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We present our Strategy Optimizer that learns how to configure a network node to optimize performance. The Strategy
Optimizer selects a configuration in real-time, and learns on-the-fly during a mission. The Strategy Optimizer has a
rapid decision-making module that selects the configurations, and a slower learning loop that updates the models as it
encounters new environmental conditions.

1 Introduction
Mobile ad hoc networks (MANETs) operate in highly dynamic, potentially hostile environments. Current
approaches to network configuration tend to be static, and therefore perform poorly. It is instead desirable
to adaptively configure the radio and network stack to maintain consistent communications. Our goal is
to automatically recognize conditions that affect communications quality, and select a configuration that
improves performance, even in highly-dynamic missions.
This domain requires the ability for a decision maker to select a configuration in real-time, within the decision-
making loop of the radio and IP stack. A human is unable to perform this dynamic configuration because
of the rapid timescales and the exponential number of configurations.
This domain also requires the ability to learn on the fly during a mission, for example to recognize changes to
the RF environment, or to recognize when components have failed. The system must learn new models at
runtime that accurately describe new communications environments. A real-time decision maker then uses
these newly learned models to make decisions.
This paper describes how we use Machine Learning (ML) to configure nodes in AORTA, the Adaptive
Overlay and Routing Technologies for Airborne Networks. The ML-based Strategy Optimizer builds on our
prior efforts in cognitive RF and networking [2, 4, 7]. The Strategy Optimizer has a rapid decision-making
module that selects the configurations, and a slower learning loop that updates the models as it encounters
new environmental conditions. It uses Support Vector Machines (SVMs) as the learning approach [8, 9].

2 Communications Domain
Our target domain is a communications controller that automatically learns the relationships among config-
uration parameters of a MANET to maintain near-optimal configurations automatically in highly dynamic
environments. Consider a MANET with N nodes; each node has

• a set of observable parameters o that describe the environment, including RF observations such as
signal-to-noise ratio and gaussianness of detected emitters, and waveform statistics such as error
rates and retransmission statistics;

• a set of controllable parameters c that can use to change its behavior, including those in the RF
hardware, the FPGAs, and the IP stack; and

• a set of metrics m that provide feedback on how well it is doing, including measures of effectiveness
and cost, and an approach on combining metrics, e.g. weighted sum.

Each control parameter has a known set of discrete values. We denote a Strategy as a combination of control
parameters (CPs). The maximum number of strategies is Π∀cvc, where vc is the number of possible values
for the controllable parameter c; if all n CPs are binary on/off, then there are 2n strategies, well beyond
the ability of a human to manage. The goal is to have each node choose its strategy s, as a combination
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Figure 1. AORTA’s Strategy Optimizer focuses on learning to control the overlay routing layer, adjusting timers and
flooding parameters.

of controllables c, to maximize performance of each metric m, by learning SVM models f that predict
performance of each metric from the observables and strategy: m = f(o, s). The mathematics of this domain
is described in more detail elsewhere [3, 4].
In AORTA, we focus on learning within the overlay routing layer, adjusting timers and flooding parameters.
Our prior efforts have demonstrated effectiveness at adjusting RF front end, PHY and MAC parameters [2]
through routing and application layer paremeters [4, 7]; in these efforts, control parameters were local to
a single node or required coordination with only a single neighbour. AORTA will extend these efforts by
adding an explicit coordination step among nodes across the network. Figure 1 shows the current set of
observables, metrics and controllables within the context of the Strategy Optimizer’s architecture.

3 Architecture
The Strategy Optimizer comprises two main modules, the Rapid Response Engine (RRE) and Long Term
Response Engine (LTRE), as illustrated in Figure 1. The RRE selects the best strategy based on SVM pre-
dictions, and if prediction error has exceeded a configured error threshold, instructs the LTRE to retrain
on all collected data. To select the best strategy, the RRE first uses the previously-learned SVM mod-
els to predict the performance of each candidate strategy against each metric in the current environment:
∀m inM,∀s ∈ S,ms = SVM(o, s). The RRE then combines the metrics using a weighted sum, and chooses
the strategy s that optimizes performance.
The LTRE updates the learned models on the fly during a mission. This capability enables the Strategy
Optimizer to handle new conditions such as new interference sources, or when a technique is no longer
operating effectively (e.g., a component has failed). The LTRE manages the dataset, and builds the SVM
models from previous observations to send to the RRE. The LTRE limits redundancy in the dataset and
removes old instances if memory is limited (e.g. on an embedded system).
AORTA operates within the Extendable Mobile Ad-hoc Network Emulator (EMANE) [1]; each node oper-
ates its own Strategy Optimizer in a separate executable that communicates to the AORTA node through
UDP sockets. Figure 2 illustrates the sequence of events on each node, for every observation made in
the AORTA. Because the Strategy Optimizer was developed and demonstrated in an embedded system, a
Bridge reshapes the incoming data to int8 format to emulate the data from an FGPA, and then transforms
the decision into a .cfg file that the AORTA node will reread.

4 Results
The results in Figure 3 highlight the effectiveness of the Strategy Optimizer. In this scenario, a set of mobile
sensor nodes collect data over a Link16 waveform with contention. The forward node transmits data to the
other nodes, and intermediate nodes forward information to trailing nodes.
To evaluate performance, we examine whether the Strategy Optimizer chose the best strategy for each
operating environment. We use Gaussian-Mixture models to cluster the observables into environments [6];
Figure 3 shows two of these environments.
Cluster 1 (row 1) represents nodes that generate original traffic, and the combination of delay and queue
depth is (a) highly variable and likely somewhat unpredictable, and (b) relatively independent of the chosen
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Figure 2. Operating within EMANE, AORTA’s nodes invoke an executable for the bridge and the Strategy Optimizer,
and then communicate through UDP sockets. The Strategy Optimizer uses threads for each of its internal modules.

strategy. Boxplots with yellow background indicate those that are similar to the strategy with the best mean
with 95% confidence. Despite the prediction challenge, the Strategy Optimizer chooses strategies that are
very similar to the best values (p=0.26 in a paired-ttest [5]), while extremely different from the broader
dataset (p=6.0 x 10−9).
Cluster 2 represents nodes that forward traffic, and several strategies are clearly better choices than other
strategies. The Strategy Optimizer chooses clearly more similar to the best strategies (p=0.18), and dissimi-
lar to the broader possibilities (p=4.9 x 10−13).

5 Conclusion
This paper described our effort to use Machine Learning to optimally configure a MANET. Our Strategy
Optimizer has a rapid decision-making loop that selects a configuration in real-time to optimize perfor-
mance of the network as conditions change. The Strategy Optimizer also has a slower learning loop that
updates the prediction models as the system encounters novel conditions.
In prior work [2], we show that the Strategy Optimizer can effectively learn to configure nodes even with no
prior training data, and only small numbers of examples (< 5) are sufficient to model a given environment.
The RRE of the embedded system operates within 1ms, and the LTRE can generate a new SVM model in
under 2ms.
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Figure 3. The Strategy Optimizer learns how the different strategies perform for each operating environment, and
chooses strategies that optimize performance. Rows: Operating environments; Left column: Expected performance
per strategy, yellow indicates the best performing strategies; Right column: Performance of the the best strategies, the
strategies chosen by the learner, and all possible strategies.
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