D-Cube: Dense-Block Detection in Terabyte-Scale Tensors
(Supplementary Document)

Kijung Shin, Bryan Hooi, Jisu Kim, Christos Faloutsos
School of Computer Science, Carnegie Mellon University
Pittsburgh, PA, USA
{kijungs, christos}@cs.cmu.edu, {bhooi, jisuk1}@andrew.cmu.edu

ABSTRACT

In this supplementary document, we provide implementa-
tion details, descriptions of datasets, and additional experi-
mental results, all of which supplement the main paper [10].

1. MAPREDUCE IMPLEMENTATION

In this section, we present how D-CUBE can be imple-
mented on MAPREDUCE, supplementing Section 3.3 of the
main paper. Specifically, we describe two MAPREDUCE algo-
rithms corresponding to steps of D-CUBE accessing tuples,
which are stored in a distributed file system.

Computing Mass. Line 5 of Algorithm 1 can be per-
formed by the following algorithm, where the amount of
shuffled data can be reduced by combining the intermedi-
ate results within each mapper.

e Map-stage: Take a tuple t (i.e., <t[A1],..., t[{An], t[X]>)
and emit <0, t[X]>.

e Combine-stage/Reduce-stage: Take <0, values> and
emit <0, sum(values)>.

The value of the final output corresponds to the mass of the
input relation.

Computing Attribute-value Sets. Line 2 of Algo-
rithm 1 can be performed by the following algorithm, where
the amount of shuffled data can be reduced by combining
the intermediate results within each mapper.

e Map-stage: Take a tuplet (i.e., <t[A1],..., t[An], t[X]>)
and emit N key/value pairs, {<(n,t[A,]),0>}2_;.

e Combine-stage/Reduce-stage: Take <(n,a), values>
and emit <(n, a), 0>.

Each line <(n, a), 0> of the final output indicates that a is
a member of R,,.

2. REAL-WORLD DATASETS

In this section, we describe the real-world tensor datasets
used in the main paper. They are categorized into four

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

groups: (1) Rating data (Yelp, Android, Netflix, and Ya-
hooM.), (2) Wikipedia revision history (KoWiki and En-
Wiki), (3) Temporal social networks (Youtube and SMS),
and (4) TCP dumps (DARPA and AirForce). Some statis-
tics of these datasets are listed in Table 3 in the main paper.

e Yelp [2]: In Yelp(user,business,date,rating,1), each tu-
ple (u,b,d,r,1) indicates that user u gave business b rat-
ing r on date d on Yelp', a review site. This dataset
was used for Yelp Dataset Challenge [2].

e Android [7]: In Android(user,app,timestamp,rating,1),
each tuple (u,a,t,r,1) indicates that user u gave An-
droid app a rating r at timestamp ¢ (in hours) on
Amagzon, an online store.

e Netflix [3]: In Netflix(user,movie,date,rating,1), each
tuple (u,m,d,r,1) indicates that user u gave movie m
rating r on date d on Netflix, a movie rental and stream-
ing service. This dataset was used for Netflix Prize?.

e YahooM. [4]: In YahooM. (user,item,timestamp,rating,1),
each tuple (u,i,t,r,1) indicates that user u gave musi-
cal item ¢ rating 7 at timestamp ¢ (in hours) on Yahoo!
Music. This dataset was used for KDD Cup 20113,

e KoWiki [9]: In KoWiki(user,page,timestamp,#revisions),
each tuple (u,p,t,r) indicates that user u revised page p
r times at timestamp ¢ (in hour) in Korean Wikipedia,

a crowd-sourcing online encyclopedia. This dataset is
the snapshot on February 4, 2016.

e EnWiki [9]: This dataset has the same schema with
KoWiki Dataset, but data are from English Wikipedia.
This dataset is the snapshot on February 4, 2016.

e Youtube [8]: In Youtube(source,destination,date,1), each
tuple (s,d,t,1) indicates that a link from user s to user
d was observed on date t on Youtube, a video-sharing
website.

e SMS: In SMS(source,destination,timestamp, #messages),
each tuple (s,d,t,m) indicates that user s sent m text
messages to user d at timestamp ¢ (in hour) in a large
Asian city.

e DARPA [6] : In DARPA (source IP, destination IP,
timestamp,#connections), each tuple (s,d,t,c) indicates
that ¢ connections were made from IP s to IP d at
timestamp ¢ (in minutes). This dataset was collected
by the Cyber Systems and Technology Group in 1998.

e AirForce [1] : In AirForce(protocolservice,src bytes,
dst bytes,flag,host count,srv count,#connections), each

"http:/ /www.yelp.com
http://netflixprize.com/
3http:/ /www.kdd.org/kdd2011/kddcup.shtml

10.1145/1235

tuple indicates that given number of connections have
the the given dimension attribute values. This dataset
was used for KDD Cup 1999 [1]. The description of
each attribute is as follows:

— protocol: type of protocol (e.g. tcp and udp)

— service: network service on destination (e.g., http
and telnet)

— src bytes: number of data bytes sent from source
to destination

— dst bytes: number of data bytes sent from desti-
nation to source

— flag: normal or error status

— host count: number of connections made to the
same host in the past two seconds

— srv count: number of connections made to the
same service in the past two seconds

— #connections: number of connections with the
given dimension attribute values.

