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COMPUTER-AIDED THEOREM DISCOVERY–

A NEW ADVENTURE AND ITS APPLICATION TO

ECONOMIC THEORY

by

Pingzhong Tang

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

“Everything about him was old except his eyes and they were the same color

as the sea and were cheerful and undefeated.”

—Ernest Hemingway, The old man and the sea.

Theorem discovery, with the help of computer, presents at least two steps of challenges.

The first concerns how to come up with reasonable conjectures automatically. This raises

further challenges, such as how to represent these conjectures within the computers, what

is the yardstick for reasonableness, etc. The second concerns how to prove or negate the

conjectures automatically. However theorem proving, even for the best of human beings,

is still an intelligence-demanding endeavor and sometimes even a nightmare.

Our starting point however, is a basic form of proof, namely proof by induction. The

heuristic behind is extremely straightforward: We first formulate the problem domain in

a proper language, say logic or other formal languages. We then enumerate the sentences

(within certain length limit) in the underlying language that describe propositions in the

domain. After that, we use a computer program to verify through these sentences to find

those true in base cases, that is, where the problem size is small. The remaining sentences

serves as conjectures, which can be extended, one way or other, to inductive cases.

It turns out that this methodology has been quite effective since we adopted it in

economic theory. In particular, some of our programs on game theory have returned

theorems that shed lights on the understanding of basic game forms such as zero-sum

game, potential game and super-modular game. Some of them have helped us prove some

Nobel Prize winning theorems such as Arrow’s impossibility theorem and Sen’s theorem

on voting functions and discover new theorems that better characterize key concepts in

social choice theory. Others also have helped us prove Nobel Prize winning theorems such

as Maskin’s theorem on Nash implementation as well as Gibbard-Satterthwaite theorem
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on dominant strategy implementation. These proofs themselves also provide insights on

discovering similar theorems.

This thesis reports all attempts that we have conducted in the past few years, in

support of the general methodology of theorem discovery.
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Chapter 1

Introduction

“The ultimate goal of mathematics is to eliminate any need for intelligent

thought.”

—Alfred N. Whitehead.

“Your vacuum cleaner roams around your home at night. Your rice cooker,

toaster, and washing machine have their own minds. Your car parks itself; its

transmission adapts itself to your driving preference, and it tells the dealership

which parts it thinks it will need to have replaced three months from now. Your

PDA knows your preferences and acts as your personal radio station, playing

only music you like. You use a search engine that is capable of looking through

billions of documents with new documents being added every millisecond.

Semiautonomous rover are driving around on Mars. There is a virtual person

on the phone, tirelessly trying to help you. You still cannot beat the AI in

your kid’s video game.”

The above description, by Goker and Haigh from a special issue of AI Magazine [11],

is one of many sweet dreams that AI researchers have had. However, using computers to

automatically discover new, scientific theorems for us might go so far as to be beyond our

sweetest dreams.

Theorem discovery, with the help of computer, presents at least two steps of challenges.

The first concerns how to come up with reasonable conjectures automatically. This raises

further challenges, such as how to represent these conjectures within the computers, what

is the yardstick for reasonableness, etc. The second concerns how to prove or disprove the

conjectures automatically. However theorem proving, even for the best of human beings,

is still an intelligence-demanding endeavor and sometimes a nightmare.

Despite the implausibility as it seems, researchers have repeatedly challenged it with

various attempts. In one pioneer work, Petkovsek et. al. [29] showed that to prove the

following theorem,

“The angle bisectors of every triangle intersect at one point.”,

it suffices to verify it in 64 non-isomorphic triangles, which can be automated by

computers. In the same spirit, the authors went on to demonstrate that certain forms
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of theorems concerning the close form of the sum of combinatorial sequences can be

completely discovered by computers programs.

Langley [13] had briefly summarized the attempts of computer-aided discovery until

1998, ranging from mathematics to physics, chemistry as well as biology. Among those

attempts, Lenat’s AM system [14] and Fajtlowicz’s Graffiti [7] are also remarkable pro-

gresses on theorem discovery. The AM system aims at finding new concepts and theorems

based on existing concepts as well as a large amount of heuristic rules, which require ex-

tensive domain knowledge of the designers. Despite the complexity of design, the system

managed to rediscover hundreds of common concepts as well as simple theorems. The

Graffiti system, on the other hand, is more intuitive in design. First of all, the system

itself does not attempt to prove anything. Alternatively, it aims at generating interesting

conjectures in graph theory by guessing and testing some invariants, most of which are

of forms a ≥ b, a = b, and
∑

ai ≥
∑

bi, concerning two numerical features in a graph.

It is worth some attention that Graffiti maintains the quality of the set of conjectures by

filtering those implied by existing ones. In other words, the current set of conjectures are

the strongest ones generated so far. This is similar to our approach in game theory, which

will be introduced in detail later.

Our work follows from the ideas emerged in a previous line of work [15, 16]. Both

papers try to simulate the pattern of proving a theorem by induction. In particular, the

problem domain is formulated in a symbolic language. They then enumerate the sentences

(within certain length limit) in the underlying language that describe propositions in the

domain. After that, they use a computer program to test through these sentences to find

those true in base cases, that is, where the problem domain size is small. The remaining

sentences are then extended to inductive cases, automatically in [15] and manually in [16].

As mentioned, we choose economic theory as the domain to investigate. We do so for

three reasons. For one thing, some of the existing theorems, especially those Nobel-prize

winning ones in social choice theory, have very similar forms. Thus, we wonder if we can

slightly vary them to get some other theorems of the same form. For another, the key

concepts, such as pure Nash Equilibrium in game theory and preference in social choice

theory, are ordinal, thus allowing for a concise formulation by a logical language. This

property greatly facilitates our conjecture generation process. Last but not least, we are

fascinated by the beauty of the interactions between computer science, game theory and

social choice theory. It is the intense interest and curiosity that motivate us to explore

the field. 1

1Exemplified by our recent paper on Team Competition [41, 42], which characterizes the set of conditions

for designing desirable forms of team competitions. Examples of such competitions include David Cup

on tennis, Corbillon Cup on table tennis, etc.
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We are then thrilled at the abundance of the theorems discovered by our programs.

• In our first project on game theory [39, 40], we discover several classes of games,

known or unknown, that guarantee the uniqueness of pure Nash Equilibria (PNE).

Similarly, we discover several classes of games that guarantee the existence of PNE

as well as those guarantee pareto optimality of PNE. These discoveries also lead to

our later more important findings of two equivalence relations, one about strictly

competitiveness and uniqueness of PNE and the other about super-modular games

and potential games.

• In our second project on social choice theory [17, 38], we prove three of the most

important impossibility theorems in a unified computer-aided framework. It is worth

mentioning that Arrow’s impossibility theorem is the main citation of the author’s

Nobel prize. It is also worth mentioning that our proof is amongst the shortest and

most straightforward proofs of these theorems. We also similarly discover several

theorems that generalize Arrow’s conditions as well as a new theorem that better

interprets Arrow’s IIA condition.

