP dumps, and lockstep behavior in rat-
ing data, with the highest accuracy (Figure 1(c)).

Reproducibility: Our open source code and the data used
are at http://www.cs.cmu.edu/˜kijungs/codes/dcube/.

In Section 2, we provide notations and a formal problem
definition. In Section 3, we propose D-Cube, a disk-based
dense-block detection method. In Section 4, we present ex-
perimental results. After discussing related work in Sec-
tion 5, we offer conclusions in Section 6.

2. NOTATIONS AND DEFINITIONS
In this section, we introduce notations and concepts used

in the paper. After defining density measures, we also give
a formal definition of the dense-block detection problem.

2.1 Notations and Concepts
Table 2 lists the symbols frequently used in the paper.

We use [x] = {1, 2..., x} for brevity. Let R(A1, ..., AN , X)

Table 2: Table of symbols.

Symbol Definition

R(A1, ..., AN , X) relation representing an N -way tensor
N number of dimension attributes in R
An n-th dimension attribute in R
X measure attribute in R

t[An] (or t[X]) value of attribute An (or X) in tuple t in R
B a block in R

ρ(B,R) density of block B in R
Rn (or Bn) set of distinct values of An in R (or B)
MR (or MB) mass of R (or B)

B(a, n) set of tuples with attribute An = a in B
MB(a,n) attribute-value mass of a in An

k number of blocks we aim to find
[x] {1, 2..., x}

be a relation with N dimension attributes, denoted by A1,
..., AN , and a nonnegative measure attribute, denoted by X
(see Example 1 for a running example). For each tuple t ∈ R

and for each n ∈ [N ], t[An] and t[X] are used to denote the
values of An and X, resp., in t. For each n ∈ [N ], we use
Rn = {t[An] : t ∈ R} to denote the set of distinct values of
An in R. The relation R is naturally represented as an N -
way tensor of size |R1| × ...× |RN |. The value of each entry
in the tensor is t[X], if the corresponding tuple t exists, and
0 otherwise. Let Bn be a subset of Rn. Then, a block B in R

is defined as B(A1, ..., AN , X) = {t ∈ R : ∀n ∈ [N ], t[An] ∈
Bn}, the set of tuples where each attribute An has a value
in Bn. The relation B is called a ‘block’ because it forms a
subtensor of size |B1|×...×|BN | in the tensor representation
of R, as in Figure 2(b). We define the mass of R as MR =∑

t∈R t[X], the sum of attribute X in the tuples of R. We
denote the set of tuples of B whose attribute An = a by
B(a, n) = {t ∈ B : t[An] = a} and its mass, called attribute-
value mass of a in An, by MB(a,n) =

∑
t∈B(a,n) t[X].

Example 1 (Wikipedia Revision History). As in Figure 2,
assume a relation R(user, page, date, count), where each tu-
ple (u, p, d, c) in R indicates that user u revised page p on
date d, c times. The first three attributes, A1=user, A2=page,
and A3=date, are dimension attributes, and the other one,
X=count, is the measure attribute. Let B1={Alice,Bob},
B2={A,B}, and B3={May-29}. Then, B is the set of tu-
ples regarding the revision of page A or B by Alice or Bob on
May-29, and its mass MB is 19, the total number of such re-

http://www.cs.cmu.edu/~kijungs/codes/dcube/


(a) Relation R (b) Tensor Representation of R

Figure 2: Pictorial description of Example 1. (a) Rela-
tion R. The colored tuples compose block B. (b) Tensor
representation of R. The block B forms a subtensor of R.

visions. The attribute-value mass of Alice (i.e., MB(Alice,1))
is 9, the number of revisions on A or B by exactly Alice on
May-29. In the tensor representation, B composes a subten-
sor in R, as depicted in Figure 2(b).

2.2 Density Measures
We present density measures proven useful for anomaly

detection in past studies. We use them throughout the pa-
per although our dense-block detection method, explained in
Section 3, is flexible and not restricted to specific measures.

Arithmetic Average Mass (Definition 1) and Geometric
Average Mass (Definition 2), which were used for detecting
network intrusions and bot activities [38], are the extensions
of density measures widely-used for graphs [14, 23].

Definition 1 (Arithmetic Average Mass ρari [38]). The
arithmetic average mass of a block B in a relation R is

ρari(B,R)=ρari(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1)=
MB

1
N

∑N
n=1 |Bn|

.

Definition 2 (Geometric Average Mass ρgeo [38]). The ge-
ometric average mass of a block B in a relation R is

ρgeo(B,R)=ρgeo(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1)=
MB

(
∏N

n=1 |Bn|)
1
N

.

