
1

Distributed Methods for High-dimensional

and Large-scale Tensor Factorization

2014-09-29

Kijung Shin

1 General Information

 Version: 1.0

 Date: 09/29/2014

 Authors: Kijung Shin (koreaskj@snu.ac.kr), U Kang (ukang@cs.kaist.ac.kr)

2 Introduction

This package implements SALS and CDTF, tensor factorization algorithms for high-dimensional and large-

scale data. It is fully written in Java and runs on Hadoop as well as on a single machine.

The details of this package can be found in the following paper:

 Kijung Shin, U Kang, Distributed Methods for High-dimensional and Large-scale Tensor

Factorization. IEEE International Conference on Data Mining(ICDM), December 2014.

3 Installation

This package requires the following software to be installed in the system and set in PATH.

 Hadoop 1.0.3. or greater from http://hadoop.apache.org

 Java 1.6.x. or greater, preferably from sun

4 Tensor factorization

4.1 Model:

The entries of N-dimensional tensor 𝐗 ∈ (ℝI1×…×𝐼𝑁) are approximated by the following formula:

𝑥𝑖1…𝑖𝑁
≈ �̂�𝑖1…𝑖𝑁

= ∑ ∑ 𝑎𝑖𝑛𝑘
(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

where 𝑎𝑖𝑛𝑘
(𝑛)

 is the (in, k)th element of A(n). Factor matrices, A(1) through A(n), are the result of rank

mailto:koreaskj@snu.ac.kr
mailto:ukang@cs.kaist.ac.kr
http://hadoop.apache.org/

2

K PARAFAC decomposition of 𝐗, which minimizes following loss function:

𝐿(A(1), … , A(n)) = ∑ (𝑥𝑖1…𝑖𝑁
− ∑ ∑ 𝑎𝑖𝑛𝑘

(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

)2

(i1,…,iN)ϵΩ

where Ω is the set of 𝐗’s observable entries.

For regularization, you can use either weighted-lambda-regularization or L2 regularization. Weighted-

lambda-regularization is described in the following paper:

 Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative

filtering for the netflix prize. In Algorithmic Aspects in Information and Management,

pages 337–348. Springer, 2008.

4.2 Input

4.2.1 training data: 𝐗’s entries used to calculate factor matrices.

 Format: [i1] , [i2] , … , [iN] , [𝑥𝑖1…𝑖𝑁
] \n

Position Type Min Max Description

1 Integer 0 I1 − 1 i1: 1st mode index

2 Integer 0 I2 − 1 i2: 2nd mode index

… ... … …

N Integer 0 IN − 1 in: Nth mode index

N+1 Double 𝑥𝑖1…𝑖𝑁
: (i1, … , 𝑖𝑛)th entry

 Example

► 2-dimensional data: [i1] , [i2] , [𝑥𝑖1𝑖2
] \n

1,10,3.5

2,4,5.0

6,2,4.0

► 3-dimensional data: [i1] , [i2] , [i3] , [𝑥𝑖1𝑖2𝑖3
] \n

1,10,2 3.5

2,4,3,5.0

6,2,1,4.0

4.2.2 test data: 𝐗’s entries used to measure the accuracy of estimation.

 Format: same with training data

4.2.3 query data: 𝐗’s entries to be estimated

 Format: [i1] [i2] … [iN] \n

3

Position Type Min Max Description

1 Integer 0 I1 − 1 i1: 1
st
 mode index

2 Integer 0 I2 − 1 i2: 2
nd

 mode index

… ... … …

N Integer 0 IN − 1 in: Nth mode index

 Example

► 2-dimensional data: [i1] , [i2] \n

1,9

2,5

6,3

► 3-dimensional data: [i1] , [i2] , [i3] \n

1,10,2,3.5

2,4,3,5.0

6,2,1,4.0

4.2.4 parameters

Name Type Min Max Description

training String
Single version(S): path of training data on local disk
Hadoop version(H): path of training data on HDFS

test String
S: path of test data on local disk
H: path of test data on HDFS

query String
S: path of query data on local disk
H: path of query data on HDFS

output String
S: path to save outputs on local disk
H: path to save outputs on HDFS

