Large-scale Matrix Factorization

Kijung Shin
Ph.D. Student, CSD

Carnegie Mellon University
Roadmap

• Matrix Factorization (review)

• Algorithms
 ◦ Distributed SGD: DSGD
 ◦ Alternating Least Square: ALS
 ◦ Cyclic Coordinate Descent: CCD++

• Experiments

• Extension to Tensor Factorization

• Conclusions
Roadmap

• **Matrix Factorization (review) <=**

• Algorithms
 ◦ Distributed SGD: DSGD
 ◦ Alternating Least Square: ALS
 ◦ Cyclic Coordinate Descent: CCD++

• Experiments

• Extension to Tensor Factorization

• Conclusions
Matrix Factorization: Problem

- **Given:**
 - V: n by m matrix
 - possibly with missing values
 - r: target rank (a scalar)
 - usually $r \ll n$ and $r \ll m$
Matrix Factorization: Problem

• Given:
 ◦ V: n by m matrix
 ▪ possibly with missing values
 ◦ r: target rank (a scalar)
 ▪ usually $r << n$ and $r << m$

• Find:
 ◦ W: n by r matrix
 ◦ H: r by m matrix
 ▪ without missing values
Matrix Factorization: Problem

• Goal: $WH \approx V$
Loss Function

\[L(V, W, H) = \sum_{(i,j) \in Z} (V_{ij} - [WH]_{ij})^2 + \ldots \]

Indices of non-missing entries i.e., \((i, j) \in Z \leftrightarrow V_{ij} \text{ is not missing} \)

\((i, j)\)-th entry of \(V\)

\((i, j)\)-th entry of \(WH\)

Goal: to make \(WH\) similar to \(V\)
Loss Function (cont.)

\[L(V, W, H) \]

\[= \sum_{(i, j) \in Z} (V_{ij} - [WH]_{ij})^2 \]

\[+ \lambda \left(\|W\|_F^2 + \|H\|_F^2 \right) \]

Regularization parameter

Frobenius Norm:

\[\|W\|_F^2 = \sum_{i=1}^{n} \sum_{k=1}^{r} (W_{ik})^2 \]

Goal: to prevent overfitting

(by making the entries of \(W\) and \(H\) close to zero)
Algorithms

• How can we minimize this loss function L?
 ◦ Stochastic Gradient Descent: SGD (covered in the last lecture)
 ◦ Alternating Least Square: ALS (covered today)
 ◦ Cyclic Coordinate Descent: CCD++ (covered today)

• Are these algorithms parallelizable?

• Yes, all of them!
Roadmap

• Matrix Factorization (review)

• Algorithms
 ◦ Distributed SGD: DSGD <<
 ◦ Alternating Least Square: ALS
 ◦ Cyclic Coordinate Descent: CCD++

• Experiments

• Extension to Tensor Factorization

• Conclusions
Distributed SGD (DSGD)

Large-scale matrix factorization with distributed stochastic gradient descent (KDD 2011)

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis
Stochastic GD for MF (review)

• Let \(W = \begin{bmatrix} - & W_1 & - \\ - & \vdots & - \\ - & W_n & - \end{bmatrix}, \quad H = \begin{bmatrix} H_1 \\ \vdots \\ H_m \end{bmatrix} \)

• \(L(V, W, H) \): sum of loss for each non-missing entry

\[
L(V, W, H) = \sum_{(i,j) \in Z} L'(V_{ij}, W_{i:}, H_{j:})
\]

where loss at each non-missing entry \(V_{ij} \) is

\[
L'(V_{ij}, W_{i:}, H_{j:}) := (V_{ij} - W_{i:}H_{j:})^2 + \lambda \left(\frac{\|W_{i:}\|^2}{N_i} + \frac{\|H_{j:}\|^2}{N_{j:}} \right)
\]

= \([WH]_{ij} \)
Stochastic GD for MF (cont.)

• Stochastic Gradient Descent (SGD) for MF

• **repeat** until convergence
 ◦ randomly shuffle the non-missing entries of V
 ◦ **for each** non-missing entry:
 ▪ perform an SGD step on it
Stochastic GD for MF (cont.)

