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2 Introduction 

This package implements SALS and CDTF, tensor factorization algorithms for high-dimensional and large-

scale data. It is fully written in Java and runs on Hadoop as well as on a single machine. 

The details of this package can be found in the following paper: 

 Kijung Shin, U Kang, Distributed Methods for High-dimensional and Large-scale Tensor 

Factorization. IEEE International Conference on Data Mining(ICDM), December 2014. 

 

3 Installation 

This package requires the following software to be installed in the system and set in PATH. 

 Hadoop 1.0.3. or greater from http://hadoop.apache.org 

 Java 1.6.x. or greater, preferably from sun 

 

4 Tensor factorization 

4.1 Model: 

The entries of N-dimensional tensor 𝐗 ∈ (ℝI1×…×𝐼𝑁) are approximated by the following formula: 

𝑥𝑖1…𝑖𝑁
≈ �̂�𝑖1…𝑖𝑁

= ∑ ∑ 𝑎𝑖𝑛𝑘
(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

 

where 𝑎𝑖𝑛𝑘
(𝑛)

 is the (in, k)th element of A(n). Factor matrices, A(1) through A(n), are the result of rank 
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K PARAFAC decomposition of 𝐗, which minimizes following loss function: 

𝐿(A(1), … , A(n)) = ∑ (𝑥𝑖1…𝑖𝑁
− ∑ ∑ 𝑎𝑖𝑛𝑘

(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

)2

(i1,…,iN)ϵΩ

 

where Ω is the set of 𝐗’s observable entries. 

For regularization, you can use either weighted-lambda-regularization or L2 regularization. Weighted-

lambda-regularization is described in the following paper: 

 Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative 

filtering for the netflix prize. In Algorithmic Aspects in Information and Management, 

pages 337–348. Springer, 2008.  

4.2 Input 

4.2.1 training data: 𝐗’s entries used to calculate factor matrices. 

 Format: [i1] , [i2] , … , [iN] , [𝑥𝑖1…𝑖𝑁
] \n 

Position Type Min Max Description 

1 Integer 0 I1 − 1 i1: 1st mode index 

2 Integer 0 I2 − 1 i2: 2nd mode index 

…  ... … … 

N Integer 0 IN − 1 in: Nth mode index 

N+1 Double   𝑥𝑖1…𝑖𝑁
: (i1, … , 𝑖𝑛)th entry 

 

 Example  

► 2-dimensional data: [i1] , [i2] , [𝑥𝑖1𝑖2
] \n 

1,10,3.5 

2,4,5.0 

6,2,4.0 

► 3-dimensional data: [i1] , [i2] , [i3] , [𝑥𝑖1𝑖2𝑖3
] \n 

1,10,2 3.5 

2,4,3,5.0 

6,2,1,4.0 

4.2.2 test data: 𝐗’s entries used to measure the accuracy of estimation. 

 Format: same with training data 

4.2.3 query data: 𝐗’s entries to be estimated 

 Format: [i1] [i2] … [iN] \n 
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Position Type Min Max Description 

1 Integer 0 I1 − 1 i1: 1
st
 mode index 

2 Integer 0 I2 − 1 i2: 2
nd

 mode index 

…  ... … … 

N Integer 0 IN − 1 in: Nth mode index 

 

 Example  

► 2-dimensional data: [i1] , [i2] \n 

1,9 

2,5 

6,3 

► 3-dimensional data: [i1] , [i2] , [i3] \n 

1,10,2,3.5 

2,4,3,5.0 

6,2,1,4.0 

4.2.4 parameters 

Name Type Min Max Description 

training String   
Single version(S): path of training data on local disk 
Hadoop version(H): path of training data on HDFS 

test String   
S: path of test data on local disk 
H: path of test data on HDFS 

query String   
S: path of query data on local disk 
H: path of query data on HDFS 

output String   
S: path to save outputs on local disk 
H: path to save outputs on HDFS 

M Integer 1  
S: number of threads to use 
H: number of machines to use 

Tout Integer 1  number of outer iterations 

N Integer 1  dimension of data 

K Integer 1  rank 

lambda double 0 1 regularization parameter 

useWeight Integer   1 : weighted lambda regularization, 0: L2 regularization 

I_n Integer 1  nth mode length 

memory Integer 1  amount of heap space (in MB) to allocate to each reducer 

 

4.3 Output 

4.3.1 performance.out: performance summary 

 Format: [iteration] , [elapsed time] , [training RMSE] , [test RMSE] \n 

 Example 
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iteration,elapsed_time,training_rmse,test_rmse 