• In our third project on social choice theory [25], we compare several commonly used

voting rules based on the degrees to which they violate certain desirable properties,

when the number of voters and candidates are small. As a result, we also benefit from

the intuitions returned by our programs that help to prove two general asymptotic

theorems. 2

• In our fourth project, we prove two of the most influential theorems in mechanism

design theory, namely Maskin’s theorem on Nash implementability, the main citation

of Maskin’s Nobel Prize, as well as Gibbard-Satterthwaite theorem on dominant

strategy implementability. In fact, the way that we prove it is more or less the same

as we did in proving these theorems in social choice theory. That is, using computer

program to test the base case and extend it to inductive case. In this aspect, we

unify proofs of almost all the important theorems in these fields.

It is also worth pointing out that these results promise a new angle in the currently

developing area of computational economics (including computational game theory and

computational social-choice theory, in particular) - an area that aims at advancing eco-

nomic research via computational means.

The aim of this dissertation is to describe all of our findings, in support of the idea and

methodology of computer-aided theorem discovery. We next introduce the preliminary

2The methodology for this part is somehow different from the previously described one. We decide to

leave out this part and refer the readers to our paper.
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knowledge for this manuscript in chapter 2, followed by our case study of our methodology

on game theory, social choice theory and implementation theory in chapters 4, 5 and 6,

respectively. For each of these chapters, we first introduce the background knowledge and

the type of theorems that we want to discover, we then go through our procedures and

report the theorems proved and discovered. We finally discuss, generalize and summarize

these theorems. Finally in chapter 7, we conclude this dissertation.
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Chapter 2

Preliminary

“What we can speak about we must speak clearly. What we cannot speak about

we must consign to silence.”

—Ludwig Wittgenstein.

We now give notations and preliminary knowledge related to first order logic for the

purpose of this thesis.

2.1 First order logic

In particular, we consider first-order language without function symbols, whose syntax

consists of the following parts,

• Set of variables, denoted by xi, yi, . . .

• Set of constants, denoted by a, b, . . .

• Set of predicates, denoted by P1, P2, . . . Predicates specify the relations between

variables and constants.

• The logical connectives are as usual. That is, ∧ and ∨ for conjunction and disjunc-

tion respectively, ⊃ for implication and ¬ for negation.

• No function symbol.

• Quantifiers ∀, ∃.

An atomic formula is either a predicate that takes terms or a term is equal to another

term: term1 = term2, where a term is a constant or variable.

A literal is either an atomic formula or the negation of an atomic formula.

A formula is a finite length of string that is connected of literals using logical connec-

tives. (See any logic book for the formal definition for the so-called well-formed formula.)

An interpretation of this language is a set of instantiated atoms (on some domains).

Thus an atomic formula F is true under some interpretation M iff F ∈ M .

An (atomic) formula is satisfiable iff it is true under at least one interpretation. We

say the interpretation M is the model of the formula F , written as |=M F .
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The satisfiability relation of interpretation M and a compound formula is defined as

follows:

• if F is a formula, |=M ¬F if 2M F ,

• if F1, F2 are formulas, |=M F1 ∨ F2 if |=M F1 or |=M F2,

• if F1, F2 are formulas, |=M F1 ∧ F2 if |=M F1 and |=M F2,

• if F1, F2 are formulas, |=M F1 ⊃ F2 if |=M ¬F1 ∨ F2,

• if F is a formula, |=M ∃xF if by substituting every appearance of x in F with some

element a from the domain, we get a new formula F ′ and |=M F ′,

• |=M ∀xF iff |=M ¬∃x¬F .

Suppose Σ is a set of formulas and F , we say Σ |= F if all the models of Σ are models

of F .

2.2 Finitely verifiable property of ∀∃ formulas

We have the following nice properties (cf. [15]) in any first-order language without function

symbols.

Theorem 2.1 Let Q be a formula without quantifiers. If ∃~x∀~yQ is satisfiable, then it is

satisfiable by an interpretation whose domain has max{1, |~x| + n} elements, where n is

the number of constants in Q.

The theorem below then follows from a contrapositive argument on Theorem 2.1.

Theorem 2.2 Let Q be a formula without quantifiers. If ∀~x∃~yQ is true by any interpre-

tation whose domain has max{1, |~x| + n} elements, where n is the number of constants

in Q, then it is true by any interpretation. That is, it is valid.

In other words, to verify the validity of a formula that is in the form ∀~x∃~yQ, one only

needs to exhaustively verify all the interpretations whose domain are within certain size

limit. In short, we can just say this type of formulas are finitely verifiable. The significance

of Theorem 2.2 lies in that it reduces the proof of this class of formulas to model checking

within finite domains, which can be automated by computers. It serves as the theoretic

foundation of our project on game theory.

It is worth mentioning that ∃∀ formulas are also finitely verifiable. However, the

underlying finite interpretation sets may be entirely different from the original interpre-

tation sets (might be the interpretation of an entirely different language but still finite).

For more on this subject, see [6].
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Chapter 3

The methodology

“Any academic discipline must rely on a general methodology to provide a

framework for inquiry and debate. Academic methodologies enable scholars

to see connections that may be obscure to untrained layman. But scholars

must also be aware that our expertise is diminished beyond the scope of our

methodology, and we learn to stay within its boundaries. ”

—Roger Myerson

In general, we can divide our discovery process into the following two steps:

• Step 1. Automated conjecture generation.

• Step 2. Automated theorem proving.

We briefly explain both steps in below. The actual procedures that we use to carry

out these steps will become clear as we present our case-studies in subsequent chapters.

To begin with, we have in mind an existing theorem of the following form,

X1 and X2 . . . imply Y,

where Xi’s are a set of conditions and Y is an important or surprising property. Note

that its form captures a class of theorems concerning sufficient conditions. Our goal is to

find all the theorems of similar form.

To automate this goal, we begin by coming up with a formal language that represents

the theorem above as one in the language. That is,

FX1 ∧ FX2 . . . ⇒ FY ,

where FXi
’s and FY are formulas describing Xi’s and Y , respectively.

We then start step 1, that is, to generate conjectures related to the theorem. We do so

by exhaustive enumeration, that is, generating the set S of all the formulas within certain

length in the language and replace X1 by any F ′ ∈ S in the theorem,

F ′ ∧ FX2 . . . ⇒ FY .

These formulas become conjectures for further consideration.

7



The set generated so far can be quite large and contains many obviously false con-

jectures. To refine it, we next verify all these conjectures on models of small sizes and

return the survivors of this verification. Note that this procedure cannot fail by returning

nothing, as long as FX1 ∈ S, since it would at least return the theorem that we started

with.

We then leap into step 2, theorem proving. From time to time, we are lucky to find

that

F ′ ∧ FX2 . . . ⇒ FY .

satisfies finitely verifiable property, which suggests that conjectures surviving refinement

are already guaranteed to be theorems. For others, we need to prove or negate it by other

means.

Now we have a set of provably correct theorems. However, this set could still be large

and impossible to be interpreted manually (especially given their logical representation).