- **An SGD** step on each non-missing entry V_{ij}:
 - Read W_i and H_j
 - Compute gradient of $L'(V_{ij}, W_i, H_j)$
 - Update W_i and H_j
 - Detailed update rules were covered in the last lecture
Simple Parallel SGD for MF

- Parameter Mixing: **MSGD**
 - entries of V are distributed across multiple machines

![Diagram of parameter mixing across machines](image)

Machine 1

Machine 2

Machine 3
Simple Parallel SGD for MF (cont.)

- Parameter Mixing: **MSGD**
 - entries of V are distributed across multiple machines
 - **Map step**: each machine runs SGD independently on the assigned entries until convergence
Simple Parallel SGD for MF (cont.)

- Parameter Mixing: **MSGD**
 - **Map step**: each machine runs
 - an independent instance of SGD on subsets of the data
 - until convergence
 - **Reduce step**: average results (i.e., **W and H**)

- Problem: does not converge to correct solutions
 - no guarantee that “the average” reduces the loss function L
Simple Parallel SGD for MF (cont.)

- **Iterative Parameter Mixing: ISGD**
 - entries of V are distributed across multiple machines
 - **Repeat** until convergence
 - **Map step:** each machine runs SGD independently on the assigned entries for some time
 - **Reduce step:**
 - average results (i.e., W and H)
 - broadcast averaged results

- **Problem:** slow convergence
 - still has the averaging step
Interchangeability

• How can we avoid the averaging step?
 ◦ let different machines update different entries of W and H

• Two entries V_{ij} and V_{kl} of V are *interchangeable* if they share neither row nor column

![Interchangeability Diagram]

Not interchangeable!

Interchangeable!
Interchangeability (cont.)

- If V_{ij} and V_{kl} are interchangeable,
- SGD steps on V_{ij} and V_{kl} can be parallelized safely

Read $W_i: \text{ and } H_{.j}$
Compute gradient of $L'(W_i:, H_{.j})$
Update $W_i: \text{ and } H_{.j}$

Read $W_k: \text{ and } H_{.l}$
Compute gradient of $L'(W_k:, H_{.l})$
Update $W_k: \text{ and } H_{.l}$

no conflicts!
Distributed SGD

• Block W, H, and V
Distributed SGD (cont.)

- Block W, H, and V
- **repeat** until convergence
 - **for** a set of interchangeable blocks of V
 - 1. run SGD on the blocks in parallel
 - no conflict between machines
 - 2. merge results (i.e., W and H)
 - averaging is not needed

Blocks on a diagonal are interchangeable!
Interchangeable Blocks

- Example of interchangeable blocks

Blocks are interchangeable!
Interchangeable Blocks (cont.)

- Example of interchangeable blocks

Blocks are interchangeable!
Interchangeable Blocks (cont.)

• Example of interchangeable blocks

Blocks are interchangeable!
Interchangeable Blocks (cont.)

- **Not** interchangeable blocks
 - Not used in DSGD

Blocks are not interchangeable!
More details of DSGD

• How should we choose sets of interchangeable blocks?
 ◦ In each iteration, we choose sets of interchangeable blocks so that every block of V is used exactly once
 ◦ E.g.,

 ![Diagram showing the use of blocks]

 ◦ But the order and grouping are random

• SGD within each block
 ◦ every non-missing entry in the block is used exactly once
 ◦ but the order is random
More details of DSGD (cont.)

- Use “bold driver” to set step size (or learning rate)
 - After each iteration,
 - increase the step size if the loss decreases
 - decrease the step size if the loss increases

- Implemented Hadoop and R/Snowfall
 - Snowfall: package for parallel R programs
 - https://cran.r-project.org/web/packages/snowfall/index.html
Pros & Cons of DSGD

• Pros:
 ◦ **Faster convergence** than MSGD and ISGD
 ▪ no averaging step
 ◦ **Memory efficiency**: each machine needs to maintain a single block of W and a single block of H in memory

![Diagram of W and H blocks for Machine 1, Machine 2, and Machine 3]

• Cons:
 ◦ **Many hyperparameters**: step size (ϵ) in addition to regularization parameter (λ) and rank (r)
Roadmap

• Matrix Factorization (review)

• Algorithms
 ◦ Distributed SGD: DSGD
 ◦ *Alternating Least Square: ALS* <<
 ◦ Cyclic Coordinate Descent: CCD++

• Experiments

• Extension to Tensor Factorization

• Conclusions
Alternating Least Square

Large-scale Parallel Collaborative Filtering for the Netflix Prize

(AAIM 2008)

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber and Rong Pan

Cited by 520
Main Idea behind ALS

• How hard is matrix factorization?
 ◦ i.e., finding

\[
\arg\min_{W,H} L(V,W,H)
\]

• Solving the entire problem is difficult
 ◦ \(L(V,W,H)\) is a \textbf{non-convex} function of \(W\) and \(H\)
 ▪ many local optima
 ◦ finding a global optimum is NP-hard
Main Idea behind ALS (cont.)

