
1

Fully Scalable Methods for Distributed Tensor Factorization

2016-04-10

Kijung Shin

1 General Information

 Version: 1.1

 Date: 04/10/2016

 Authors: Kijung Shin (kijungs@cs.cmu.edu), Lee Sael (sael@cs.stonybrook.edu), and U Kang

(ukang@snu.ac.kr)

2 Introduction

This package implements CDTF and SALS, tensor factorization algorithms for high-order and large-scale

data. It is fully written in Java and runs on Hadoop as well as on a single machine. The details of this

package can be found in [1,2].

3 Installation

 This package requires the following software to be installed in the system and set in PATH.

 Hadoop 1.0.3. or higher from http://hadoop.apache.org

 Java 1.6.x. or higher, preferably from sun

 For compilation (optional), type ./compile.sh

 For demo (optional), type make

4 PARAFAC model

4.1 Summary:

The entries of N-order tensor 𝐗 ∈ (ℝI1×…×𝐼𝑁) are approximated by the following formula:

𝑥𝑖1…𝑖𝑁
≈ 𝑥̂𝑖1…𝑖𝑁

= ∑ ∑ 𝑎𝑖𝑛𝑘
(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

where 𝑎𝑖𝑛𝑘
(𝑛)

 is the (in, k)th element of A(n). Factor matrices, A(1) through A(N), are the result of the

rank-K PARAFAC decomposition of 𝐗, which minimizes the following loss function:

mailto:kijungs@cs.cmu.edu
mailto:sael@cs.stonybrook.edu
mailto:ukang@snu.ac.kr
http://hadoop.apache.org/

2

𝐿(A(1), … , A(N)) = ∑ (𝑥𝑖1…𝑖𝑁
− ∑ ∑ 𝑎𝑖𝑛𝑘

(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

)2

(i1,…,iN)ϵΩ

where Ω is the set of 𝐗’s observable entries.

For regularization, you can use L1 regularization, L2 regularization, or weighted-lambda regularization.

Weighted-lambda-regularization is described in [3]. You also can add the non-negativity constraint so

that factor matrices have non-negative entries.

4.2 Input

4.2.1 training data: 𝐗’s entries used to calculate factor matrices.

 Format: [i1] , [i2] , … , [iN] , [𝑥𝑖1…𝑖𝑁
] \n

Position Type Min Max Description

1 Integer 0 I1 − 1 i1: 1st mode index

2 Integer 0 I2 − 1 i2: 2nd mode index

… ... … …

N Integer 0 IN − 1 iN: Nth mode index

N+1 Double 𝑥𝑖1…𝑖𝑁
: (i1, … , 𝑖𝑁)th entry

 Example

► 2-dimensional data (2-order tensor): [i1] , [i2] , [𝑥𝑖1𝑖2
] \n

1,10,3.5

2,4,5.0

6,2,4.0

► 3-dimensional data (3-order tensor): [i1] , [i2] , [i3] , [𝑥𝑖1𝑖2𝑖3
] \n

1,10,2 3.5

2,4,3,5.0

6,2,1,4.0

4.2.2 test data: 𝐗’s entries used to measure the accuracy of estimation.

 Format: same with training data

4.2.3 query data: 𝐗’s entries to be estimated

 Format: [i1] [i2] … [iN] \n

Position Type Min Max Description

1 Integer 0 I1 − 1 i1: 1st mode index

2 Integer 0 I2 − 1 i2: 2nd mode index

… ... … …

3

N Integer 0 IN − 1 iN: Nth mode index

 Example

► 2-dimensional data (2-order tensor): [i1] , [i2] \n

1,9

2,5

6,3

► 3-dimensional data (3-order tensor): [i1] , [i2] , [i3] \n

1,10,2,3.5

2,4,3,5.0

6,2,1,4.0

4.2.4 parameters

Name Type Min Max Description

training String
Single version(S): path of training data on local disk
Hadoop version(H): path of training data on HDFS

test String
S: path of test data on local disk
H: path of test data on HDFS

query String
S: path of query data on local disk
H: path of query data on HDFS

output String
S: path to save outputs on local disk
H: path to save outputs on HDFS

M Integer 1
S: number of threads to use
H: number of machines to use

Tout Integer 1 number of outer iterations

N Integer 1 dimension of data (order of a tensor)