There are several ways to further refine this set. One typical way is to delete those implied

by some other theorems, or those implied by conjunctions of several other theorems. In

this sense, we only return the strongest ones.

8



Chapter 4

Discovering theorems in game theory

“I haven’t played a chess match for several decades. At one point I lost most

of my chess games. Then I realized many of my competitors were memorizing

the best moves and I was unwilling to do this.”

—John Harsanyi

The target theorems that we are interested in are those concerning pure Nash Equi-

librium, henceforth PNE, in ordinal games which merely consist of individual action sets

as well as individual preferences over action profiles, as appear in [28]. This definition of

games generalizes the persuasive definition using utility functions in the sense that every

utility function can be reduced to a totally ordered preference relation but not vice versa,

unless the preferences being von Neumann-Morgenstern (vNM) [27].

Traditional equilibrium analysis has been mostly focused on mixed equilibria. Part of

the reasons for this bias is that such an equilibrium always exists and algorithms such as

the one by Lemke-Howson are guaranteed to find one. Moreover, best response functions

in games with mixed strategies are continuous and differentiable, allowing for standard

calculus techniques to be applied.

However, the concept of mixed equilibria in not well defined in the ordinal games briefly

mentioned above simply because the utility functions may not exist. And indeed, pure

Nash equilibria (PNEs) are also of interest, and there is already much work about them.

Examples here include the existence of PNEs in (ordinal) potential games [21], (quasi-

)supermodular games [43] as well as games with dominant strategies, and uniqueness of

PNE payoffs1 in two-person strictly competitive games.

4.1 Two-person games

A two-person game in strategic form is a tuple (A,B,≤1,≤2), where A and B are sets of

strategies of players 1 and 2, respectively, and ≤1 and ≤2 are total orders on A×B called

preference relations for players 1 and 2, respectively.

1Note that the uniqueness of PNE payoffs is also an ordinal property, which means all the PNEs in a

game are equally preferred to all players. In particular, the notion of unique PNE payoffs degenerates

to unique PNEs in strict games where the preference orders are linear.
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Instead of two (vNM) preference relations, a two-person game can also be specified by

two payoff functions, one for each player, which map profiles to numbers. The relationship

between these two formulations are as follows: for any profiles s and s′, s ≤i s′ iff ui(s) ≤
ui(s

′), where ui is the payoff function for player i. In the following, we shall use these two

formulations interchangeably.

In the following, two profiles (a, b) and (a′, b′) are said to be equivalent if their payoff

profiles are the same: (u1(a), u2(b)) = (u1(a
′), u2(b

′)). In terms of preference relations,

(a, b) and (a′, b′) are equivalent iff

(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x1, y1),

for i = 1, 2.

For each b ∈ B, we define B1(b) to be the set of best responses by player 1 to the

strategy b by player 2:

B1(b) = {a | a ∈ A, and for all a′ ∈ A, (a′, b) ≤1 (a, b)}.

Similarly, for each a ∈ A, the set of best responses by player 2 is:

B2(a) = {b | b ∈ B, and for all b′ ∈ B, (a, b′) ≤2 (a, b)}.

A profile (a, b) ∈ A × B is a Pure Nash Equilibrium (PNE) if both a ∈ B1(b) and

b ∈ B2(a). A game can have exactly one, more than one, or no PNEs. We say that a

game has a unique PNE payoff if all the PNEs are equivalent.

4.1.1 Strictly competitive games

Definition 4.1 A game (A,B,≤1,≤2) is strictly competitive [28] if for every pair of

profiles s1 and s2 in A×B, we have that s1 ≤1 s2 iff s2 ≤2 s1.

Thus in strictly competitive games, the two players’ preferences are exactly opposite.

Strictly competitive games are also known as zero-sum games when the game is repre-

sented by utility functions instead of preference relations. We shall henceforth use two

notations interchangeably.

Zero-sum describes a game in where one player’s gain (may be negative) is exactly

balanced by the loss of the other player. Examples are Chess, Go and sports competitions

where there is only one winners. Zero-sum are generally thought of as constant-sum where

the gains to all players sum to a constant value. Cake dividing is constant-sum since

obviously taking a larger piece for me reduces the amount available for the other.

The following game is a simple zero-sum game:

Example 4.1.1 A = {a1, a2}, B = {a1, a2}

10



1,−1 −1, 1

−1, 1 1,−1

Strictly competitive game has many nice properties. If (a, b) and (a′, b′) are both Nash

equilibria of a strictly competitive game, then (1) The equal payoff property: they are

indistinguishable in sense that (a, b) ≤i (a′, b′) and (a′, b′) ≤i (a, b) for both i = 1, 2;

(2)The Interchangeability property: they are interchangeable in the sense that (a′, b) and

(a, b′) are also Nash equilibria. Thus if a strictly competitive game has Nash equilibria,

then they are unique. Furthermore, the mini-max duality theorem holds, which means,

the liner program that maximizes the minimum utility of the rows of player one and liner

program that minimizes the maximum utility of the columns of player two have the same

optimal value. Thus, solving a single player’s utility optimization problem solves the

game. This also means that computing all mixed equilibria in such games is polynomial.

4.1.2 Potential games and ordinal potential games

Definition 4.2 For a game Γ of (A,B, u1, u2), A function P : A×B → R is an ordinal

potential for Γ, if

u1(x, y)− u1(z, y) > 0 iff p(x, y)− p(z, y) > 0

for every y ∈ B, every x, z ∈ A and

u2(x, y)− u2(x,w) > 0 iff p(x, y)− p(x,w) > 0

for every x ∈ A, every y, w ∈ B.

Γ is called an ordinal potential game [21] if it admits an ordinal potential function.

Definition 4.3 A function P : A×B → R is an (exact) potential for Γ, if

u1(x, y)− u1(z, y) = p(x, y)− p(z, y)

for every y ∈ B, every x, z ∈ A and

u2(x, y)− u2(x,w) = p(x, y)− p(x,w)

for every x ∈ A, every y, w ∈ B.
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Γ is called a potential game if it admits a potential function.

The first that uses potential functions in games was Rosenthal [32], where he defined

the class of congestion games and proved, by explicitly constructing a potential function,

that every game in this class possesses a pure-strategy equilibrium. The class of congestion

games is, on the one hand, narrow, but on the other hand, widely applied in economics and

computer science. The class of congestion games is proven to be best response equivalent

to that of finite potential games.

Example 4.1.2 The following game is a potential game where the utility matrices are as

follows:

1, 1 9, 0

0, 9 6, 6

and the following function is the potential:

4 3

3 0

The game above is also a special case of prisoner’s dilemma. As we can see, it is also

an ordinal potential game. Generally, any potential game is an ordinal potential game

and for some ordinal potential game, it is not necessarily a potential game. If we change

the above utility matrices as follows,

2, 1 9, 0

0, 9 6, 6

it is still a ordinal potential game, but it turns out there is no potential function for the

above matrices.