Suspiciousness (Definition 3), which was used for detect-
ing ‘retweet-boosting’ activities [21], is the negative log-
likelihood that B has mass MB under the assumption that
each entry of R is i.i.d. from a Poisson distribution.

Definition 3 (Suspiciousness ρsusp [20]). The suspicious-
ness of a block B in a relation R is

ρsusp(B,R) = ρsusp(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1)

= MB

(
log

(
MB

MR

)
− 1

)
+MR

N∏
n=1

|Bn|
|Rn|

−MB log

(
N∏

n=1

|Bn|
|Rn|

)
.

We slightly abuse the notations to emphasize that all den-
sity measures are the functions of the cardinalities of the
attributes and the masses of B and R.

2.3 Problem Definition
Based on the concepts and the density measures defined in

the previous sections, Definition 4 gives a formal definition of
the problem of detecting dense blocks in a large-scale tensor.

Definition 4 (Large-scale Top-k Densest Block Detection).
(1) Given: a large-scale relation R not fitting in memory,
the number of blocks k, and a density measure ρ, (2) Find:
k distinct blocks of R with the highest density in terms of ρ.

Algorithm 1: D-Cube

Input : relation: R, number of blocks we aim to find: k,
density measure: ρ

Output: k dense blocks
1 Rori ← copy(R)

2 compute {Rn}Nn=1
3 results← ∅ B list of dense blocks
4 for i← 1..k do
5 MR ←

∑
t∈R t[X]

6 {Bn}Nn=1 ← find single block(R, {Rn}Nn=1,MR, ρ)
7 B see Algorithm 2
8 R← {t ∈ R : ∃n ∈ [N ], t[An] /∈ Bn} B R← R−B

9 Bori ← {t ∈ Rori : ∀n ∈ [N ], t[An] ∈ Bn}
10 results← results ∪ {Bori}
11 return results

Even when we restrict our attention to finding one block
in a matrix fitting in memory (i.e., k = 1 and N = 2),
obtaining an exact solution is known to be computationally
intractable with large data [18, 24]. Thus, our focus in this
work is to design an approximate algorithm with (1) near-
linear scalability with all aspects of R, which does not fit
in memory, (2) lower bounds on the approximation ratio at
least for some density measures, and (3) meaningful results
on real-world data.

3. PROPOSED METHOD
In this section, we propose D-Cube, a disk-based dense-

block detection method. We describe D-Cube in Section 3.1
and prove its theoretical properties in Section 3.2. In Sec-
tion 3.3, we present our MapReduce implementation of D-
Cube. Throughout this section, we assume the entries of
tensors (i.e., the tuples of relations) are stored in disk, and
read and written only in a sequential way. All other data
(e.g., distinct attribute-value sets and the mass of each at-
tribute value), however, are assumed to be stored in memory.

3.1 Algorithm
D-Cube is a search method that starts with the given

relation and removes attribute values (and tuples with the
attribute values) sequentially so that a dense block is left.
Contrary to previous approaches, D-Cube removes multiple
attribute values (and tuples with the attribute values) at a
time to reduce the number of iterations and also the amount
of disk I/O. In addition to this advantage, D-Cube carefully
chooses attribute values to remove to give the same accuracy
guarantee as if attribute values were removed one by one,
and shows comparable or even higher accuracy empirically.

3.1.1 Overall Structure of D-Cube (Algorithm 1)
Algorithm 1 describes the overall structure of D-Cube.

D-Cube first copies and assigns the given relation R to Rori

(line 1); and computes the sets of distinct attribute values
composing R (line 2). Then, it finds k dense blocks one by
one from R (line 6) using its mass as a parameter (line 5).
The detailed procedure for detecting a single dense block
from R is explained in Section 3.1.2. After each block B is
found, the tuples included in B are removed from R (line 8)
to prevent the same block from being found again. Due to
this change in R, blocks found from R are not necessarily the
blocks of the original relation Rori. Thus, instead of B, the
block in Rori formed by the same attribute values forming



Algorithm 2: find single block in D-Cube

Input : relation: R,
attribute-value sets: {Rn}Nn=1,
mass: MR, density measure: ρ

Output: sets of attribute values forming a dense block
1 B← copy(R), MB ←MR B initialize the block B
2 Bn ← copy(Rn), ∀n ∈ [N ]

3 ρ̃← ρ(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1) B ρ̃: max ρ so far
4 r, r̃ ← 1 B r: current order of attribute values, r̃: r with ρ̃
5 while ∃n ∈ [N ],Bn 6= ∅ do B until all are removed
6 compute {{MB(a,n)}a∈Bn}Nn=1