3. ADDITIONAL EXPERIMENTS

We design additional experiments to answer the following
questions:

e Q5. Scalability with k: How does D-CUBE scale
with the number of dense blocks it aims to find?

e Q6. Speed and Accuracy: How rapidly and accu-
rately D-CUBE detects dense blocks when pgeo Or pari
is used as the density measure?

Experimental settings were the same as in the main paper.

“©- D-Cube (enough memory)
-A- D-Cube (minimum memory)

= Linear Increase

Elapsed Time (sec)

10° 10%° 10t
Number of Blocks

Figure 7: D-Cube scales linearly with the number of
blocks (i.e., k).

3.1 QS Scalability with k

We show that D-CUBE scales linearly with the number of
blocks that it finds (i.e., k). We measure the running time
of D-CUBE on a synthetic tensor with 100 million tuples,
and 3 dimension attributes each of whose cardinality is 100
thousands, as we increase k from 1 to 10. As seen in Figure 7,
D-CUBE scales linearly with k. This linear scalability of D-
CUBE held both with enough memory (blue solid line) to
store all tuples and with minimum memory (red dashed line)
to barely meet requirements. This is also consistent with
our theoretical analysis on the time complexity of D-CUBE
(Theorem 1 in the main paper).

3.2 Q6: Speed and Accuracy

We compare how rapidly and accurately each method de-
tects dense blocks in real-world tensors when pgeo Or pari
is used as the density measure. The same experiment with
Psusp can be found in the main paper. Although CrossSpoOT
[5] was originally designed to maximize psusp, we used its

variants that directly maximize the density metric compared
in each experiment. We measured the wall-clock time (av-
erage over three runs) taken for detecting three blocks by
each method, and measured the maximum density of the
three blocks found by each method. Note that the serial
version of D-CUBE was used, and each dataset was cached
in memory by D-CUBE since they fit in memory (see Section
3.1.4 of the main paper).

Figure 8 shows the result with pgeo, where we used the
maximum density policy for D-CUBE (see Section 3.1.3 of
the main paper), which consistently resulted in denser blocks
than the maximum cardinality policy. D-CUBE provided the
best trade-off between speed and accuracy. D-CUBE was
up to 5x faster than the second fastest method, and in
terms of accuracy (i.e., density of the found blocks), D-CUBE
consistently spotted high-density blocks, while the accuracy
of the other methods varied on data. Especially, D-CUBE
detected the densest blocks in SMS and DARPA Datasets.
Compared with CPD, D-CUBE spotted up to 6x denser
blocks.

Figure 9 shows the results with psr;. Here we consider
both the maximum cardinality policy and the maximum
density policy, which gave comparable performances. D-
CUBE gave the best trade-off between speed and accuracy.
Specifically, it was up to 5 times faster the second fastest
method, while giving the similarly dense blocks with other
methods except CPD. Compared with CPD, D-CUBE spot-
ted up to 48x denser blocks.

Although MAF does not appear in Figures 8 and 9, it
consistently provided sparser blocks than CPD with similar
speed.

4. REFERENCES

[1] Kdd cup 1999 data. http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html.

[2] Yelp dataset challenge.
https://www.yelp.com/dataset_challenge.

[3] J. Bennett and S. Lanning. The netflix prize. In KDD
Cup, 2007.

[4] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer.
The yahoo! music dataset and kdd-cup’11l. In KDD
Cup, 2012.

[5] M. Jiang, A. Beutel, P. Cui, B. Hooi, S. Yang, and
C. Faloutsos. A general suspiciousness metric for dense
blocks in multimodal data. In ICDM, 2015.

[6] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines,
K. R. Kendall, D. McClung, D. Weber, S. E. Webster,
D. Wyschogrod, R. K. Cunningham, et al. Evaluating
intrusion detection systems: The 1998 darpa off-line
intrusion detection evaluation. In DISCEX, 2000.

[7] J. McAuley, R. Pandey, and J. Leskovec. Inferring
networks of substitutable and complementary
products. In KDD, 2015.

[8] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. In IMC, 2007.

[9] K. Shin, B. Hooi, and C. Faloutsos. M-zoom: Fast
dense-block detection in tensors with quality
guarantees. In ECML/PKDD, 2016.

