Fully Scalable Methods for Distributed Tensor Factorization

2016-04-10

Kijung Shin

1 General Information
® \ersion: 1.1

® Date: 04/10/2016

® Authors: Kijung Shin (kijungs@cs.cmu.edu), Lee Sael (sael@cs.stonybrook.edu), and U Kang
(ukang@snu.ac.kr)

2 Introduction

This package implements CDTF and SALS, tensor factorization algorithms for high-order and large-scale
data. It is fully written in Java and runs on Hadoop as well as on a single machine. The details of this

package can be found in [1,2].

3 Installation
® This package requires the following software to be installed in the system and set in PATH.

B Hadoop 1.0.3. or higher from http://hadoop.apache.org

B Java 1.6.x. or higher, preferably from sun
® For compilation (optional), type ./compile.sh

® For demo (optional), type make

4 PARAFAC model

4.1 Summary:
The entries of N-order tensor X € (R!**-*IN) are approximated by the following formula:
K N
~ % — (m)
Xiy iy = Xy = Z Ak
k=1n=1

where aLF:,){ is the (i,, k)th element of A®™_ Factor matrices, A through A™ | are the result of the

rank-K PARAFAC decomposition of X, which minimizes the following loss function:

1

mailto:kijungs@cs.cmu.edu
mailto:sael@cs.stonybrook.edu
mailto:ukang@snu.ac.kr
http://hadoop.apache.org/

K N

LA, .., A0V = Z (xil_"iN—Z a)’

(i1,.-iN)€EQ k=1n=1

where Q is the set of X’s observable entries.

For regularization, you can use L1 regularization, L2 regularization, or weighted-lambda regularization.
Weighted-lambda-regularization is described in [3]. You also can add the non-negativity constraint so
that factor matrices have non-negative entries.

4.2 Input

4.2.1 training data: X’s entries used to calculate factor matrices.

® Format: [i,] , [iz] , -, [in] , [xi,..00]
Position Type Min Max Description
1 Integer 0 I, -1 i;: 1st mode index
2 Integer 0 I,—-1 i,: 2nd mode index
N Integer 0 Iy—1 ix: Nth mode index
N+1 Double Xi,.iy- (g, ..., iy)th entry

® Example

» 2-dimensional data (2-order tensor): [i;] , [i2] , [x;;,] \n

1,10,3.5
2450

6,2,4.0

» 3-dimensional data (3-order tensor): [i;] , [i,] , [is] , [xi5,i,] N

1,10,23.5
24350

6,2,1,4.0

4.2.2 testdata: X's entries used to measure the accuracy of estimation.
® Format: same with training data
4.2.3 query data: X’s entries to be estimated

® Format: [i;] [iy] .- [ix] \n

Position Type Min Max Description
1 Integer 0 I, -1 i;: 18t mode index
2 Integer 0 I,—1 i,: 2" mode index

| N | lInteger | 0 | Iy—1 | iy: Nth mode index

® Example

» 2-dimensional data (2-order tensor): [i,] , [iz] \n

1,9

2,5

6,3

» 3-dimensional data (3-order tensor): [i;] , [i] , [i3] \n

1,10,2,3.5

24350

6,2,1,4.0

424 parameters

Name Type Min Max Description
training String Single versio_n(S): path of train!ng data on local disk
Hadoop version(H): path of training data on HDFS
test String S: path of test data on local disk
H: path of test data on HDFS
. S: path of query data on local disk
query String H: path of query data on HDFS
output String S: path to save outputs on local disk
H: path to save outputs on HDFS
M Integer 1 S: number of threads to use
H: number of machines to use
Tout Integer 1 number of outer iterations
N Integer 1 dimension of data (order of a tensor)
K Integer 1 rank
regularization | Binary 1 2 1: L1-regularization 2: L2-regularization
useWeight Binary 0 1 1: weighted-lambda regularization, 0: no weight
nonNegative | Binary 0 1 1: non-negativity constraint, 0: no constraint
lambda Double 0 regularization parameter for factor matrices
lambdaBias | Double 0 regularization parameter for bias terms
I n Integer 1 nth mode length
amount of heap space (in MB) to allocate to each
memory Integer 1

reducer

4.3 Output
4.3.1 performance.out: performance summary
® Format: [iteration] , [elapsed time] , [training RMSE] , [test RMSE] \n

® Example

4.3.2

4.3.3

iteration,elapsed_time,training_rmse,test_rmse
1,6779,0.900193,0.967152
2,11799,0.872561,0.943288
3,16373,0.860275,0.933825
4,20830,0.852764,0.928591

5,24828,0.847399,0.925174

estimate.out: estimated values for query data

Format: [i;] , [i;] , ..., [in] . [®i, ;] \n
Position Type Minimum Maximum Description
1 Integer 0 [-1 i;: 18t mode index
2 Integer 0 -1 i,: 2" mode index
N Integer 0 Iy—1 i,: Nth mode index
N+1 Double £, iy estimated (iy, ..., iy)th entry
Example