7 i← select dimension() B see Algorithms 3 and 4

8 Di ← {a ∈ Bi : MB(a,i) ≤
MB
|Bi|
} B set to be removed

9 sort Di in an increasing order of MB(a,i)

10 for each a ∈ Di do
11 Bi ← Bi − {a}, MB ←MB −MB(a,i)

12 ρ′ ← ρ(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1)
B ρ when a is removed

13 order(a, i)← r, r ← r + 1
14 if ρ′ > ρ̃ then
15 ρ̃← ρ′, r̃ ← r B update max ρ so far

16 B← {t ∈ B : t[Ai] /∈ Di} B remove tuples

17 B̃n ← {a ∈ Rn : order(a, n) ≥ r̃}, ∀n ∈ [N ] B reconstruct

18 return {B̃n}Nn=1

B is added to the list of k dense blocks (lines 9-10). Due
to this step, D-Cube can detect overlapping dense blocks.
That is, a tuple can be included in multiple dense blocks
found by D-Cube.

Based on our assumption that the sets of distinct attribute
values (i.e., {Rn}Nn=1 and {Bn}Nn=1) are stored in memory
and can be randomly accessed, all the steps in Algorithm 1
can be performed by sequentially reading and writing tuples
in relations (i.e., tensor entries) in disk without loading all
the tuples in memory at once. For example, filtering steps in
lines 8-9 can be performed by sequentially reading each tuple
from disk and writing the tuple to disk only if it satisfies the
given condition.

Note that this overall structure of D-Cube is similar with
that of M-Zoom [38] except the fact that tuples are stored
in disk. However, the methods differ significantly in the way
each dense block is found from R, which is explained in the
following section.

3.1.2 Single Block Detection (Algorithm 2)
Algorithm 2 describes how D-Cube detects each dense

block from the given relation R. It first initializes the block
B to R (lines 1-2), then repeatedly removes attribute val-
ues and tuples of B with those attribute values until B be-
comes empty (line 5). Specifically, in each iteration, D-
Cube first chooses a dimension attribute Ai from which at-
tribute values are removed (line 7), then computes Di, the
set of attribute values whose masses are less than the aver-
age (line 8). The way the dimension attribute is chosen is
explained in Section 3.1.3.

The tuples whose attribute values of Ai are in Di are re-
moved from B at once within a single scan of B (line 16).
However, deleting a subset of Di may achieve higher value
of the metric ρ. Hence, D-Cube computes the changes in
the density of B (line 11) as if the attribute values in Di

were removed one by one, in an increasing order of their
masses. This allows D-Cube to optimize ρ as if we removed
attributes one by one, while still benefiting from the com-

Algorithm 3: select dimension by cardinality

Input : attribute-value sets: {Bn}Nn=1
Output: a dimension in [N ]

1 return n with maximum |Bn|

Algorithm 4: select dimension by density

Input : attribute-value sets: {Bn}Nn=1 and {Rn}Nn=1,

attribute-value masses: {{MB(a,n)}a∈Bn}Nn=1,
masses: MB and MR, density measure: ρ

Output: a dimension in [N ]
1 ρ̃← −∞ B ρ̃: max ρ so far

2 ĩ← 1 B ĩ: dimension with ρ̃
3 for each dimension i ∈ [N ] do
4 if Bi 6= ∅ then

5 Di ← {a ∈ Bi : MB(a,i) ≤
MB
|Bi|
} B set to be removed

6 M ′
B
←MB −

∑
a∈Di

MB(a,i)

7 B′i ← Bi −Di

8 ρ′ ← ρ(M ′
B
, {|Bn|}n 6=i ∪ {|B′i|},MR, {|Rn|}Nn=1)

B ρ when all in Di are removed
9 if ρ′ > ρ̃ then

10 ρ̃← ρ′, ĩ← i B update max ρ so far

11 return ĩ

putational speedup of removing multiple attributes in each
scan. Note that these changes in ρ can be computed exactly
without actually removing the tuples from B or even access-
ing the tuples in B since its mass (i.e., MB) and the number
of distinct attribute values (i.e., {|Bn|}Nn=1) are maintained
up-to-date (lines 11-12). This is because removing an at-
tribute value from a dimension attribute does not affect the
mass of the other attribute values of the same attribute.
The orders that attribute values are removed and when the
density of B is maximized are maintained (lines 13-15) so
that the block B maximizing density can be restored and
returned (lines 17-18), as the result of Algorithm 2.

Note that, in each iteration (lines 5-16) of Algorithm 2,
the tuples of B in disk need to be scanned only twice, once
in line 6 and once in line 16. Moreover, both steps can
be performed by simply sequentially reading and/or writing
tuples in B without loading all the tuples in memory at once.
For example, to compute attribute-value masses in line 6,
D-Cube increases MB(t[An],n) by t[X] for each dimension
attribute An after reading each tuple t in B sequentially
from disk.

