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The Problem:

e Modern mobile
communications networks
operate in highly dynamic,
potentially hostile
envirnmonts

e Current approaches to EP
and EA are usually limited to
previously-seen RF
environments

The Solution:

e Automatically learn to select
actions that improve mission
performance even in novel

RF environments

— Characterize the
communications conditions

— Learn the performance of the
available responses

— Optimize and implement the
most effective strategy to

improve mission performance

Learn how conditions affect mission success and

optimize performance on-the-fly
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PROBLEM FORUMLATION



Observables

Raytheon
BBN Technologies

e Each node has a set of
observable parameters that
describe the signal

environment

e Often normalized, e.g., ranging
from -1 to 1 (strongly
“is not” to strongly “is”)

 Local statistics

e Shared (global) statistics if
available

EXAMPLES

Saturation

Signal-to-noise ratio

Error rates

Gaussianness

Repetitiveness

Similarity to own communications
signal

Link and retransmission statistics
Neighborhood size

Observables describe RF environment behaviour, not

emitter names
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Controllable Parameters & Strategies

e Each node has a set of EXAMPLES

Controllable Parameters

that change radio behaviour
— Each CP, ¢, has a known set of
discrete values of size v,

Strategy is a combination of

control parameters

— Total of [ ]y, v, strategies

— If all n CPs are binary on/off,
then there are 2" strategies, well
beyond the ability of a human to
manage.

Antenna: e.g. beam forming,
nulling

RF front end: e.g. analog tunable
filters, frequency-division
multiplexing

PHY: e.g. transmit power, notch
filters, modulation scheme

MAC: e.g. dynamic spectrum
access, frame size, carrier sense
threshold, reliability mode,
unicast/broadcast, timers,
contention window algorithm
Network: e.g. neighbor discovery
algorithm, thresholds, timers
Application: e.g. compression (e.g.,
jpg 1 vs 10), method (e.g., audio vs
video)
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e Each node has a scalar EXAMPLES
performance metric that e Effectiveness:
quantify how well the — Throughput
network satisfies — Latency

requirements — Bit-error-rate

Operationall ingful ~ BWEDA
[ )
pe-ra?tlona Y meaningru e Cost:
— Mission
— Situational B (P)owehr 5
— Overhea

— Social (multi-user
( ) — Probability of detection

e Local estimates can be
shared across the network to
obtain measure of global
performance
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e Each node builds a model f that estimates how each candidate
strategy s will perform in the current environment 0,

S Strategy
~ m  Metric
VS' mS _ f (Ot' S) f Support Vector Model for metric

0; Observations at time t

— From training data, collected previously or during current mission

—Support Vector Regression Machines (vapni, 1995; drucker et al, 1997)

—The model predicts performance for ALL possible strategies, whether or
not they appeared in the training data

The Strategy Optimizer learns the performance of all

controllables against all communications environments
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STRATEGY OPTIMIZER
ARCHITECTURE



Parallel Learning & Decision Making e e

Environment
Description

Rapid Response Engine (RRE)
* Trigger retraining if necessary

* Predict performance for each strategy
* Select best strategy

Mitigation
Strategy
Decisions

Performance
Feedback

Long-Term Response Engine (LTRE)
* Learn SVM performance models

* RRE: Adaptively selects e LTRE: A cognitive learning
strategies in real-time to loop that builds models to
optimize performance metrics  describe new RF

environments



Rapid Response Engine (RRE) Raytheon

BBN Technologies

MAIN TASKS
e Select the best strategy for current
conditions
e |f prediction error is high, request
LTRE ait(TransFER model retrain
Manager ait(OsservaTio

Assess Error LTRE (RetraIN)

Predict

Performance

Select Strategy Manager (Enacr)
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Long Term Response Engine (LTRE) e e
RRE MAIN TASKS

Wait(Osservartion)

Add Instance

Compute whether
renormalization is
necessary

Wait(Retran)

Renormalize if
necessary

Compute DotProds
and Kernels if
necessary

Build SVM

Copy SVM for RRE

L_Semaptore_|
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e Manage the dataset as
a circular buffer

e Update learned model
during a mission to
handle new operating
conditions

RRE (TransrerRSVM)
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RESULTS



Results
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e Compare adaptive Strategy
Optimizer to a static system

e Compare incremental
learning system to adaptive
system

e A detailed incremental
learning example

e Aggregate incremental
learning

e Parallel RRE decision making
and LTRE incremental
learning

13
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Dynamic adaptive system performs better than static system
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Results: Adaptive vs Static System e e

Dynamic adaptive system performs better than static system
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Results: Cognitive vs Adaptive System e e

Cognitive incremental learning performs better than

dynamic adaptive system (even when both start with learned models)
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Results: Detailed Incremental Learning (1)
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Predicted Values

Perormance

Mitigation Technigue

-

-
i

o

Fredicted Utility by Time

sources were not
present in the
\training data.

/
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Results: Detailed Incremental Learning (2) oo

Fredicted Utility by Time
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Results: Detailed Incremental Learning (3) s

Fredicted Litility

—_—
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Results: Detailed Incremental Learning (4) i

Fredicted Utility by Time
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Results: Aggregate Incremental Learning

Cognitive incremental learning handles new communications

conditions with only a small loss of optimality
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Results: Sharing the processor e e

Trade RRE latency for LTRE latency, as a function of CPU sharing
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SUMMARY



Strategy Optimizer Key Capabilities
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Unknown
Conditions

Changing
Conditions

Known
Conditions

AAK

Learn RF
Behaviour

Learn
Performance of
Strategies

Traditional
Comms + EW

Optimize to
Conditions

Static

Config

Mission-
aware
Config

e Rapid adaptive decision

making selects actions in real-
time to optimize mission
performance

Incremental Learning learns to
optimize mission performance
in complex, changing &
unknown environments

Semantically Agnostic
Architecture supports easy
deployment to new platforms

and domains

— does not depend on meaning of
observables, controllables or
performance metrics

Rapid adaptive decision making + cognitive learning

for unknown environments
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