Ordinal potential game also have many nice properties. For instances, every finite

ordinal potential game possesses a pure-strategy Nash Equilibrium. Moreover, every

finite ordinal potential game has the finite improvement property. That is, every path,

which starts from any profiles and consists of a sequence of unilateral deviations that

benefits the deviating player, is finite and ends in a Nash equilibrium.
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4.1.3 Supermodular games and quasi-supermodular games

Before we introduce the definition of Supermodular game, preliminary knowledge on su-

permodular function and monotone comparative statics would be necessary. However, as

a matter of fact, one can directly jump to the end of this subsubsection to see a sim-

plified definition (definition 4.6) of quasi-supermodular game, which is all that we need

for our project introduced in later sections. We include the precise definitions here for

completeness.

Let Rn denote n-dimensional Euclidean space. Given x = (x1, x2, ..., xn) and y =

(y1, y2, . . . , yn) in Rn, denote by x ∨ y and x ∧ y the coordinate-wise sup and inf of x and

y,

x ∨ y = (max{x1, y1}, . . . , max{xn, yn})
and

x ∧ y = (min{x1, y1}, . . . , min{xn, yn}).

More general, we extend the above notation to the lattice theory.

Let X be a partially ordered set, with the reflexive, antisymmetric and transitive

binary relation ≥ Given elements x and z in X, denote by x∨ z the least upper bound or

join of x and z in X, provided it exists, and x∧z the greatest lower bound or meet of x and

z in X, provided it exists. A partially ordered set X that contains the join and the meet

of each pair of its elements is called a lattice. A lattice in which each nonempty subset

has a supremum and an infimum is complete. In particular, a finite lattice is complete.

If Y is a subset of a lattice X and Y contains the join and the meet with respect to X of

each pair of elements of Y , then is Y is a sublattice of X. A sublattice Y of a lattice X

in which each nonempty subset has a supremum and an infimum with respect to X that

are contained in Y is a subcomplete.

A function F : A → R is supermodular if

F (a ∧ a′) + F (a ∨ a′) ≥ F (a) + F (a′),∀a, a′ ∈ A.

The following increasing difference property is considered as a generalization of super-

modularity on R2.

Suppose S ⊂ R and T is partially ordered. A function F : S × T → R has increasing

differences in (s, a) if

F (s′, a′)− F (s′, a) ≥ F (s, a′)− F (s, a),∀a′ > a, s′ > s.

This property does not discriminate between the two variables and the above condition
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is equivalent to

F (s′, a′)− F (s, a′) ≥ F (s′, a)− F (s, a),∀a′ > a, s′ > s.

Moreover, if we restrict our attention on functions on R2, the increasing differences

property here is equivalent to the supermodularity property on R2.

A subset of Euclidean space Rn is compact if it is closed and bounded. A set is closed

if every limit point of the set is a point in the set.

A real valued function f is upper semi-continuous at a point x0 if the function values

for the argument near x0 are either closed to f(x0) or less than f(x0).

If we replace the less than in the above definition by greater than, we get the definition

of lower semi-continuous. A function is continuous if it is both upper and lower continuous.

Definition 4.4 A two-person game (A,B, u1, u2) is supermodular if for i ∈ 1, 2:

1. A,B is a compact subset of R;

2. ui is upper-semi-continuous in si, continuous in s−i;

3. ui satisfies the increasing differences property in (si, s−i).

For the second condition, the utility functions are required to be u.s.c to ensure the

best response function of each player is well-defined(i.e. the maximum is attained.).

For supermodular games, pure strategy Nash equilibria exist. Furthermore, the set of

strategies that survive Iterated Strict Dominance (IEDS) (Iterated elimination of domi-

nated strategies) has the greatest and least elements s and s, which are PNEs.

Like the ordinal potential game, which is an ordinal version of potential game, can be

represented by the preference relations rather than the requirement of the utility functions,

the supermodular game also has its ordinal counterpart.

The following single crossing property is a weak (ordinal) version of increasing differ-

ences.

Suppose S ⊂ R and T is partially ordered. A function F : S × T → R has the single

crossing property in (x; t) if:

F (s′, a) > F (s, a) ⇒ F (s′, a′) > F (s, a′)∀a′ > a, s′ > s

and

F (s′, a) ≥ F (s, a) ⇒ F (s′, a′) ≥ F (s, a′)∀a′ > a, s′ > s.

The following quasisupermodular property is a ordinal approximation of supermodular

property.
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Given a lattice X, a function F : X → R is quasisupermodular if:

F (a) ≥ F (a ∧ a′) ⇒ F (a ∨ a′) ≥ F (a′)

and

F (a) > F (a ∧ a′) ⇒ F (a ∨ a′) > F (a′).

Definition 4.5 A two-person game (A,B, u1, u2) is quasi-supermodular game if for i ∈
{1, 2}:
1. A,B is a compact subset of R;

2. ui is upper-semi-continuous in si when s−i is fixed and continuous in s−i when si is

fixed;

3. ui is quasisupermodular in si and satisfies the single crossing property in (xi; x−i).

A special case and yet widely used definition of quasi-supermodular game is simply

given as follows,

Definition 4.6 A finite game (A,B, u1, u2) is quasi-supermodular if there are two partial

orders <1 and <2 on A and B, respectively, such that u1, u2 satisfies the single crossing

property.

Henceforth, by quasi-supermodular games, we refer to the games defined by defini-

tion 4.6.

It is also known that any quasi-supermodular game has a PNE. Also, quasi-supermodularity

generalize supermodularity in a trivial way, as one can easily find a game that is quasi-

supermodular but not supermodular.

4.2 Formulating two-person games in first-order logic

We consider a first-order language with two sorts α and β, equality, and two predicates

≤1 and ≤2. We use “∧” for conjunction, “∨” for disjunction, “¬” for negation, “⊃” for

implication, and “≡” for equivalence. Negation has the highest precedence, followed by

conjunction and disjunction, implication, and then equivalence. The rule of precedence

can be overridden by a new line. For instance, the following expression

p ⊃ q ∧
q ⊃ p

stands for the sentence (p ⊃ q) ∧ (q ⊃ p).

In our language, sort α is for player 1’s strategies, and β for player 2’s strategies. In

the following, we use variables x, x1, x2, .. to range over α, and y, y1, y2, ... to range over β.
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The two predicates represent the two players’ preference relations. In the following, as we

have already done above, we write ≤i (x1, y1, x2, y2) in infix notation as (x1, y1) ≤i (x2, y2),

i = 1, 2, and (x1, y1) 'i (x2, y2) as a shorthand for

(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x1, y1),

where i = 1, 2. We also write (x1, y1) <i (x2, y2) as a shorthand for

(x1, y1) ≤i (x2, y2) ∧ ¬(x2, y2) ≤i (x1, y1).