3.1.3 Dimension Selection (Algorithms 3 and 4)
We discuss two policies for choosing a dimension attribute

from which attribute values are removed. They are used in
line 7 of Algorithm 2 offering different advantages.

Maximum cardinality policy (Algorithm 3): The
dimension attribute with the largest cardinality is chosen,
as described in Algorithm 3. This simple policy, however,
provides an accuracy guarantee (see Section 3.2.2).

Maximum density policy (Algorithm 4): The den-
sity of B when attribute values are removed from each di-
mension attribute is computed, then the dimension attribute
leading to the highest density is chosen. Note that the tuples
in B, stored in disk, do not need to be accessed for this com-
putation, as described in Algorithm 4. Although this policy
does not provide the accuracy guarantee given by the max-
imum cardinality policy, this policy works well with various



density measures and tends to spot denser blocks than the
maximum cardinality policy in real-world data, especially
when ρgeo or ρsusp is used.

3.1.4 Efficient Implementation
We present the optimization techniques used for the effi-

cient implementation of D-Cube.
Combining Disk-Accessing Steps. The amount of

disk I/O can be reduced by combining multiple steps re-
quiring disk accesses. In Algorithm 1, updating R (line 8)
can be combined with computing the mass of R (line 5) in
the next iteration. That is, if we aggregate the values of the
tuples in R while the tuples of R are written for the update,
we do not need to scan R again for computing its mass in
the next iteration. Likewise, in Algorithm 2, updating B

(line 16) can be combined with computing attribute-value
masses (line 6) in the next iteration. This optimization re-
duces the amount of disk I/O in D-Cube about 30%.

Caching Tensor Entries in Memory. Although we as-
sume that tuples are stored in disk, storing them in memory
up to the memory capacity speeds up D-Cube up to 3 times
in our experiments (see Section 4.4). We cache the tuples in
B, which are more frequently accessed than those in R or
Rori, in memory with the highest priority.

3.2 Analysis
In this section, we prove the time and space complexity of

D-Cube and the accuracy guarantee provided by D-Cube.

3.2.1 Complexity Analysis
Theorem 1 states the worst-case time complexity, which

is also the worst-case I/O complexity, of D-Cube. We let
L = maxn∈[N ] |Rn|.

Theorem 1 (Worst-case Time Complexity). The worst-
case time complexity of Algorithm 1 is O(kN2|R|L).

Proof. Since at least one attribute value is removed in each
iteration (lines 5-16) of Algorithm 2, the number of itera-
tions is at most NL, which is the maximum number of dis-
tinct attribute values. Executing lines 6 and 16 NL times
takes O(N2|R|L), which dominates the time complexity of
the other parts, since L ≤ |R| by definition. Thus, the worst-
case time complexity of Algorithm 2 is O(N2|R|L), and that
of Algorithm 1, which executes Algorithm 2 for k times, is
O(kN2|R|L). �

However, this worst-case time complexity, which allows
the worst distributions of the measure attribute values of
tuples, is too pessimistic. In fact, we experimentally show
that D-Cube scales linearly with k, N , and R; and even
sub-linearly with L (see Section 4.4).

Theorem 2 states the memory requirement of D-Cube.
Since the tuples do not need to be stored in memory all at
once in D-Cube, its memory requirement does not depend
on the number of tuples (i.e., |R|).

Theorem 2 (Memory Requirements). The amount of mem-

ory space required by D-Cube is O(
∑N

n=1 |Rn|).

Proof. D-Cube stores {{MB(a,n)}a∈Bn}Nn=1, {Rn}Nn=1, and

{Bn}Nn=1 in memory. Each has at most
∑N

n=1 |Rn| values.

Thus, the memory requirement is O(
∑N

n=1 |Rn|). �

3.2.2 Accuracy Guarantee
We show that D-Cube gives the same accuracy guarantee

with in-memory algorithms [38] although accesses to tuples
(stored in disk) are restricted in D-Cube to reduce disk I/O
cost. Specifically, Theorem 3 states that the block found
by Algorithm 2 with the maximum cardinality policy has
density at least 1/N of the optimum when ρari is used as
the density measure.

Theorem 3 (1/N -Approximation Guarantee). Let B∗ be
the block B maximizing ρari(B,R) in the given relation R.

Let B̃ be the block returned by Algorithm 2 with ρari and the
maximum cardinality policy. Then, ρari(B̃,R) ≥ 1

N
ρari(B

∗,R).