K Integer 1 rank

regularization Binary 1 2 1: L1-regularization 2: L2-regularization

useWeight Binary 0 1 1: weighted-lambda regularization, 0: no weight

nonNegative Binary 0 1 1: non-negativity constraint, 0: no constraint

lambda Double 0 regularization parameter for factor matrices

lambdaBias Double 0 regularization parameter for bias terms

I_n Integer 1 nth mode length

memory Integer 1
amount of heap space (in MB) to allocate to each
reducer

4.3 Output

4.3.1 performance.out: performance summary

 Format: [iteration] , [elapsed time] , [training RMSE] , [test RMSE] \n

 Example

4

iteration,elapsed_time,training_rmse,test_rmse

1,6779,0.900193,0.967152

2,11799,0.872561,0.943288

3,16373,0.860275,0.933825

4,20830,0.852764,0.928591

5,24828,0.847399,0.925174

4.3.2 estimate.out: estimated values for query data

 Format: [i1] , [i2] , … , [iN] , [𝑥̂𝑖1…𝑖𝑁
] \n

Position Type Minimum Maximum Description

1 Integer 0 I1 − 1 i1: 1st mode index

2 Integer 0 I2 − 1 i2: 2nd mode index

… ... … …

N Integer 0 IN − 1 in: Nth mode index

N+1 Double 𝑥̂𝑖1…𝑖𝑁
: estimated (i1, … , 𝑖𝑁)th entry

 Example

► 2-dimensional data (2-order tensor): [i1] , [i2] , [𝑥̂𝑖1𝑖2
] \n

1,10,3.44

2,4,4.98

6,2,3.92

► 3-dimensional data (3-order tensor): [i1] , [i2] , [i3] , [𝑥̂𝑖1𝑖2𝑖3
] \n

1,10,2,3.47

2,4,3,4.98

6,2,1,3.92

4.3.3 factor_matrices/n : A(n) (n-th factor matrix)

 Format: [in] , [𝑎𝑖𝑛1
(𝑛)

] , [𝑎𝑖𝑛2
(𝑛)

] , … , [𝑎𝑖𝑛𝐾
(𝑛)

] \n

Position Type Min Max Description

1 Integer 0 In − 1 in: row order

2 Double 𝑎𝑖𝑛1
(𝑛)

 : 1st latent feature

3 Double 𝑎𝑖𝑛2
(𝑛)

 : 2nd latent feature

… … … … ….

K+1 Double 𝑎𝑖𝑛𝐾
(𝑛)

 : Kth latent feature

5

 Example: [in] , [𝑎𝑖𝑛1
(𝑛)

] , [𝑎𝑖𝑛2
(𝑛)

] , [𝑎𝑖𝑛3
(𝑛)

] , [𝑎𝑖𝑛4
(𝑛)

] , [𝑎𝑖𝑛5
(𝑛)

] \n

0,0.531,0.422,0.234,0.161,0.231

1,0.223,0.491,0.481,0.592,0.351

2,0.334,0.478,0.123,0.439,0.692

4.4 Algorithms

4.4.1 CDTF (Coordinate Descent for Tensor Factorization) [1,2]

 How to run

► Single machine version

./run_cdtf_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization] [useWeight]

[nonNegative] [lambda] [I_1] [I_2] ... [I_N] [test] [query]

 [Tin]: number of inner iterations

 [test] and [query] are optional

► Hadoop version

./run_cdtf_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization]

[useWeight] [nonNegative] [lambda] [I_1] [I_2] ... [I_N] [memory] [test] [query]

 [Tin]: number of inner iterations

 [test] and [query] are optional

4.4.2 SALS (Subset Alternating Least Square) [1,2]

 How to run

► Single machine version

./run_sals_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight] [lambda]

[I_1] [I_2] ... [I_N] [test] [query]

 [Tin]: number of inner iterations

 [C]: number of parameters updated at a time

 [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization

 [test] and [query] are optional

► Hadoop version

./run_sals_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight] [lambda]

6

[I_1] [I_2] ... [I_N] [memory] [test] [query]

 [Tin]: number of inner iterations

 [C]: number of parameters updated at a time

 [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization

 [test] and [query] are optional

5 Bias Model

5.1 Summary

The entries of N-order tensor data 𝐗 ∈ (ℝI1×…×𝐼𝑁) are approximated by the following formula:

𝑥𝑖1…𝑖𝑁
≈ 𝑥̂𝑖1…𝑖𝑁

= 𝜇 + ∑ 𝑏𝑖𝑛

(𝑛)