» 2-dimensional data (2-order tensor): [i;] , [i»] , [£;,:,] \n

1,10,3.44
2,4,4.98

6,2,3.92

» 3-dimensional data (3-order tensor): [i;] , [i;] , [i5] , [X;,4,i,] \n

1,10,2,3.47

2,4,3,4.98

6,2,1,3.92

factor_matrices/n : A®™ (n-th factor matrix)

Format: [i,] . [a{)] . [a{2], [a2] \n
Position Type Min Max Description
1 Integer 0 I,—1 i,: row order
2 Double a"} : 1% latent feature
3 Double ai") : 2™ latent feature
K+1 Double a", : Kth latent feature

® Example: [i,] . [a{"]] . [a()] . [a{3] . [a()] . [a{"2] \n

in2 in3

0,0.531,0.422,0.234,0.161,0.231

1,0.223,0.491,0.481,0.592,0.351

2,0.334,0.478,0.123,0.439,0.692

4.4 Algorithms
4.4.1 CDTF (Coordinate Descent for Tensor Factorization) [1,2]
® Howtorun

» Single machine version

Jrun_cdtf_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization] [useWeight]
[nonNegative] [lambda] [I_1][I_2] ... [|_N] [test] [query]

» [Tin]: number of inner iterations
> [test] and [query] are optional

» Hadoop version

Jrun_cdtf_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization]
[useWeight] [nonNegative] [lambda] [|_1] [I_2] ... [I|_N] [memory] [test] [query]

» [Tin]: number of inner iterations

» [test] and [query] are optional

4.4.2 SALS (Subset Alternating Least Square) [1,2]
® Howtorun

» Single machine version

Jrun_sals_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight] [lambda]
[I_17111_2] ... [I_N] [test] [query]

» [Tin]: number of inner iterations

» [C]: number of parameters updated at a time

> [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization
» [test] and [query] are optional

» Hadoop version

‘ Jrun_sals_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight] [lambda] |

5

‘ [L_11[1_2] ... [I_N] [memory] [test] [query]

» [Tin]: number of inner iterations
» [C]: number of parameters updated at a time
> [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization

» [test] and [query] are optional

5 Bias Model

51

5.2

5.3

Summary
The entries of N-order tensor data X € (R''*-*/N) are approximated by the following formula:
N K N
Xiyiy ¥ Xigiy = B+ Z b + Z Z)
n=1 k=1n=1

where 1 is the average of the observable entries of X, b is the i,th entry of b®™, and a" is the

(in, K)th entry of A™ . Bias terms, b® through b™, and factor matrices, A® through A™), are set
to values minimizing the following loss function:

N K N
_) m)
L(b®, ..., bW, AD, AN = Z iyt — 1 — Z ™ — z a2
(i1,-IiN)€Q n=1 k=1n=1
where Q is the set of X’s observable entries.

For regularization, you can use L1 regularization, L2 regularization, or weighted-lambda regularization.
Weighted-lambda-regularization is described in [3]. You also can add the non-negativity constraint so
that bias terms and the entries of factor matrices have non-negative values.

Input

5.2.1 training data: see 4.2.1.

5.2.2 testdata: see 4.2.2.

5.2.3 query data: see 4.2.3.

5.2.4 parameters: see 4.2.4.

Output

5.3.1 performance.out: performance summary: see 4.3.1.
5.3.2 estimate.out: estimated values for query data: see 4.3.2.
5.3.3 factor_matrices/n : A™ (n-th factor matrix): see 4.3.3.

5.3.4 biased_terms/n: b™ (n-th bias vector)

5.35

Format: [i,] ,[bi(:)] \n
Position Type Min Max Description

1 Integer 0 I,—1 i,,: row order
2 Double b : bias term

Example: [i,] , [bl.(:)] \n

0,0.431

1,-0.128

2,0.364

mu : p the average of the observable entries of X

Format: [u]
Position Type Min Max Description
1 Double w: the average of the observable entries of X
Example: [u]
3.234

5.4 Algorithms

54.1

54.2

Bias-CDTF (Bias Coordinate Descent for Tensor Factorization) [1]
How to run

» Single machine version

Jrun_cdtf_bias_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization]
[useWeight] [nonNegative] [lambda] [lambdaBias] [I_1] [I_2] ... [I_N] [test] [query]

» [Tin]: number of inner iterations
» [test] and [query] are optional

» Hadoop version

Jrun_cdtf_bias_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [regularization]
[useWeight] [nonNegative] [lambda] [lambdaBias] [I_1] [|_2] ... [|_N] [memory] [test]

[query]

» [Tin]: number of inner iterations
» [test] and [query] are optional
Bias-SALS (Bias Subset Alternating Least Square) [1]

7

® Howtorun

» Single machine version

/run_sals_bias_single.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight]
[lambda] [lambdaBias] [I_1][_2] .