Proof. First, the maximal block B∗ satisfies that for any i ∈
[N ] and for any attribute value a ∈ B∗i , its attribute-value
mass MB∗(a,i) is at least 1

N
ρari(B

∗,R). This is since the
maximality of B∗ implies ρari(B

∗−B∗(a, i),R) ≤ ρari(B∗,R),

and plugging in Definition 1 to ρari gives
MB∗−MB∗(a,i)

1
N

((
∑N

n=1 |B∗n|)−1)
=

ρari(B
∗ −B∗(a, i),R) ≤ ρari(B

∗,R) =
MB∗

1
N

∑N
n=1 |B∗n|

, which

reduces to

MB∗(a,i) ≥
1

N
ρari(B

∗,R). (1)

Consider the earliest iteration (lines 5-16) in Algorithm 2
where an attribute value a of B∗ is included in Di, for some
i ∈ [N ]. Let B′ be B in the beginning of the iteration.

Our goal is to prove ρari(B̃,R) ≥ 1
N
ρari(B

∗,R), which we

show as ρari(B̃,R) ≥ ρari(B
′,R) ≥ MB′(a,i) ≥ MB∗(a,i) ≥

1
N
ρari(B

∗,R).

First, ρari(B̃,R) ≥ ρari(B
′,R) is from maximality of

ρari(B̃,R) among blocks generated in iteration (lines 13-

15 in Algorithm 2). Second, applying |B′i| ≥ 1
N

∑N
n=1 |B

′
n|

from the maximum cardinality policy (Algorithm 3) to Def-

inition 1 of ρari gives ρari(B
′,R) =

MB′
1
N

∑N
n=1 |B′n|

≥ MB′
|B′i|

.

And a ∈ Di gives
MB′
|B′i|

≥ MB′(a,i). So combining these

gives ρari(B
′,R) ≥ MB′(a,i). Third, MB′(a,i) ≥ MB∗(a,i) is

from B′ ⊃ B∗. Fourth, MB∗(a,i) ≥ 1
N
ρari(B

∗,R) is from

Eq. (1). Hence ρari(B̃,R) ≥ 1
N
ρari(B

∗,R) holds. �

3.3 MapReduce Implementation
We present our MapReduce implementation of D-Cube,

assuming that tuples in relations are stored in a distributed
file system. Specifically, we describe two MapReduce algo-
rithms corresponding to steps of D-Cube accessing tuples.

Filtering Tuples. In lines 8-9 of Algorithm 1 and line 16
of Algorithm 2, D-Cube filters tuples with the given con-
ditions. These steps are done by the following map-only
algorithm, where we broadcast the data used in each con-
dition (e.g., {Bn}Nn=1 in line 8 of Algorithm 1) to mappers
using the distributed cache functionality.

• Map-stage: Take a tuple t (i.e., <t[A1], ..., t[AN ], t[X]>)
and emit t if t satisfies the given condition. Otherwise,
the tuple is ignored.

Computing Attribute-value Masses. Line 6 of Algo-
rithm 2 is performed by the following algorithm, where we
reduce the amount of shuffled data by combining the inter-
mediate results within each mapper.

• Map-stage: Take a tuple t (i.e., <t[A1], ..., t[AN ], t[X]>)
and emit N key/value pairs, {<(n, t[An]), t[X]>}Nn=1.



Table 3: Summary of real-world datasets.

Name Volume #Tuples

Rating data (user, item, timestamp, rating, 1)

Yelp [4] 552K × 77.1K × 3.80K × 5 2.23M
Android [29] 1.32M × 61.3K × 1.28K × 5 2.64M
Netflix [12] 480K × 17.8K × 2.18K × 5 99.1M
YahooM. [16] 1.00M × 625K × 84.4K × 101 253M

Wiki revision history (user, page, timestamp, #revisions)

KoWiki [38] 470K × 1.18M × 101K 11.0M
EnWiki [38] 44.1M × 38.5M × 129K 483M

Social networks (user, user, timestamp, #interactions)

Youtube [30] 3.22M × 3.22M × 203 18.7M
SMS 1.25M × 7.00M × 4.39K 103M

TCP dumps (src IP, dst IP, timestamp, #connections)

DARPA [27] 9.48K × 23.4K × 46.6K 522K

TCP dumps (protocol, service, src bytes, ..., #connections)

AirForce [2]
3 × 70 × 11 × 7.20K

648K× 21.5K × 512 × 512

• Reduce-stage: Take <(n, a), {t[X] : t ∈ B, t[An]=a}>
and emit <(n, a), sum({t[X] : t ∈ B, t[An]=a})>,
whose value corresponds to MB(a,n).