𝑁

𝑛=1

+ ∑ ∑ 𝑎𝑖𝑛𝑘
(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

where μ is the average of the observable entries of 𝐗, 𝑏𝑖𝑛

(𝑛)
 is the inth entry of b(n), and 𝑎𝑖𝑛𝑘

(𝑛)
 is the

(in, k)th entry of A(n). Bias terms, b(1) through b(N), and factor matrices, A(1) through A(N), are set

to values minimizing the following loss function:

𝐿(b(1), … , b(N), A(1), … , A(N)) = ∑ (𝑥𝑖1…𝑖𝑁
− 𝜇 − ∑ 𝑏𝑖𝑛

(𝑛)

𝑁

𝑛=1

− ∑ ∑ 𝑎𝑖𝑛𝑘
(𝑛)

𝑁

𝑛=1

𝐾

𝑘=1

)2

(i1,…,iN)ϵΩ

where Ω is the set of 𝐗’s observable entries.

For regularization, you can use L1 regularization, L2 regularization, or weighted-lambda regularization.

Weighted-lambda-regularization is described in [3]. You also can add the non-negativity constraint so

that bias terms and the entries of factor matrices have non-negative values.

5.2 Input

5.2.1 training data: see 4.2.1.

5.2.2 test data: see 4.2.2.

5.2.3 query data: see 4.2.3.

5.2.4 parameters: see 4.2.4.

5.3 Output

5.3.1 performance.out: performance summary: see 4.3.1.

5.3.2 estimate.out: estimated values for query data: see 4.3.2.

5.3.3 factor_matrices/n : A(n) (n-th factor matrix): see 4.3.3.

5.3.4 biased_terms/n : 𝑏(n) (n-th bias vector)

7

 Format: [in] , [𝑏𝑖𝑛

(𝑛)
] \n

Position Type Min Max Description

1 Integer 0 In − 1 in: row order

2 Double 𝑏𝑖𝑛

(𝑛)
 : bias term

 Example: [in] , [𝑏𝑖𝑛

(𝑛)
] \n

0,0.431

1,-0.128

2,0.364

5.3.5 mu : μ the average of the observable entries of 𝐗

 Format: [μ]

Position Type Min Max Description

1 Double μ: the average of the observable entries of 𝐗

 Example: [μ]

3.234

5.4 Algorithms

5.4.1 Bias-CDTF (Bias Coordinate Descent for Tensor Factorization) [1]

 How to run

► Single machine version

./run_cdtf_bias_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization]

[useWeight] [nonNegative] [lambda] [lambdaBias] [I_1] [I_2] ... [I_N] [test] [query]

 [Tin]: number of inner iterations

 [test] and [query] are optional

► Hadoop version

./run_cdtf_bias_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization]

[useWeight] [nonNegative] [lambda] [lambdaBias] [I_1] [I_2] ... [I_N] [memory] [test]

[query]

 [Tin]: number of inner iterations

 [test] and [query] are optional

5.4.2 Bias-SALS (Bias Subset Alternating Least Square) [1]

8

 How to run

► Single machine version

./run_sals_bias_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight]

[lambda] [lambdaBias] [I_1] [I_2] ... [I_N] [test] [query]

 [Tin]: number of inner iterations

 [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization

 [test] and [query] are optional

► Hadoop version

./run_sals_bias_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight]

[lambda] [lambdaBias] [I_1] [I_2] ... [I_N] [memory] [test] [query]

 [Tin]: number of inner iterations

 [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization

 [test] and [query] are optional

6 Coupled Model

6.1 Summary

The entries of N𝑥-order tensor data 𝐗 ∈ (ℝI1×…×𝐼N𝑥) and N𝑦-order tensor data 𝐘 ∈ (ℝ
I1×…×𝐼N𝑦) are

approximated by the following formulas:

𝑥̂𝑖1…𝑖N𝑥
= ∑ ∑ 𝑥𝑎𝑖𝑛𝑘

(𝑛)

N𝑥

𝑛=1

𝐾

𝑘=1

, 𝑦̂𝑖1…𝑖N𝑦
= ∑ ∑ 𝑦𝑎𝑖𝑛𝑘

(𝑛)

N𝑦

𝑛=1

𝐾

𝑘=1

where 𝑥𝑎𝑖𝑛𝑘
(𝑛)

 is the (in, k)th element of 𝑥A(n), and 𝑦𝑎𝑖𝑛𝑘
(𝑛)

 is the (in, k)th element of 𝑦A(n). Factor

matrices, 𝑥A(1) through 𝑥A(N𝑥) and 𝑦A(1) through 𝑦A(N𝑦) , are set to values minimizing the

following loss function under the condition that 𝑥A(1) = 𝑦A(1):