• How hard is solving a smaller problem?
 ◦ Specifically, finding
 \[
 \arg\min_{H} L(V, W, H)
 \]
 while fixing \(W\) to its current value

• Much easier!
 ◦ \(L(V, W, H)\) is a \textit{convex} function of \(H\) (once \(W\) is fixed)
 ▪ one local optimum, which is also globally optimal
 ◦ Moreover, there exists the \textit{closed-form solution}
 ▪ we can directly compute the global optimum
Updating H

- Finding
 \[
 \argmin_H L(V, W, H)
 \]
 while fixing \(W \) to its current value

- This problem is solved by the following update rule

 \[
 \text{For } j = 1 \ldots m \\
 H_{.j} \leftarrow \left(\sum_{i \in Z_{.j}} W_{i.} (W_{i.})^T + \lambda I_k \right)^{-1} \left(\sum_{i \in Z_{.j}} V_{ij} W_{i.} \right)
 \]

 \(k \) by \(k \) identity matrix

 row indices of non-missing entries in the \(j \)-th column of \(V \)

 - derived from \(\frac{\partial L}{\partial H_{kj}} = 0, \forall k, \forall j \) (first-order condition)
Updating W

- Likewise, finding
 \[
 \arg\min_{W} L(V, W, H)
 \]
 while fixing H to its current value.

- This problem is solved by the following update rule

 \[
 W_i \leftarrow \left(\sum_{i \in Z_i} (H\cdot j)^T H\cdot j + \lambda I_k \right)^{-1} \left(\sum_{j \in Z_i} V_{ij} H\cdot j \right)
 \]

 column indices of non-missing entries in the i-th row of V

 - derived from $\frac{\partial L}{\partial W_{ik}} = 0, \forall i, \forall k$ (first-order condition)
Alternating Least Square (ALS)

randomly Initialize W and H

repeat until convergence

update W while fixing H to its current value

update H while fixing W to its current value

• Each step never increases $L(V, W, H)$
 ◦ W is updated to the “best” W that minimizes $L(V, W, H)$ for current H
 ◦ H is updated to the “best” H that minimizes $L(V, W, H)$ for current W

• $L(V, W, H)$ monotonically decreases until convergence
Parallel ALS: Idea

• Recall the update rule for each j-th column of H

$$H_{:j} \leftarrow \left(\sum_{i \in Z_{:j}} W_{i:} (W_{i:})^T + \lambda I_k \right)^{-1} \left(\sum_{i \in Z_{:j}} V_{ij} W_{i:} \right)$$
Parallel ALS: Idea (cont.)

- Potentially every entry of W needs to be read.
- Only the j-th column of V needs to be read.
- H does not need to be read.

⇒ can update the columns of H independently in parallel.
Updating H in Parallel

• A toy example with 3 machines

• 1. Divide V column-wise into 3 pieces

\[W \begin{align*}
V^{(1)} & \quad V^{(2)} & \quad V^{(3)}
\end{align*} \]
Updating H in Parallel (cont.)

• 2. Distribute the pieces across the machines
• 3. W is broadcast to every machine
Updating H in Parallel (cont.)

- 4. Compute the corresponding columns of H in parallel
5. Broadcast the part of H that each machine computes.
Parallel ALS: Idea

- Recall the update rule for each row of W

$$W_{i:} \leftarrow \left(\sum_{i \in Z_{i:}} (H_{:j})^T H_{:j} + \lambda I_k \right)^{-1} \left(\sum_{j \in Z_{i:}} V_{ij} H_{:j} \right)$$
Parallel ALS: Idea (cont.)

- Potentially every entry of H needs to be read
- Only the i-th row of V needs to be read
- W does not need to be read
 \Rightarrow can update the rows of W independently in parallel
Updating W in Parallel

- A toy example with 3 machines
- 1. Divide V row-wise into 3 pieces

\[
H = V^{(1)} + V^{(2)} + V^{(3)}
\]
Updating W in Parallel (cont.)