Likewise, the other steps of D-Cube accessing tuples (i.e.,
lines 2 and 5 of Algorithm 1) can be implemented on MapRe-
duce in a straightforward way. See the supplementary doc-
ument [3] for details.

4. EXPERIMENTS
We design experiments to answer the following questions:

• Q1. Memory Efficiency: How much memory space
does D-Cube require for analyzing real-world data?
How large data can D-Cube handle?
• Q2. Speed and Accuaracy: How fast and accu-

rately does D-Cube spot dense blocks?
• Q3. Scalability: Does D-Cube scale linearly with

all aspects of data? Does D-Cube scale out?
• Q4. Effectiveness: Which anomalies and fraud does

D-Cube detect in real-world data?

4.1 Experimental Settings
Machines: We ran all serial algorithms on a machine

with 2.67GHz Intel Xeon E7-8837 CPUs and 1TB memory.
We ran MapReduce algorithms on a 40-node Hadoop clus-
ter, where each node has an Intel Xeon E3-1230 3.3GHz
CPU and 32GB memory.

Data: We used large-scale real-world tensors from vari-
ous domains, including rating data, Wikipedia revision his-
tory, temporal social networks, and TCP dumps. They are
summarized in Table 3, and their detailed description is in
the supplementary document [3]. We used synthetic tensors
for scalability tests. Each tensor was created by generat-
ing a random binary tensor and injecting ten random dense
blocks, whose volumes are 10N and densities (in terms of
ρari) are between 10× and 100× of that of the entire tensor.

Implementations: We implemented D-Cube in Java
with Hadoop 1.2.1, and used the Java implementation of
open source M-Zoom1 [38] and CrossSpot2 [20]. Tensor
1https://github.com/kijungs/mzoom
2https://github.com/mjiang89/CrossSpot

Figure 3: D-Cube is memory efficient. D-Cube requires
up to 1,600× less memory than its competitors.

Toolbox [8] was used for CP Decomposition (CPD) [25] and
MAF [28]. For D-Cube, we used the maximum density pol-
icy (see Section 3.1.3), which consistently yielded higher ac-
curacy than the maximum cardinality policy. We used CPD
as the seed selection method of CrossSpot as in [38].

4.2 Q1. Memory Efficiency
We compare the amount of memory required by different

methods for handling real-world datasets. As seen in Fig-
ure 3, D-Cube, which does not require tuples to be stored in
memory, required up to 1,600× less memory space than
the second best method, which stores tuples in memory.

Due to its memory efficiency, D-Cube successfully han-
dled 1,000× larger data than its competitors within a
memory budget. We ran methods on 3-way synthetic tensors
with different numbers of tuples (i.e., |R|), with a memory
budget of 16GB per machine. In every tensor, the cardinal-
ity of each dimension attribute was 1/1000 of the number
of tuples, i.e., |Rn| = |R|/1000, ∀n ∈ [N ]. Figure 1(a) in
Section 1 shows the result. The Hadoop implementation of
D-Cube successfully spotted dense blocks in a tensor with
1011 tuples (2.6TB), and the serial version of D-Cube suc-
cessfully spotted dense blocks in a tensor with 1010 tuples
(240GB), which was the largest tensor that can be stored
on a disk. However, all other methods ran out of memory
even on a tensor with 109 tuples (21GB).

4.3 Q2. Speed and Accuracy
We compare how rapidly and accurately each method de-

tects dense blocks in real-world datasets. We measured the
wall-clock time (average over three runs) taken for detecting
three blocks by each method, and measured the maximum
density of the three blocks found by each method. Note that
the serial version of D-Cube was used, and each dataset
was cached in memory by D-Cube since they fit in memory
(see Section 3.1.4). Figure 4 shows the results when ρsusp
[20], which has the soundest theoretical foundation, was used
as the density measure. D-Cube provided the best trade-
off between speed and accuracy. Specifically, D-Cube was
up to 5× faster than the second fastest method M-Zoom.
Moreover, D-Cube consistently spotted high-density blocks,
while the accuracy of the other methods varied on data. Es-
pecially, D-Cube gave the densest blocks in SMS, An-
droid, and EnWiki datasets, and compared with CPD, gave
up to 105× denser blocks. Although MAF does not appear
in Figure 4, it consistently provided sparser blocks than CPD
with similar speed. In addition, the maximum cardinality
policy of D-Cube resulted in 33% sparser blocks on average
than the maximum density policy, which was used in this



(a) SMS (b) Youtube (c) EnWiki (d) KoWiki (e) AirForce

(f) DARPA (g) Android (h) Yelp (i) Netflix (j) YahooM.