The two relations need to be total orders (in the rest of the chapter, unless otherwise

stated, all free variables in a displayed formula are assumed to be universally quantified

from outside):

(x, y) ≤i (x, y), (4.1)

(x1, y1) ≤i (x2, y2) ∨ (x2, y2) ≤i (x1, y1), (4.2)

(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x3, y3) ⊃
(x1, y1) ≤i (x3, y3), (4.3)

where i = 1, 2. In the following, we denote by Σ the set of the above sentences. Thus

two-person games correspond to first-order models of Σ, and two-person finite games

correspond to first-order finite models of Σ. This correspondence extends to other type

of games as well. For instance, let Σs be the union of Σ with the following two axioms:

(x1, y1) '1 (x2, y2) ⊃ (x1 = x2 ∧ y1 = y2),

(x1, y1) '2 (x2, y2) ⊃ (x1 = x2 ∧ y1 = y2).

Then strict games and models of Σs are isomorphic.

We now show how some other notions in game theory can be formulated in first-order

logic. The condition for a profile (ξ, ζ) to be a PNE is captured by the following formula:

∀x.(x, ζ) ≤1 (ξ, ζ) ∧ ∀y.(ξ, y) ≤2 (ξ, ζ). (4.4)

In the following, we shall denote the above formula by NE(ξ, ζ).

The following sentence expresses the uniqueness of PNE payoff in a game:

NE(x1, y1) ∧NE(x2, y2) ⊃
(x1, y1) '1 (x2, y2) ∧ (x1, y1) '2 (x2, y2). (4.5)

A game is strictly competitive if it satisfies the following property:

(x1, y1) ≤1 (x2, y2) ≡ (x2, y2) ≤2 (x1, y1). (4.6)
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Thus it should follow that

Σ |= (4.6) ⊃ (4.5). (4.7)

Notice that we have assumed that all free variables in a displayed formula are universally

quantified from outside. Thus (4.6) is a sentence of the form ∀x1, x2, y1, y2ϕ. Similarly

for (4.5).

Theorems like (4.7) can actually be generated automatically using the following the-

orem.

Theorem 4.7 Suppose Q is a formula without quantifiers, ~x1 and ~x2 tuples of variables

of sort α, and ~y1 and ~y2 tuples of variables of sort β. We have that

1. Σ |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ (4.5)

iff for all model G of Σ such that |A| ≤ |~x1|+ 2 and |B| ≤ |~y1|+ 2, we have that

G |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ (4.5),

where A is the domain of G for sort α, and B the domain of G for sort β.

2. Σ |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ ¬∃x, y.NE(x, y)

iff for all model G of Σ such that |A| ≤ |~x1|+ 1 and |B| ≤ |~y1|+ 1 we have that

G |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ ¬∃x, y.NE(x, y),

where A is the domain of G for sort α, and B the domain of G for sort β.

Proof: It follows directly from Theorem 2.2.

In other words, to prove that a sentence of the form ∃~x1∃~y1∀~x2∀~y2Q is a sufficient

condition for the uniqueness of PNE payoff, it suffices to verify that this is the case for all

games of sizes up to (|~x1|+2)×(|~y1|+2), and to prove that it is a sufficient condition for the

non-existence of PNE, it suffices to verify this for games of sizes up to (|~x1|+1)×(|~y1|+1).

Theorem 4.7 holds for many specialized games as well. For instance, it holds for strict

games as well.

Theorem 4.8 Theorem 4.7 holds when Σ is replaced by Σs.

In fact, Theorem 4.7 holds when Σ is replaced by any set of universally quantified

sentences.

4.3 Uniqueness of PNE payoffs

In this section, we consider the possibility of using computers to discover new classes

of two-person games that have unique PNE payoffs. Our starting point is the class of

two-person strictly competitive games. We first formulate the notions of games, strictly
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competitive games and PNEs in first-order logic. Under our formulation, a class of games

corresponds to a first-order sentence. In particular, the sentence that corresponds to the

class of strictly competitive games is a conjunction of two binary clauses with all variables

universally quantified. So we implemented a program that examines all these universally

quantified conjunctions of binary clauses to see if there is another such condition that

also captures a class of games with unique PNE payoffs. We did not expect much as

these conditions are rather simple, but to our surprise, despite the simple form, our

program returned various theorems, known or mostly unknown, that shed light on our

understanding of this property. Before we start to describe these findings, let us take a

briefly look at our procedure and setup.

4.3.1 Theorem discovering

Since p ≡ q is logically equivalent to (¬p ∨ q) ∧ (p ∨ ¬q), the condition (4.6) for strictly

competitive games can be written as a conjunction of two binary clauses:

(l1 ∨ l2) ∧ (l3 ∨ l4), (4.8)

where each li, 1 ≤ i ≤ 4, is a literal, i.e. either an atom or the negation of an atom.

As we mentioned, we want to know if there are other sentences of the form (4.8) that

also capture classes of games with unique PNE payoffs. In the following, we say that a

condition ϕ is a uniqueness condition if whenever a game satisfies this condition, it has

unique PNE payoff, that is, if Σ |= ϕ ⊃ (4.5).

Based on Theorem 4.7, a straightforward way of discovering uniqueness conditions of

the form (4.8) is as follows: For each condition of the form (4.8), check that if a 2 × 2

game does not have unique PNE payoff, then it does not satisfy this condition. There are

810,000 such conditions, 1950 non-isomorphic 2× 2 two-person games, and among them

709 games that do not have unique PNE payoffs. Thus this strategy can be implemented

on a modern computer even by brute-force search.

The search space can also be pruned by noticing that the conditions of the form (4.8)

are not independent. For instance, condition

(x1, y1) ≤1 (x2, y2)

entails (is stronger than) condition

(x1, y1) ≤1 (x1, y2).

Once we know that a condition C is a uniqueness condition, those that entail C are no

longer interesting as they become special cases of C, thus can be pruned.
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However, checking logical entailment is in general not decidable for first-order logic.

But as a strategy for pruning search space, we can use a weaker notion called subsumption

on conditions of the form (4.8): C subsumes C ′ if there is a substitution σ such that

Cσ = C ′. For our language, subsumption can be checked efficiently, and the search tree

can be designed in such a way that the condition associated with a node always subsumes

the conditions associated with the ancestors of the node. Thus once a condition is found

to be a uniqueness condition, the entire sub-tree under this condition can be pruned.

However, we still need a way to check for complete logical entailment under Σ for

conditions of the form (4.8). This is because we want every condition returned by our

program to be a most general, “weakest” uniqueness condition in the sense that it does

not entail any other uniqueness condition of the form (4.8). Fortunately, this can be done

using the following proposition.

Proposition 4.3.1 To check whether condition ∀~x1~y1Q1 entails condition ∀~x2~y2Q2 for all

two-person games, it suffices to check this for all games up to max{|~x2|, 1}×max{|~y2|, 1},
where Q1 and Q2 are formulas without quantifiers. This result holds for strict games as

well.

Notice that what we have described applies to the task of discovering uniqueness

conditions of the form (4.8) for strict two-person games as well.

We now report our experimental results, first for general two-person games, and then

for strict two-person games.

4.3.2 General games

For two-person general games, our program returns the following seven uniqueness con-

ditions for 2x2 games.