[10] K. Shin, B. Hooi, J. Kim, and C. Faloutsos. D-cube:
Dense-block detection in terabyte-scale tensors. In
WSDM. ACM, 2017.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.yelp.com/dataset_challenge

=
Q
o
3
Q
Q
<
2
[%]
c
[}
[a)
10* 10? 10°
Elapsed Time (sec)
(a) SMS
106 Ideal
Q
(]
2
i105 °A C
Pl
‘@
3 2X
[a] 10*)
107! 10° 10t
Elapsed Time (sec)
(f) DARPA

O D-Cube A\ M-Zoom < CrossSpot <> CPD

Density (Accuracy)

10?2 10°

10° 10t
Elapsed Time (sec)

(b) Youtube

=10t4* Ideal

Q

I

g

=)

3

Si?{ o A

Pl

‘@

2 104

@ 4x

0492 k—
10° 10! 10?

Elapsed Time (sec)
(g) Android

=1054° Ideal 108 e |deal

Q Q

g g o A

3 3

3 3

Zao? ° A o <ae?

2 2 o

4] 0

o 3X o X

T S e L -~ T .
102 10° 10* 10° 100 102 10°
Elapsed Time (sec) Elapsed Time (sec)
(c) EnWiki (d) KoWiki

= eldeal = e |deal

10° >10°

g g

3 oA 3 o A

< <

> < > o

) 3X o 4X

S L N T U ;
107! 10° 10* 10% 10° 100 10> 10° 10*
Elapsed Time (sec) Elapsed Time (sec)

(h) Yelp (i) Netflix

Density (Accuracy)

ty (Accuracy)

Dens

107 e |deal
A O
10°
2X
10° -]
10" 10° 10t 10°

Elapsed Time (sec)
(e) AirForce

1054* Ideal
A
o
10* o
3X
10° (=]

10" 10* 10° 10° 10°
Elapsed Time (sec)

(j) YahooM.

Figure 8: D-Cube achieves both speed and accuracy in terms of pg,. In each plot, points represent the speed of
different methods and the highest density (pgeo) of three blocks found by the methods. Upper-left region indicates better
performance. D-CUBE gave the best trade-off between speed and density. Specifically, D-CUBE was up to 5x faster than

M-Zoowm, which was the second best method, with similarly dense blocks.

O D-Cube (maximum density)

4 Je Ideal

+ A

10

<

Density (Accuracy)
=
o

4X
102 [—

10 10° 10° 10°
Elapsed Time (sec)

(a) SMS

105 Ideal
A o

2X
]

107! 10° 10*
Elapsed Time (sec)
(f) DARPA

Density (Accuracy)
=
o

=
o
w

108 e |deal

Q

g

3

3 ¢+ A

<ie?

2

B <o

3 5X

Dlol [—
10° 100 10° 10°

Elapsed Time (sec)
(b) Youtube

102 ¢ Ideal

4 A

o

3X
-]

10° 10t 102 10°
Elapsed Time (sec)
(g) Android

Density (Accuracy)
=
o

=
(=]
°

+ D-Cube (maximum cardinality)

/A M-Zoom X CrossSpot <> CPD

=10t Ideal =10° eldeal

g + A & +A

i © 3102

810 810

< <

2102 1

210 o 210 o

3 3X 3 4X

0101 s Dloo Ui
102 10° 10° 10° 10' 107 10° 10°
Elapsed Time (sec) Elapsed Time (sec)
(c) EnWiki (d) KoWiki

=10° e|deal =10 e |deal

& &

5 5 + A

3 3

<102 <L 03

;10 4_A ;10 o

-% 3X<> -% 4X

e B L o = T ;
107! 10° 10* 10 10° 100 10> 10° 10*
Elapsed Time (sec) Elapsed Time (sec)

(h) Yelp (i) Netflix

Dens

Densi

ty (Accuracy)

ty (Accuracy)

-
(=]
>

107 e |deal
2X
10°]
10" 10° 10t 10°

Elapsed Time (sec)
(e) AirForce

10%4* Ideal
+A
10° o
3X
10? =]

10t 10* 10° 10° 10°
Elapsed Time (sec)

(j) YahooM.

Figure 9: D-Cube achieves both speed and accuracy in terms of p,.;. In each plot, points represent the speed of
different methods and the highest density (par;) of three blocks found by the methods. Upper-left region indicates better
Specifically, D-CUBE was up to 5x faster than

performance. D-CUBE gave the best trade-off between speed and density.
M-Zoowm, which was the second best method, with similarly dense blocks.

	MapReduce Implementation
	Real-world Datasets
	Additional Experiments
	Q5 Scalability with k
	Q6: Speed and Accuracy

	References