- 2. Distribute the pieces across the machines
- 3. H is broadcast to every machine
4. Compute the corresponding rows of W in parallel

- Machine 1: $W^{(1)}$, $V^{(1)}$
- Machine 2: $W^{(2)}$, $V^{(2)}$
- Machine 3: $V^{(3)}$, $V^{(3)}$
5. Broadcast the part of W that each machine computes.

Machine 1

$W^{(1)}$

$W^{(2)}$

$W^{(3)}$

$V^{(1)}$

H

Machine 2

$W^{(1)}$

$W^{(2)}$

$W^{(3)}$

$V^{(2)}$

H

Machine 3

$W^{(1)}$

$W^{(2)}$

$W^{(3)}$

$V^{(3)}$

H
Pros & Cons of ALS

• Pros:
 ◦ **Less hyper-parameters**: not requiring step size

• Cons:
 ◦ **High computational cost**: e.g., matrix inversion takes $O(r^3)$

\[
H_{:j} \leftarrow \left(\sum_{i \in Z:j} W_{i:} (W_{i:})^T + \lambda I_k \right)^{-1} \left(\sum_{i \in Z:j} V_{ij} W_{i:} \right)
\]
Pros & Cons of ALS (cont.)

• Cons (cont.)
 ◦ High memory requirement:
 ▪ while updating W (or H),
 ▪ each machine maintains the entire H (or W) in memory
Roadmap

• Matrix Factorization (review)

• Algorithms
 ◦ Distributed SGD: DSGD
 ◦ Alternating Least Square: ALS
 ◦ **Cyclic Coordinate Descent: CCD++** <<

• Experiments

• Extension to Tensor Factorization

• Conclusions
Cyclic Coordinate Descent

Scalable Coordinate Descent Approaches
to Parallel Matrix Factorization
for Recommender Systems

(ICDM 2012)

Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon

Best Paper Award

Cited by 175
Matrix Factorization: Revisit

- Goal: V is approximated by the product of W and H

\[\begin{align*}
 V & \approx W \times H \\
 n \times m & \approx r \times m \\
 V & = \begin{bmatrix}
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \end{bmatrix} \\
 W & = \begin{bmatrix}
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \end{bmatrix} \\
 H & = \begin{bmatrix}
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots \\
 \end{bmatrix}
\end{align*} \]
Matrix Factorization: Revisit

• Goal: V is approximated by the product of W and H

$$V_{ij} \approx [WH]_{ij} = \sum_{k=1}^{r} W_{ik} H_{kj} = W_{i1} H_{1j} + \cdots + W_{ir} H_{rj}$$
Matrix Factorization: Revisit

- Equivalently, V is approximated by the sum of r matrices

\[
V_{ij} \approx [W:1 H:1]_{ij} + \cdots + [W:r H:r]_{ij} = W_{i1} H_{1j} + \cdots + W_{ir} H_{rj}
\]
Cyclic Coordinate Descent: CCD++

• **repeat** until convergence
 ◦ **for** \(k = 1 \ldots r \)

 update the \(k \)-th column of \(W \) and the \(k \)-th row of \(H \)
 while fixing the other entries of \(W \) and \(H \)

• Consider a toy example with rank 3

Step 1:

\[
V ≈ W_1 \times H_1 + W_2 \times H_2 + W_3 \times H_3
\]
Order of Updates in CCD++

Step 2:

\[
V \approx W_1 \times H_1 + W_2 \times H_2 + W_3 \times H_3
\]

Step 3:

\[
V \approx W_1 \times H_1 + W_2 \times H_2 + W_3 \times H_3
\]
Performing one update

• Let W_1 and H_1 be the updated row and column

\[V \approx W_1 \times H_1 + W_2 \times H_2 + W_3 \times H_3 \]

residual matrix \hat{R}
Performing one update (cont.)

- Updating W_1 and H_1: equals to factorizing \hat{R} with rank 1

- $\hat{R} = V - W_2 H_2 - W_3 H_3$

 $= V - W_1 H_1 - W_2 H_2 - W_3 H_3 + W_1 H_1$

 $= V - WH + W_1 H_1$
Performing one update (cont.)