Figure 4: D-Cube achieves both speed and accuracy. In each plot, points represent the speed of different methods and
the highest density (in terms of ρsusp) of three blocks found by the methods. Upper-left region indicates better performance.
D-Cube gave the best trade-off between speed and density. Specifically, D-Cube consistently found high-density blocks up
to 5× faster than second best method M-Zoom.

(a) Scalability w.r.t |R| (b) Scalability w.r.t N (c) Scalability w.r.t |Rn|

Figure 5: D-Cube is scalable with all the aspects of tensors.
D-Cube scaled (sub-)linearly with every aspect of tensors regardless of
the amount of memory space available.

(a) Elapsed Time (b) Speed Up

Figure 6: D-Cube scales out. D-Cube was
speeded up 8× with 10 machines, and 20× with
40 machines.

experiment, with similar speed. Experiments with the other
density measures (i.e., ρari and ρgeo) resulted similarly, as
described in the supplementary document [3].

4.4 Q3. Scalability
We show that D-Cube scales (sub-)linearly with every as-

pect of tensor data, i.e., the number of tuples, the number
of dimension attributes, and the cardinality of dimension
attributes. To measure the scalability with each factor, we
started with finding a dense block in a synthetic tensor with
108 tuples, and 3 dimension attributes each of whose cardi-
nality is 105. Then, we measured the running time as we
changed one factor at a time while fixing the other factors.
As seen in Figure 5, D-Cube scales linearly with every fac-
tor and even sub-linearly with the cardinality of attributes.
Moreover, D-Cube also scales linearly with k, the number of
blocks we aim to find (see the supplementary document [3]).
This supports our claim in Section 3.2.1 that the worst-case
time complexity of D-Cube (Theorem 1) is too pessimistic.
The linear scalability of D-Cube held both with enough
memory (blue solid lines in Figure 5) to store all tuples and
with minimum memory (red dashed lines in Figure 5) to

barely meet requirements although D-Cube was up to 3×
faster in the former case.

We also evaluate the machine scalability of the MapRe-
duce implementation of D-Cube. We measured its running
time taken for finding a dense block in a synthetic tensor
with 1010 tuples and 3 dimension attributes each of whose
cardinality is 107, as we increased the number of machines
running in parallel from 1 to 40. Figure 6 shows the changes
in running time and speed-up defined as T1/TM where TM is
the running time with M machines. The speed-up increased
near linearly when a small number of machines were used,
while it flattened as more machines were added due to the
overhead in the distributed system.

4.5 Q4. Effectiveness
We demonstrate the effectiveness of D-Cube in two ap-

plications using real-world data.
Network Intrusion Detection. D-Cube detected net-

work attacks in TCP dumps with high accuracy by detecting
corresponding dense blocks. We consider two TCP dumps
with different models. DARPA Dataset is modeled as a 3-
way tensor where the dimension attributes are source IP,



Table 4: D-Cube spotted network attacks fastest
with the highest accuracy from TCP dumps.

Datasets AirForce DARPA

Elapsed Accuracy Elapsed Accuracy
Time (sec) (AUC) Time (sec) (AUC)

CPD [25] 413.2 0.854 105.0 0.926
MAF [28] 486.6 0.912 102.4 0.514

CrossSpot [20] 575.5 0.924 132.2 0.923
M-Zoom [38] 27.7 0.975 22.7 0.923

D-Cube 15.6 0.987 9.1 0.930

destination IP, and timestamp in minutes; and the measure
attribute is the number of connections. AirForce Dataset,
which does not include IP information, is modeled as a 7-
way tensor where the measure attribute is the same but
the dimension attributes are the features of the connections,
including protocol and service (see the supplementary doc-
ument [3] for the detailed description of AirForce Dataset).
Both datasets include labels indicating whether each con-
nection is malicious or not.

Figure 1(c) in Section 1 lists the five densest blocks (in
terms of ρgeo) found by D-Cube in each dataset. We found
that the dense blocks are mostly composed of various types
of network attacks. Based on this observation, we classified
each connection as malicious or benign based on the density
of the densest block including the connection (i.e., the denser
the block including a connection is, the more suspicious the
connection is). This led to high accuracy, and as seen in
Table 4, the highest accuracy was achieved when D-Cube
was used for dense-block detection in both datasets. For
each method, the result with the density measure giving the
highest accuracy is reported.

Fraud Detection in Rating Data. We assume an at-
tack scenario where fraudsters in a review site, who aim to
boost (or lower) the ratings of the set of businesses, create
multiple user accounts and give the same score to the busi-
nesses within a short period of time. This lockstep behavior
forms a dense block with volume (#users×#items×1×1)
in the rating dataset, whose dimension attributes are users,
businesses (items), timestamps, and rating scores.