.. [I_N] [test] [query]
» [Tin]: number of inner iterations
> [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization
>

[test] and [query] are optional

» Hadoop version

/run_sals_bias_hadoop.sh [training] [output] [M] [Tout] [Tin] [N] [K] [C] [useWeight]
[lambda] [lambdaBias] [I_1][l_2] .

.. [L_N] [memory] [test] [query]
» [Tin]: number of inner iterations
> [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization
>

[test] and [query] are optional

6 Coupled Model

6.1 Summary

The entries of N,-order tensor data X € (R'**~*/Nx) and N,-order tensor data Y € (R"™**Ny) are
approximated by the following formulas:

K Nx

k Ny
o _ (n) (n)
B = 0, s i =)D
k=1n=1

y l.nk

where xafn,)(is the (i,, k)th element of ,A™, and m

¥4 is the (ip, K)th element of |, AM™. Factor
matrices, ,A® through ,A™N and [A® through

yAMNY) | are set to values minimizing the
following loss function under the condition that

XA(l) = yA(l):

L(AD, .., AN, A® AN

K Ny

k Ny
_ (n) (n)
RPN D WO I I
(1,--iN)€Qy =1n=1 (il,...,iN)er =1n=1

where Q, is the set of X’s observable entries, and Q

, is the set of Y's observable entries

For regularization, you can use either weighted-lambda-regularization or L2 regularization. Weighted-
lambda-regularization is described in [3].

6.2 Input

6.2.1 training data: see 4.2.1.

6.2.2 coupled-tensor data: Y’s entries.

® Format: [i;] ,[iy] ,---, [iNy] s Wigiy] \0
Position Type Min Max Description
1 Integer 0 I, -1 i;: 1st mode index
2 Integer 0 I,b—1 i,: 2nd mode index
N Integer 0 Iy—1 in,: Nyth mode index
N+1 Double Vi .in,* (il, ...,iNy)th entry of Y

® Example

» 2-dimensional data (2-order tensor): [i;] , [i2] , [yi,i,] \n

1,10,3.5
2450

6,2,4.0

» 3-dimensional data (3-order tensor): [i;] , [i] , [i3] , [Viii,] \0

1,10,23.5
2,4,35.0

6,2,1,4.0

6.2.3 test data: see 4.2.2.
6.2.4 query data: see 4.2.3.

6.2.5 parameters: see 4.2.4 for the rest parameters

Name Type Min Max Description
coupled tensor | String path of coupled-tensor data on local disk
Nx Integer 1 dimension of data (order of an input tensor)
Ny Integer 1 order of a coupled tensor
I_n Integer 1 nth mode length of an input tensor
J_n integer 1 nth mode length of a coupled tensor

6.3 Output
6.3.1 performance.out: performance summary: see 4.3.1.
6.3.2 estimate.out: estimated values for query data: see 4.3.2.
6.3.3 factor_matrices/n : A®™ (n-th factor matrix): see 4.3.3.
6.4 Algorithms

6.4.1 Coupled-CDTF (Coupled Coordinate Descent for Tensor Factorization) [1]

® Howtorun

» Single machine version

Jrun_cdtf_coupled_single.sh [training] [coupled_tensor] [output] [M] [Tout] [Tin] [NXx]
[Ny] [K] [useWeight] [lambda] [I_1][1_2] ... [[_NX] [J_1][J_2] ... [J_Ny] [test] [query]

» [Tin]: number of inner iterations
> [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization
» [test] and [query] are optional
6.4.2 Coupled-SALS (Coupled Subset Alternating Least Square) [1]
® Howtorun

» Single machine version

Jrun_sals_coupled_single.sh [training] [coupled_tensor] [output] [M] [Tout] [Tin] [NX]
[Ny] [K] [C] [useWeight] [lambda] [I_1][I_2] ... [[_Nx] [J_1]1[J_2] ... [J_Ny] [test] [query]

> [Tin]: number of inner iterations
> [useWeight]: 1: weighted-lambda-regularization, 0: L2-regularization
» [test] and [query] are optional
7 Reference
[1] Kijung Shin, Lee Sael, and U Kang, “Fully Scalable Methods for Distributed Tensor Factorization” (Submitted)

[2] Kijung Shin and U Kang, “Distributed Methods for High-dimensional and Large-scale Tensor Factorization”.
IEEE International Conference on Data Mining (ICDM), 2014.

[31 Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. “Large-scale parallel collaborative filtering for the netflix
prize”. In Algorithmic Aspects in Information and Management, pages 337-348. Springer, 2008.

10