19



(x1, y) ≤1 (x2, y) ⊃ (x2, y) ≤2 (x1, y) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y2) ≤1 (x, y1) (4.9)

(x1, y) ≤1 (x2, y) ⊃ (x1, y) ≤2 (x2, y) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y2) ≤1 (x, y1) (4.10)

(x1, y) ≤1 (x2, y) ⊃ (x2, y) ≤2 (x1, y) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y1) ≤1 (x, y2) (4.11)

(x1, y1) ≤1 (x2, y1) ⊃ (x1, y2) ≤2 (x2, y2) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y1) ≤1 (x, y2) (4.12)

(x1, y) ≤1 (x2, y) ⊃ (x1, y) ≤2 (x2, y) ∧
(x1, y1) ≤2 (x1, y2) ⊃ (x2, y1) ≤1 (x2, y2) (4.13)

(x1, y1) ≤1 (x2, y2) ⊃ (x1, y1) ≤2 (x2, y1) ∧
(x1, y1) ≤2 (x2, y2) ⊃ (x2, y1) ≤1 (x2, y2) (4.14)

(x1, y1) ≤1 (x2, y2) ⊃ (x1, y2) ≤2 (x2, y2) ∧
(x1, y1) ≤2 (x2, y2) ⊃ (x1, y1) ≤1 (x1, y2). (4.15)

By Theorem 4.7, these are also uniqueness conditions for all two-person games. Fur-

thermore, since these are the only conditions returned by our program, for any sentence

C of the form (4.8), if it is a uniqueness condition, then it must entail one of the above

conditions under Σ. In other words, the above seven conditions are the weakest (most

general) uniqueness conditions of the form (4.8).

Notice that condition (4.10) and condition (4.11) are symmetric in the sense that one

can be obtained from the other by swapping the roles of the two players. So are (4.12)

and (4.13), and (4.14) and (4.15). On the other hand, (4.9) is symmetric to itself. It is

easy to see that if two conditions are symmetric, then one is a uniqueness condition iff

the other is.

Condition (4.9) looks like condition (4.6) for strictly competitive games, except that

the strategy of one of the players is fixed in each implication. As it turned out, it captures

exactly the class of two-person games that are weakly unilaterally competitive [12]:

“a game belongs to this class if a unilateral move by one player which results

in an increase in that player’s payoff also causes a (weak) decline in the payoffs

of all other players. Furthermore, if that move causes no change in the mover’s

payoff then all other players’ payoffs remain unchanged.”

Clearly, if a game is strictly competitive, then it is also weakly unilaterally competitive,

but the converse is not true in general. Kats and Thisse [12] showed that if a game is
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weakly unilaterally competitive, then it has unique PNE payoff. For us, for two-person

games, this follows directly from our computer output and Theorem 4.7.

Condition (4.10) can be given a similar interpretation:

A two-person game satisfies this condition if a unilateral move by player 1

which results in a (weak) increase in his payoff also causes a (weak) increase

in the payoff of player 2, but a unilateral move by player 2 which results in

a (weak) increase in his payoff will causes a (weak) decline in the payoff of

player 1.

Thus in this class of games, the two players are not equal, and it clearly favors player 2.

The game may be competitive for player 1, but not for player 2.

Proposition 4.3.2 Given a game that satisfies (4.10), if player 2’s payoff is maximal at

(a, b), i.e. (a′, b′) ≤2 (a, b) for all a′, b′, then there is a strategy a∗ such that (a∗, b) is a

PNE and (a∗, b) '2 (a, b).

Thus for the class of games that satisfy condition (4.10), the optimal strategy for

player 2 is to do the strategy for which there is a strategy by the other player that will

give him the maximum payoff. The following is an example of such games (as usual,

player 1 is the row player, and player 2 the column player; the first number in a cell is

the payoff of the row player, the second the column player):

3, 6 4, 5 5, 1

2, 3 1, 4 6, 2

It has a unique equilibrium (3, 6).

As we mentioned, condition (4.11) is symmetric to condition (4.10), with the roles of

the two players swapped. For the classes of games corresponding to the other conditions,

(4.12) - (4.15), both players can obtain their maximal payoffs.

Proposition 4.3.3 Given a game that satisfies one of the conditions (4.12) - (4.15), if

player 1’s (player 2’s) payoff at (a, b) maximal, then there is a strategy b∗ (a∗) such that

(a, b∗) ((a∗, b)) is a PNE where both players receive the maximum payoffs.

Thus, from these two propositions, we see that the classes of games represented by the

conditions (4.10) - (4.15) are not really “competitive” games. We can then conclude that

among the classes of games that can be represented by a conjunction (4.8) of two binary

clauses, the class of weakly unilaterally competitive games is the most general class of

“competitive” and “fair” games that have unique PNE. As we mentioned above, by this

we do not mean that other types of games are not interesting. In real life, unfair games

like those described by (4.10) may well arise.
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4.3.3 Strict games

We now describe our experimental results for strict games. Recall that these are games

where for each player, different profiles have different payoffs. Thus uniqueness of PNE

payoff simply means uniqueness of PNE in strict games.

Games with dominant strategies

We first consider conditions that mention only ≤1:

s1 ≤1 s2 ∨ s3 ≤1 s4.

For this class of conditions, our program outputs the following six uniqueness conditions

on 2x2 strict games:

(x1, y1) ≤1 (x2, y1) ∨ (x2, y1) ≤1 (x1, y2),

(x1, y1) ≤1 (x2, y1) ∨ (x2, y2) ≤1 (x1, y1),

(x1, y1) ≤1 (x2, y1) ∨ (x2, y2) ≤1 (x1, y2),

(x1, y1) ≤1 (x2, y2) ∨ (x2, y1) ≤1 (x1, y1),

(x1, y1) ≤1 (x2, y2) ∨ (x2, y2) ≤1 (x1, y2).

By Theorem 4.8, these are also uniqueness conditions for all strict two-person games.

Notice that these conditions do not mention ≤2. This means that if player 1’s preference

relation satisfies any of the above conditions, then the game has a unique PNE, no matter

what the other player’s preference relation is.

For instance, the first condition can be written as

¬(x1, y1) ≤1 (x2, y1) ⊃ (x2, y1) ≤1 (x1, y2).

For strict games, this is equivalent to

(x2, y1) <1 (x1, y1) ⊃ (x2, y1) ≤1 (x1, y2)

as ¬(x1, y1) ≤1 (x2, y1) iff (x2, y1) <1 (x1, y1). It is not hard to see that the above condition

implies the following condition:

∃x∀x′, y.(x′, y) ≤1 (x, y),

meaning that no matter what player 2 does, the best response for player 1 is always

the same. For strict games, this means that player 1 has a strictly dominant strategy: a

strategy x is a strictly dominant strategy if for all other strategy x′ of player 1, and any

strategy y of player 2, (x′, y) <1 (x, y). As it turned out, this is also the case for the other

five conditions above, as the following proposition shows.
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Proposition 4.3.4 A strict game G = (A,B,≤1,≤2) has a strictly dominant strategy

for player 1 if and only if for any preference relation ≤′2 for player 2, the game G′ =

(A,B,≤1,≤′2) has exactly one PNE.