- Factorizing \hat{R} with rank 1 can be performed using ALS
- with the following rules:
 - The updates rules can be derived from those in ALS

\[
\text{For } j = 1 \ldots m \quad H_{kj} \leftarrow \frac{\sum_{i \in Z_j} \hat{R}_{ij} W_{ik}}{\left(\sum_{i \in Z_j} (W_{ik})^2 + \lambda\right)}
\]

\[
\text{For } i = 1 \ldots n \quad W_{ik} \leftarrow \frac{\sum_{j \in Z_i} \hat{R}_{ij} H_{kj}}{\left(\sum_{j \in Z_i} (H_{kj})^2 + \lambda\right)}
\]
Pseudocode of CCD++

Pseudocode (Simple)

randomly initialize W and H

repeat until convergence
 for $k = 1 \ldots r$:
 $\hat{R} \leftarrow V - WH + W_k H_k$
 update W_k and H_k
 (rank-1 factorization of \hat{R})

Pseudocode (Detailed)

randomly initialize W and H

$R \leftarrow V - WH$

repeat until convergence
 for $k = 1 \ldots r$:
 $\hat{R} \leftarrow R + W_k H_k$
 update W_k and H_k
 (rank-1 factorization of \hat{R})

$R \leftarrow \hat{R} + W_k H_k$
Parallel CCD++

- Updating H_k: in parallel
 - 1. divide R column-wise
 - 2. distribute the pieces across the machines
 - 3. $W:k$ is broadcast to every machine
Parallel CCD++ (cont.)

• Updating H_k: in parallel (cont.)
 ◦ 4. compute the corresponding entries of H_k: in parallel
Parallel CCD++ (cont.)

- Updating H_k: in parallel (cont.)
 - 5. send the computed entries to the other machines.
Pros & Cons of CCD++

• Pros:
 ◦ Low computational cost
 ▪ update rules do not need matrix inversion

\[
H_{kj} \leftarrow \frac{\sum_{i \in \mathbb{Z}_j} \hat{R}_{ij} W_{ik}}{\left(\sum_{i \in \mathbb{Z}_j} (W_{ik})^2 + \lambda \right)} \quad W_{ik} \leftarrow \frac{\sum_{j \in \mathbb{Z}_i} \hat{R}_{ij} H_{kj}}{\left(\sum_{j \in \mathbb{Z}_i} (H_{kj})^2 + \lambda \right)}
\]
Pros & Cons of CCD++

- Pros (cont.):
 - **Low memory requirements**
 - each machine needs to maintain
 - one row of H (or one column of W) in memory at a time
 - instead of entire H (or W)
Pros & Cons of CCD++

• Cons:
 ◦ **Slow for dense matrices** with many non-missing entries
 ▪ To update \(\hat{R} \), every non-missing entry
 ▪ needs to be read and rewritten.
 ▪ This is especially slow if \(\hat{R} \) is stored on disk.
Roadmap

• Problem (review)

• Algorithms
 ◦ Distributed SGD: DSGD
 ◦ Alternating Least Square: ALS
 ◦ Cyclic Coordinate Descent: CCD++

• Experiments <<

• Extension to Tensor Factorization

• Conclusions
Experimental Settings

- Datasets:

 - Large-scale Matrix Factorization (by Kijung Shin)
 - Netflix
 - Yahoo! Music
 - movielens

 Non-commercial, personalized movie recommendations.

Movies (or songs)

<table>
<thead>
<tr>
<th>Users</th>
<th>COCO</th>
<th>BRIDGET JONES'S DIARY</th>
<th>Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>?</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>?</td>
<td>2</td>
</tr>
</tbody>
</table>
Experimental Settings (cont.)

• Datasets:
 - Netflix: Large-scale Matrix Factorization (by Kijung Shin)
 (2.7M users, 18K movies, 100M ratings)
 - Yahoo Music: (1M users, 625K songs, 256M ratings)
 - MovieLens: (71K users, 65K movies, 10M ratings)
Experimental Settings (cont.)

• Split of Datasets:
 ◦ Training set: about 80% of non-missing entries
 ◦ Test set: about 20% of non-missing entries

• Evaluation Metric:
 ◦ Test RMSE (Root-mean square error)

\[
RMSE(V, W, H) = \sqrt{\frac{1}{|Z_{test}|} \sum_{(i,j) \in Z_{test}} (V_{ij} - [WH]_{ij})^2}
\]

index of test entries

True rating

Estimated rating
Experimental Settings (cont.)