𝐿(𝑥A(1), … , 𝑥A(N𝑥), 𝑦A(1), … , 𝑦A(N𝑦))

= ∑ (𝑥𝑖1…𝑖𝑁
− ∑ ∑ 𝑥𝑎𝑖𝑛𝑘

(𝑛)

𝑁𝑥

𝑛=1

𝐾

𝑘=1

)2

(i1,…,iN)ϵΩ𝑥

+ ∑ (𝑦𝑖1…𝑖𝑁
− ∑ ∑ 𝑦𝑎𝑖𝑛𝑘

(𝑛)

𝑁𝑦

𝑛=1

𝐾

𝑘=1

)2

(i1,…,iN)ϵΩ𝑦

where Ω𝑥 is the set of 𝐗’s observable entries, and Ω𝑦 is the set of 𝐘’s observable entries

For regularization, you can use either weighted-lambda-regularization or L2 regularization. Weighted-

lambda-regularization is described in [3].

6.2 Input

6.2.1 training data: see 4.2.1.

9

6.2.2 coupled-tensor data: 𝐘’s entries.

 Format: [i1] , [i2] , … , [iN𝑦
] , [𝑦𝑖1…𝑖𝑁

] \n

Position Type Min Max Description

1 Integer 0 I1 − 1 i1: 1st mode index

2 Integer 0 I2 − 1 i2: 2nd mode index

… ... … …

N Integer 0 IN − 1 iN𝑦
: N𝑦th mode index

N+1 Double 𝑦𝑖1…𝑖N𝑦
: (i1, … , 𝑖𝑁𝑦

)th entry of 𝐘

 Example

► 2-dimensional data (2-order tensor): [i1] , [i2] , [𝑦𝑖1𝑖2
] \n

1,10,3.5

2,4,5.0

6,2,4.0

► 3-dimensional data (3-order tensor): [i1] , [i2] , [i3] , [𝑦𝑖1𝑖2𝑖3
] \n

1,10,2 3.5

2,4,3,5.0

6,2,1,4.0

6.2.3 test data: see 4.2.2.

6.2.4 query data: see 4.2.3.

6.2.5 parameters: see 4.2.4 for the rest parameters

Name Type Min Max Description

coupled_tensor String path of coupled-tensor data on local disk

Nx Integer 1 dimension of data (order of an input tensor)

Ny Integer 1 order of a coupled tensor

I_n Integer 1 nth mode length of an input tensor

J_n integer 1 nth mode length of a coupled tensor

6.3 Output

6.3.1 performance.out: performance summary: see 4.3.1.

6.3.2 estimate.out: estimated values for query data: see 4.3.2.

6.3.3 factor_matrices/n : A(n) (n-th factor matrix): see 4.3.3.

6.4 Algorithms

6.4.1 Coupled-CDTF (Coupled Coordinate Descent for Tensor Factorization) [1]

10

 How to run

► Single machine version

./run_cdtf_coupled_single.sh [training] [coupled_tensor] [output] [M] [Tout] [Tin] [Nx]

[Ny] [K] [useWeight] [lambda] [I_1] [I_2] ... [I_Nx] [J_1] [J_2] … [J_Ny] [test] [query]

 [Tin]: number of inner iterations

 [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization

 [test] and [query] are optional

6.4.2 Coupled-SALS (Coupled Subset Alternating Least Square) [1]

 How to run

► Single machine version

./run_sals_coupled_single.sh [training] [coupled_tensor] [output] [M] [Tout] [Tin] [Nx]

[Ny] [K] [C] [useWeight] [lambda] [I_1] [I_2] ... [I_Nx] [J_1] [J_2] … [J_Ny] [test] [query]

 [Tin]: number of inner iterations

 [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization

 [test] and [query] are optional

7 Reference

[1] Kijung Shin, Lee Sael, and U Kang, “Fully Scalable Methods for Distributed Tensor Factorization” (Submitted)

[2] Kijung Shin and U Kang, “Distributed Methods for High-dimensional and Large-scale Tensor Factorization”.

IEEE International Conference on Data Mining (ICDM), 2014.

[3] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. “Large-scale parallel collaborative filtering for the netflix

prize”. In Algorithmic Aspects in Information and Management, pages 337–348. Springer, 2008.