M Integer 1
S: number of threads to use
H: number of machines to use

Tout Integer 1 number of outer iterations

N Integer 1 dimension of data

K Integer 1 rank

lambda double 0 1 regularization parameter

useWeight Integer 1 : weighted lambda regularization, 0: L2 regularization

I_n Integer 1 nth mode length

memory Integer 1 amount of heap space (in MB) to allocate to each reducer

4.3 Output

4.3.1 performance.out: performance summary

 Format: [iteration] , [elapsed time] , [training RMSE] , [test RMSE] \n

 Example

4

iteration,elapsed_time,training_rmse,test_rmse

1,6779,0.900193,0.967152

2,11799,0.872561,0.943288

3,16373,0.860275,0.933825

4,20830,0.852764,0.928591

5,24828,0.847399,0.925174

4.3.2 estimate.out: estimated values for query data

 Format: [i1] , [i2] , … , [iN] , [�̂�𝑖1…𝑖𝑁
] \n

Position Type Minimum Maximum Description

1 Integer 0 I1 − 1 i1: 1
st
 mode index

2 Integer 0 I2 − 1 i2: 2
nd

 mode index

… ... … …

N Integer 0 IN − 1 in: Nth mode index

N+1 Double �̂�𝑖1…𝑖𝑁
: estimated (i1, … , 𝑖𝑛)th entry

 Example

► 2-dimensional data: [i1] , [i2] , [�̂�𝑖1𝑖2
] \n

1,10,3.44

2,4,4.98

6,2,3.92

► 3-dimensional data: [i1] , [i2] , [i3] , [�̂�𝑖1𝑖2𝑖3
] \n

1,10,2,3.47

2,4,3,4.98

6,2,1,3.92

4.3.3 factor_matrices/n : A(n) (n-th factor matrix)

 Format: [in] , [𝑎𝑖𝑛1
(𝑛)

] , [𝑎𝑖𝑛2
(𝑛)

] , … , [𝑎𝑖𝑛𝐾
(𝑛)

] \n

Position Type Min Max Description

1 Integer 0 In − 1 in: row order

2 Double 𝑎𝑖𝑛1
(𝑛)

 : 1
st
 latent feature

3 Double 𝑎𝑖𝑛2
(𝑛)

 : 2
nd

 latent feature

… …

K+1 Double 𝑎𝑖𝑛𝐾
(𝑛)

 : Kth latent feature

5

 Example: [in] , [𝑎𝑖𝑛1
(𝑛)

] , [𝑎𝑖𝑛2
(𝑛)

] , [𝑎𝑖𝑛3
(𝑛)

] , [𝑎𝑖𝑛4
(𝑛)

] , [𝑎𝑖𝑛5
(𝑛)

] \n

0,0.531,0.422,0.234,0.161,0.231

1,0.223,0.491,0.481,0.592,0.351

2,0.334,0.478,0.123,0.439,0.692

4.4 Algorithms

4.4.1 CDTF (Coordinate Descent for Tensor Factorization)

 How to run

► Single machine version

./run_single_cdtf.sh [training] [output] [M] [Tout] [Tin] [N] [K] [lambda] [useWeight] [I_1]

[I_2] ... [I_N] [test] [query]

 [Tin]: number of inner iterations

 [test] and [query] are optional

► Hadoop version

./run_hadoop_cdtf.sh [training] [output] [M] [Tout] [Tin] [N] [K] [lambda] [useWeight] [I_1]

[I_2] ... [I_N] [memory] [test] [query]

 [Tin]: number of inner iterations

 [test] and [query] are optional

 Reference

► Kijung Shin, U Kang, Distributed Methods for High-dimensional and Large-scale

Tensor Factorization. IEEE International Conference on Data Mining(ICDM),

December 2014.

► H.-F. Yu, C.-J. Hsieh, S. Si, I. S. Dhillon, Scalable Coordinate Descent Approaches to

Parallel Matrix Factorization for Recommender Systems. IEEE International

Conference on Data Mining(ICDM), December 2012.

4.4.2 SALS (Subset Alternating Least Square)

 How to run

► Single machine version

./run_single_sals.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [lambda] [useWeight]

[I_1] [I_2] ... [I_N] [test] [query]

 [Tin]: number of inner iterations

 [C]: number of parameters updated at a time

6

 [test] and [query] are optional

► Hadoop version

./run_hadoop_sals.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [lambda] [useWeight]

[I_1] [I_2] ... [I_N] [memory] [test] [query]

 [Tin]: number of inner iterations

 [C]: number of parameters updated at a time

 [test] and [query] are optional

 Reference

► Kijung Shin, U Kang, Distributed Methods for High-dimensional and Large-scale

Tensor Factorization. IEEE International Conference on Data Mining(ICDM),

December 2014.