We injected 10 such random dense blocks whose volumes
vary from 15×15×1×1 to 60×60×1×1 in Yelp and Android
datasets. We compared the number of the injected blocks
detected by each dense-block detection method. We con-
sidered each injected block as overlooked by a method, if
the block did not belong to any of the first 10 dense blocks
spotted by the method or it was hidden in a natural dense
block at least 10 times larger than the injected block. We
repeated this experiment 10 times, and the averaged results
are summarized in Table 5. For each method, the results
with the density measure giving the highest accuracy are
reported. In both datasets, D-Cube detected the injected
blocks the most. Especially, in Android Dataset, D-Cube
detected 9 out of 10 injected blocks, while the second best
method detected only 7 injected blocks on average.

5. RELATED WORK
Dense Subgraph Detection. Dense-subgraph detec-

tion in graphs has been extensively studied in theory; see
[26] for a survey. Exact algorithms [18, 24] and approximate
algorithms [14, 24] have been proposed for finding subgraphs
with maximum average degree. These have been extended
for incorporating size restrictions [7], alternative metrics for

Table 5: D-Cube detected fraud fastest with the
highest accuracy in rating datasets.

Datasets Android Yelp

Elapsed Recall @ Elapsed Recall @
Time (sec) Top-10 Time (sec) Top-10

CPD [25] 59.9 0.54 47.5 0.52
MAF [28] 95.0 0.54 49.4 0.52

CrossSpot [20] 71.3 0.54 56.7 0.52
M-Zoom [38] 28.4 0.70 17.7 0.30

D-Cube 7.0 0.90 4.9 0.60

denser subgraphs [40], evolving graphs [17], subgraphs with
limited overlap [11], and streaming or distributed settings
[10, 9]. Dense subgraph detection has been applied to fraud
detection in social or review networks [21, 13, 36, 19, 37].

Dense Block Detection in Tensors. Extending dense
subgraph detection to tensors [20, 38] incorporates addi-
tional dimensions, such as time, to identify dense regions of
interest with greater accuracy and specificity. CrossSpot
[20] starts from a seed block and adjusts it in a greedy way
until it reaches a local optimum, which usually takes long
and does not provide any approximation bound. M-Zoom
[38], which starts from the entire tensor and only shrinks it
by removing attributes one by one in a greedy way, improves
CrossSpot in terms of speed and approximation guaran-
tees. Both methods, however, require the tuples to be loaded
into memory at once and to be randomly accessed, which
limit their applicability to large datasets. Dense-block de-
tection in tensors has been found useful for detecting retweet
boosting [20], network attacks [38, 28], bot activities [38],
and for genetics applications [35, 28].

Large-Scale Tensor Decomposition. Tensor decom-
position such as HOSVD and CP decomposition [25] can
be used to spot dense subtensors [28]. Scalable algorithms
for tensor decomposition have been developed, including
disk-based algorithms [31, 39], distributed algorithms [22,
39], and approximation algorithms based on sampling [32]
and count-min sketch [41]. However, dense-block detection
based on tensor decomposition has serious limitations: it
usually detects blocks with significantly lower density (see
Section 4.3), provides less flexibility with regard to the choice
of density metric, and does not provide approximation bounds.

Other Anomaly/Fraud Detection Methods. In ad-
dition to dense-block detection, many approaches, including
those based on egonet features [5], coreness [37], and behav-
ior models [33], have been used for anomaly/fraud detection
in graphs. See [6] for surveys.

6. CONCLUSION
In this work, we propose D-Cube, a disk-based dense-

block detection method, to deal with disk-resident tensors
too large to fit in memory. D-Cube is optimized to minimize
disk I/O cost, while it still provides guarantees on the quality
of the blocks it finds. Moreover, we provide the distributed
version of D-Cube running on MapReduce for terabyte-
scale or larger data distributed across multiple machines.
To sum up, D-Cube achieves the following advantages over
state-of-the-art dense-block detection methods:

• Memory Efficient: D-Cube handles 1,000× larger
data (2.6TB) by reducing memory usage up to 1,600×
compared with in-memory algorithms (Section 4.2).
• Fast: Even when data fit in memory, D-Cube is up



to 5× faster than its competitors (Section 4.3) with
near-linear scalability (Section 4.4).
• Provably Accurate: D-Cube is one of the methods

giving the best approximation guarantee (Theorem 3)
and the densest blocks in real-world data (Section 4.3).
• Effective: D-Cube gave the best accuracy in two ap-

plications: detecting network attacks from TCP dumps
and lockstep behavior in rating data (Section 4.5).

Reproducibility: Our open source code and the data used
are at http://www.cs.cmu.edu/˜kijungs/codes/dcube/.
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