1,6779,0.900193,0.967152 

2,11799,0.872561,0.943288 

3,16373,0.860275,0.933825 

4,20830,0.852764,0.928591 

5,24828,0.847399,0.925174 

4.3.2 estimate.out: estimated values for query data 

 Format: [i1] , [i2] , … , [iN] , [�̂�𝑖1…𝑖𝑁
] \n 

Position Type Minimum Maximum Description 

1 Integer 0 I1 − 1 i1: 1
st
 mode index 

2 Integer 0 I2 − 1 i2: 2
nd

 mode index 

…  ... … … 

N Integer 0 IN − 1 in: Nth mode index 

N+1 Double   �̂�𝑖1…𝑖𝑁
: estimated (i1, … , 𝑖𝑛)th entry 

 

 Example  

► 2-dimensional data: [i1] , [i2] , [�̂�𝑖1𝑖2
] \n 

1,10,3.44 

2,4,4.98 

6,2,3.92 

► 3-dimensional data: [i1] , [i2] , [i3] , [�̂�𝑖1𝑖2𝑖3
] \n 

1,10,2,3.47 

2,4,3,4.98 

6,2,1,3.92 

4.3.3 factor_matrices/n : A(n) (n-th factor matrix) 

 Format: [in] , [𝑎𝑖𝑛1
(𝑛)

] , [𝑎𝑖𝑛2
(𝑛)

] , … , [𝑎𝑖𝑛𝐾
(𝑛)

] \n 

Position Type Min Max Description 

1 Integer 0 In − 1 in: row order 

2 Double   𝑎𝑖𝑛1
(𝑛)

 : 1
st
 latent feature 

3 Double   𝑎𝑖𝑛2
(𝑛)

 : 2
nd

 latent feature 

… …    

K+1 Double   𝑎𝑖𝑛𝐾
(𝑛)

 : Kth latent feature 
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 Example: [in] , [𝑎𝑖𝑛1
(𝑛)

] , [𝑎𝑖𝑛2
(𝑛)

] , [𝑎𝑖𝑛3
(𝑛)

] , [𝑎𝑖𝑛4
(𝑛)

] , [𝑎𝑖𝑛5
(𝑛)

] \n 

0,0.531,0.422,0.234,0.161,0.231 

1,0.223,0.491,0.481,0.592,0.351 

2,0.334,0.478,0.123,0.439,0.692 

4.4 Algorithms 

4.4.1 CDTF (Coordinate Descent for Tensor Factorization) 

 How to run 

► Single machine version 

./run_single_cdtf.sh [training] [output] [M] [Tout] [Tin] [N] [K] [lambda] [useWeight] [I_1] 

[I_2] ... [I_N] [test] [query] 

 [Tin]: number of inner iterations  

 [test] and [query] are optional 

► Hadoop version 

./run_hadoop_cdtf.sh [training] [output] [M] [Tout] [Tin] [N] [K] [lambda] [useWeight] [I_1] 

[I_2] ... [I_N] [memory] [test] [query] 

 [Tin]: number of inner iterations 

 [test] and [query] are optional 

 Reference 

► Kijung Shin, U Kang, Distributed Methods for High-dimensional and Large-scale 

Tensor Factorization. IEEE International Conference on Data Mining(ICDM), 

December 2014. 

► H.-F. Yu, C.-J. Hsieh, S. Si, I. S. Dhillon, Scalable Coordinate Descent Approaches to 

Parallel Matrix Factorization for Recommender Systems. IEEE International 

Conference on Data Mining(ICDM), December 2012. 

4.4.2 SALS (Subset Alternating Least Square) 

 How to run 

► Single machine version 

./run_single_sals.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [lambda] [useWeight] 

[I_1] [I_2] ... [I_N] [test] [query] 

 [Tin]: number of inner iterations 

 [C]: number of parameters updated at a time 
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 [test] and [query] are optional 

► Hadoop version 

./run_hadoop_sals.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [lambda] [useWeight] 

[I_1] [I_2] ... [I_N] [memory] [test] [query] 

 [Tin]: number of inner iterations 

 [C]: number of parameters updated at a time 

 [test] and [query] are optional 

 Reference 

► Kijung Shin, U Kang, Distributed Methods for High-dimensional and Large-scale 

Tensor Factorization. IEEE International Conference on Data Mining(ICDM), 

December 2014. 