Given this result, there is no need to consider any condition of the form (4.8) that mentions

only one player’s preference.

It is interesting to note that for the prisoner’s dilemma

4, 4 0, 5

5, 0 1, 1

each player has a strictly dominant strategy, thus should play this strategy. The dilemma

is that each player can get a higher payoff by a unilateral move away from his dominant

strategy.

Weakly unilaterally competitive games for individual players

For other conditions of the form (4.8), our program returns 16 uniqueness conditions for

strict games. However, each of them has a symmetric one when the roles of the two

players are swapped. Thus there are really only eight such conditions, given below:

(x1, y) ≤1 (x2, y) ∨ (x1, y) ≤2 (x2, y), (4.16)

(x1, y1) ≤1 (x1, y2) ∨ (x1, y2) ≤2 (x2, y1), (4.17)

(x1, y1) ≤1 (x1, y2) ∨ (x2, y2) ≤2 (x1, y1), (4.18)

(x1, y1) ≤1 (x1, y2) ∨ (x2, y2) ≤2 (x2, y1), (4.19)

(x1, y1) ≤1 (x2, y2) ∨ (x1, y2) ≤2 (x1, y1), (4.20)

(x1, y1) ≤1 (x2, y2) ∨ (x2, y2) ≤2 (x1, y2), (4.21)

(x1, y1) ≤1 (x1, y2) ∨ (x1, y1) ≤2 (x2, y1), (4.22)

(x1, y1) ≤1 (x2, y1) ∨ (x2, y2) ≤2 (x2, y1). (4.23)

In particular, we found that for strict games, a conjunction C1 ∧C2 of two binary clauses

is a uniqueness condition iff either C1 or C2 is a uniqueness condition.

The first condition is equivalent to

(x2, y) ≤1 (x1, y) ⊃ (x1, y) ≤2 (x2, y) (4.24)

as in strict games, s1 ≤1 s2 iff s1 <1 s2 ∨ s1 = s2. This is exactly one of the two conjuncts

in the condition (4.9) for weakly unilaterally competitive games.
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Now swap the roles of the two players in (4.24), we get the following condition

(x, y1) ≤2 (x, y2) ⊃ (x, y2) ≤1 (x, y1), (4.25)

which is exactly the other conjunct in the condition (4.9).

In the following, we call a game that satisfies (4.24) a weakly unilaterally competitive

for player 1, and a game that satisfies (4.25) a weakly unilaterally competitive for player

2. Thus a game is weakly unilaterally competitive if it is weakly unilaterally competitive

for both players. The following example shows that a game can be weakly unilaterally

competitive for player 1 but not for player 2.

2, 1 3, 4

1, 2 4, 3

This example also shows that a weakly unilaterally competitive game for player 1 may

not be almost strictly competitive [3]: a game is almost strictly competitive if

1. the set of payoff vectors of the PNEs is the same as the set of payoff vectors of the

twisted equilibria; and

2. there is a PNE that is also a twisted equilibrium,

where (a, b) is a twisted equilibrium if no player can decrease the payoff of the other

player by a unilateral change of his strategy: for every a′ ∈ A (b′ ∈ B), (a, b) ≤2 (a′, b)

((a, b) ≤1 (a, b′)). For this example, it is easy to see that the only equilibrium of the game,

(4, 3), is not a twisted equilibrium.

As it turns out, (4.24) and (4.25) are the only non-trivial conditions. The last two

conditions (4.22) and (4.23) can never be satisfied by games larger or equal to 3x3. The

remaining five conditions (4.17) - (4.21) are games with dominant strategies.

Proposition 4.3.5 If G is a strict game and satisfies one of the conditions (4.17) -

(4.21), then one of the players has a strictly dominant strategy in G.

4.3.4 Generalization of the experimental results

To summarize, for strict games, the only interesting uniqueness conditions that can be

expressed by a conjunction of two binary clauses and include games that do not have

dominant strategies are weakly unilaterally competitive conditions for individual players,

(4.24) and (4.25). This led us to wonder if these two conditions are also necessary condi-

tions for a strict game to have a unique PNE. However, it is easy to see that this is not
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the case. In fact, a universal condition like (4.8) can never be both a necessary and a

sufficient condition for a game to have unique PNE. This is because for any given game,

no matter how many PNEs it has, we can always extend it by one more strategy for each

player, and make it into a game with a unique PNE by assigning payoffs large enough to

a profile made of the two new strategies. However, if a universal condition is satisfied by

a game, it is also satisfied by any of its sub-games.

This led us to consider not individual games, but classes of games under certain

equivalence relation.

Two games G1 = (A,B,≤1,≤2) and G2 = (A′, B′,≤′1,≤′2) are unilaterally order equiv-

alent2 if

• A = A′, and B = B′.

• For every a ∈ A, b, b′ ∈ B, (a, b) ≤2 (a, b′) iff (a, b) ≤′2 (a, b′).

• For every b ∈ B, a, a′ ∈ A, (a, b) ≤1 (a′, b) iff (a, b) ≤′1 (a′, b).

They are best-response equivalent [31] if for all a ∈ A, B2(a) in G1 and G2 are the same,

and for all b ∈ B, B1(b) in G1 and G2 are the same. Clearly, if G1 and G2 are unilaterally

order equivalent, then they are also best-response equivalent, but the converse is not true

in general. Both notions of equivalence preserve PNEs.

We have the following result.

Theorem 4.9 A strict game has at most one PNE iff it is best-response equivalent to a

strictly competitive game.

To prove this theorem, for any given game G = (A,B, u1, u2), we associate with it a

direct graph R whose vertices are profiles of the game and there is an arc from s to s′ if

(s, s′) is in the following set:

{((a, b), (a′, b)) | a′ ∈ B1(b), a 6∈ B1(b)} ∪
{((a, b), (a, b′)) | b ∈ B2(a), b′ 6∈ B2(a)}.

The theorem then follows from the following two lemmas about R.

Lemma 4.10 A 2-person game G = (A,B, u1, u2) is best-response equivalent to a strictly

competitive game iff R has no cycle.

Proof: If R has a cycle, then G cannot be equivalent to a strictly competitive game

because if G′ = (A,B, u′1, u
′
2) is such a game, then for any profiles s1 and s2, if there is an

2We call it unilaterally order equivalence to distinguish it from order equivalence [31] that requires both

the row and column orders in the two games to be the same for both players.
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arc from s1 to s2 in R, then u′1(s1) < u′1(s2). So along the cycle, there must be a sequence

u′1(t1) < u′1(t2) < . . . < u′1(tk) < u′1(t1), which is a contradiction.

Now if R has no cycle, construct a game G′ = (A,B, u′1, u
′
2) where u′1 and u′2 are

defined as follows:

• R0 = {(s, s′)| there is an arc from s to s′ in R}, S0 = {s | s ∈ A×B, there is no s′

such that (s′, s) ∈ R0}.