• Machines and implementations
 ◦ Shared-memory setting:
 ▪ 8 cores
 ▪ OpenMP in C++
 ◦ Distributed setting:
 ▪ up to 20 machines
 ▪ MPI in C++
Convergence Speed

• Shared-memory setting with 8 cores
• CCD++ decreases Test RMSE fastest

Figure 3(b) of [YHS+12]
Convergence Speed (cont.)

- Shared-memory setting with 8 cores
- CCD++ converges Test RMSE fastest

Figure 3(c) of [YHS+12]
Convergence Speed (cont.)

- Shared-memory setting with 8 cores
- CCD++ converges fastest

Figure 3(a) of [YHS+12]
Speedup in Shared Memory

- **CCD++** and **ALS** show near-linear machine scalability
- **DSGD** suffers from high cache-miss rates due to its randomness
 - Cache-miss rate increases as more cores are used

Figure 4 of [YHS+12]
Speedup in Distributed Settings

- All algorithms show similar speedups

Figure 6(b) of [YHS+12]
Roadmap

• Matrix Factorization (review)

• Algorithms
 ◦ Distributed SGD: DSGD
 ◦ Alternating Least Square: ALS
 ◦ Cyclic Coordinate Descent: CCD++

• Experiments

• Extension to Tensor Factorization <<

• Conclusions
Tensors

- An N-way tensor is an N-dimensional array

\[
\begin{bmatrix}
t_1 \\
\vdots \\
t_{I_1}
\end{bmatrix}
\quad \begin{bmatrix}
t_{11} & \cdots & t_{1I_2} \\
\vdots & \ddots & \vdots \\
t_{I_11} & \cdots & t_{I_1I_2}
\end{bmatrix}
\]

1-way tensor (= vector)

2-way tensor (= matrix)

3-way tensor
Tensor Factorization: Problem

• Given:
 ◦ X: I by J by K tensor
 ▪ possibly with missing values
 ◦ R: target rank (a scalar)
 ▪ usually $R \ll I, J, K$
Tensor Factorization: Problem

• Given:
 ◦ X: I by J by K tensor (i.e., 3-dim array)
 ▪ possibly with missing values
 ◦ R: target rank (a scalar)
 ▪ usually $R \ll I, J, K$

• Find:
 ◦ U: I by R matrix
 ◦ H: J by R matrix
 ◦ W: K by R matrix
 ▪ without missing values
Tensor Factorization: Problem

- **Goal:** $X \approx [UHW]$
 - where $[UHW]_{ijk} = \sum_{r=1}^{R} U_{ir} H_{jr} W_{kr}$
Loss Function

\[L(X, U, H, W) = \sum_{(i,j,k) \in Z} (X_{ijk} - \text{[UHW]_{ijk}})^2 + ... \]

Indices of non-missing entries
i.e., \((i, j, k) \in Z\)
\(\leftrightarrow X_{ijk}\) is not missing

Goal: to make \(X\) and \(UHW\) similar
Loss Function (cont.)

\[
L(X, U, H, W) = \sum_{(i,j,k)\in Z} (X_{ijk} - [UHW]_{ijk})^2 \\
+ \lambda (\|U\|_F^2 + \|H\|_F^2 + \|W\|_F^2)
\]

Goal: to prevent overfitting
(by making the entries of \(U, H\) and \(V\) close to zero)

Regularization parameter

Frobenius Norm:
\[
\|U\|_F^2 = \sum_{i=1}^{I} \sum_{r=1}^{R} (U_{ir})^2
\]
SGD for TF

- \(L(X, U, H, W) \): sum of loss for each non-missing entry
 \[
 L(X, U, H, W) = \sum_{(i,j,k) \in Z} L'(X_{ijk}, U_i: H_j: W_k:)
 \]

- An SGD step on each non-missing entry \(X_{ijk} \):
 - Read \(U_i: \), \(H_j: \), and \(W_k: \)
 - Compute gradient of \(L'(V_{ij}, W_i:, H_j:, W_k:) \)
 - Update \(U_i: \), \(H_j: \), \(W_k: \)
Parallel Algorithms for TF

- Parallel algorithms for MF are extended to TF
 - DSGD \rightarrow FlexiFaCT [BKP+14]
 - ALS [SPK16]
 - CCD++ \rightarrow CDTF [SK17]
Applications

- Context-aware recommendation [KABO10]

\[
\hat{X}_{ijk} = [UHW]_{ijk}
\]

Users

Seasons

Winter

Fall

Summer

Spring

Movies

Ratings

Missing rating
Applications (cont.)

- Context-aware recommendation [KABO10]

Levels of hunger

Users

Restaurants

\[
\hat{X}_{ijk} = \left[UHW \right]_{ijk}
\]
Applications (cont.)

- Video Restoration [LMWY13]

$$\hat{X}_{ijk} = [UHW]_{ijk}$$

Pixels

Missing or corrupted pixel

\hat{X}_{ijk}

X-axis

Y-Axis

Large-scale Matrix Factorization (by Kijung Shin)
Applications (cont.)

- Video Restoration [LMWY13]

Corrupted frame

Restored frame
Applications (cont.)

- Personalized Web Search [SZL+05]

![Diagram showing matrix factorization for personalized web search.](image)

- Users
- Query keywords
- Web pages

$\hat{X}_{ijk} = [UHW]_{ijk}$

Preference

Missing preference
Roadmap

• Matrix Factorization (review)

• Algorithms
 ◦ Distributed SGD: DSGD
 ◦ Alternating Least Square: ALS
 ◦ Cyclic Coordinate Descent: CCD++

• Experiments

• Extension to Tensor Factorization

• Conclusions <<
Conclusions

• Matrix Factorization (MF)

• Parallel algorithms for MF
 ◦ Distributed SGD: DSGD
 ◦ Alternating Least Square: ALS
 ◦ Cyclic Coordinate Descent: CCD++

• Tensor Factorization (TF)
 ◦ Extension of MF to tensors
 ◦ Applications: context-aware recommendation, video restoration, personalized web search, etc.
Questions?

• These slides are available at:

 www.cs.cmu.edu/~kijungs/ETC/10-405.pdf

• Email: kijungs@cs.cmu.edu
References

References (cont.)

Closed-Form Solution of ALS

Let $W = \begin{bmatrix}
- & W_1: & - \\
- & : & - \\
- & W_n: & - \\
\end{bmatrix}$, $H = \begin{bmatrix}
H_{1:} & \cdots & H_{m:} \\
\vdots & \ddots & \vdots \\
\vdots & \cdots & \vdots \\
\end{bmatrix}$

Then,

$L(V, W, H)$

$$= \sum_{(i,j)\in Z} (V_{ij} - W_{i:H:j})^2 + \lambda \left(\sum_{i=1}^n \|W_{i:}\|_2 + \sum_{j=1}^m \|H_{j:}\|_2 \right)$$

$$= \sum_{(i,j)\in Z} (V_{ij} - \sum_{k=1}^r W_{ik}H_{kj})^2$$

$$+ \lambda \left(\sum_{i=1}^n \sum_{k=1}^r W_{ik}^2 + \sum_{j=1}^m \sum_{k=1}^r H_{kj}^2 \right)$$
Closed-Form Solution of ALS (cont.)

\[\frac{1}{2} \frac{\partial L}{\partial H_{kj}} = 0, \quad \forall k, \forall j \]
(first-order conditions)

\[\Rightarrow \sum_{i \in Z,j} (V_{ij} - W_{i,H,j})W_{ik} + \lambda H_{kj} = 0, \quad \forall k, \forall j \]

rows of non-missing entries in the \(j \)-th column of \(V \)

\[\Rightarrow \sum_{i \in Z,j} W_{i,H,j}W_{ik} + \lambda H_{kj} = \sum_{i \in Z,j} V_{ij}W_{ik}, \quad \forall k, \forall j \]

\[\Rightarrow \sum_{i \in Z,j} W_{i,H,j}W_{ik} + \lambda H_{kj} = \sum_{i \in Z,j} V_{ij}W_{ik}, \quad \forall k, \forall j \]
Closed-Form Solution of ALS (cont.)

(If we stack r conditions on H_{1j}, \ldots, H_{rj})

$\Rightarrow (\sum_{i \in Z \cdot j} W_i (W_i)^T + \lambda I_k) H_{:j} = \sum_{i \in Z \cdot j} V_{ij} W_{i:}, \forall j$

k by k identity matrix

$\Rightarrow H_{:j} = \left(\sum_{i \in Z \cdot j} W_i (W_i)^T + \lambda I_k\right)^{-1} \left(\sum_{i \in Z \cdot j} V_{ij} W_{i:}\right), \forall j$