• Suppose that Rk and Sk is defined, let

Rk+1 = {(s, s′) | (s, s′) ∈ Rk, and s, s′ 6∈ Sk},
Sk+1 = {s | for some s′, (s, s′) ∈ Rk but there is

no s′ such that (s′, s) ∈ Rk+1}.

• Since R has no cycles, there is a finite number n such that Rk = Sk = ∅, and

A×B = S0 ∪ · · · ∪ Sn.

• Let u′1 be a one-to-one function from A×B to the set of positive integers such that

if i < j, then for any s ∈ Si and s′ ∈ Sj, u′1(s) < u′1(s
′).

• Let u′2 = −u′1.

Clearly, G′ is strictly competitive, and best-response equivalent to G.

Lemma 4.11 If G is a strict 2-person game, and its graph R has a cycle, then G has

more than one Nash equilibria.

Proof: Suppose s1, ..., sk, sk+1 is a cycle in R. Suppose s1 = (a, b). Then either

s2 = (a′, b) for some a′ 6= a or s2 = (a, b′) for some b′ 6= b. Suppose it is the first case,

s2 = (a′, b). The proof for the second case is similar. Then by our construction of R,

s3 = (a′, b′) for some b′ 6= b, s4 = (a′′, b′) for some a′′ 6= a′. We show that s2 and s4 are

both Nash equilibria of G. Because there is an arc from (a, b) to (a′, b) in R, a′ ∈ B1(b).

Because there is an arc from (a′, b) to (a′, b′) in R, b ∈ B2(a
′). Thus s2 = (a′, b) is a

Nash equilibrium. Similarly, Because there is arc from (a′, b′) to (a′′, b′) and an arc from

(a′′, b′) to (a′′, b′′) in R for some b′′ (it is possible that a = a′′ and b = b′′) a′′ ∈ B1(b
′) and

b′ ∈ B2(a
′′). Thus s4 = (a′′, b′) is a Nash equilibrium as well. Since G is a strict game,

s2 6= s4 implies u1(s2) 6= u1(s4), thus G has at least two Nash equilibria with different

payoffs.
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Theorem 4.9 does not hold for general two-person games. For instance, the following

game

1, 1 2, 2

2, 2 1, 1

has a unique equilibrium (2, 2) but is not best-response equivalent to any strictly com-

petitive games.

4.4 Existence of PNE

The same approach can be applied to discover the sufficient conditions for the existence

of PNE.

4.4.1 Theorem discovering

As mentioned, we conducted experiments on discovering the sufficient conditions of the

existence of PNE, using the same setting as in that of uniqueness PNE payoffs. We have

made the following observations concerning the results.

• Failure of the finite verifiable property. As one might notice, the formula that

describe the existence of PNE,

∃x, yNE(x, y), (4.26)

violates the format in Theorem 2.2, no matter the format of the sufficient condition.

• The results returned by our program (that is, the ones pass the verification on small

domains) are extremely likely to be true in general. In fact, we haven’t found any

counter example that passes the small domain tests (up to 3 × 3 games) but fails

in general. Thus, these conditions serve as very good conjectures for the sufficient

conditions.

• The conditions returned by our program implies either,

1. Each player possesses a dominant strategy, or;

2. Potential game, or;

3. Supermodular game.

• Besides the three classes of games described above, there still exist other games

possessing a PNE.
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4.4.2 Generalization of the experimental results

Although the last item reveals the sad fact that the program cannot return the complete

set of conditions that characterize the existence of PNE, we do notice that, two impor-

tant classes of games among those conditions, namely potential games and supermodular

games, overlap extremely frequently. It lets us wonder if we can similarly generalize a

result up to best-response equivalence, as we did in the uniqueness case, that connect

these two classes of games, and the answer is surely affirmative.

Given a 2-person game, a best-response path of the game is a sequence of profiles

s1, ..., sn such that for each 1 ≤ i < n, si and si+1 differ on exactly one coordinate with

the deviating player moving to a best response: if si = (a, b) and si+1 = (a′, b), then a′ is

a best response of player 1 to the action b by player 2, similarly if si and si+1 differ on

the second coordinate.

Voorneveld [44] showed that a game with countable strategy sets is best response

equivalent to an ordinal potential game iff it has no best response cycle. We prove here that

a 2-person strict finite game is best response equivalent to a quasi-supermodular game iff it

has no best response cycle. Thus, a finite strict 2-person game is best response equivalent

to an ordinal potential game iff it is best response equivalent to a quasi-supermodular

game.

Theorem 4.12 A strict game is best response equivalent to a quasi-supermodular game

iff it has no best response cycle.

Corollary 4.13 A 2-person strict game is best-response equivalent to a quasi-supermodular

game iff it is best-response equivalent to an ordinal potential game.

Notice that best-response paths model Cournot dynamics, thus Theorem 4.12 also

implies that if Cournot dynamics does not cycle, then it must be best-response equivalent

to a quasi-supermodular game.

We now prove Theorem 4.12 through two lemmas. The first one relates quasi-supermodular

games to the complementarity of best response functions, and the second the complemen-

tarity of best-response function to the acyclicity of best-response paths. While the “only

if” part of Theorem 4.12 is already entailed by the current results, these two lemmas also

provide an interesting alternative proof.

Given a 2-person game (A,B, u1, u2), and two linear orderings <1 and <2 of A and

B, respectively, we say that the best-response function B1 for player 1 is non-decreasing

with respect to <1 and <2, if for each pair bi <2 bj ai = B1(bi) and aj = B1(bj), we have

ai ≤1 aj and similarly for player 2, the best-response function B2 is non-decreasing with

respect to <1 and <2, if for each pair ai < aj 1 ≤ i < j ≤ m, bi = B2(ai) and s′j = (aj, bj),

we have bi ≤2 bj
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Essentially, if both players’ best-response functions are non-decreasing, then they are

complementary.

Lemma 4.14 A strict game is best-response equivalent to a quasi-supermodular game iff

there exist two linear orderings under which the best-response functions for both players

are non-decreasing.

Non-decreasing best-response functions for quasi-supermodular game is a well known

intuition (the only if part), although we still prove it as follows since it is simple.

Proof: Let G = (A,B, u1, u2) be a strict game.

⇒: Suppose G is best-response equivalent to a quasi-supermodular game G′. Clearly, the

best-response functions of G and G′ are the same under any linear orderings. Now let

G′ = (A,B, u′1, u
′
2). Since G′ is quasi-supermodular, there are two linear orderings <1 of

A and <2 of B such that u′1 and u′2 satisfy the single crossing properties. Then in G′, the

best-response functions under <1 and <2 are non-decreasing. For otherwise, suppose that

B1 is not non-decreasing in G′. Then there are two profiles (a1, b1) and (a2, b2) such that

a1 ∈ B1(b1), a2 ∈ B1(b2), b1 <2 b2,

a2 <1 a1.

Thus u′1(a1, b1) > u′1(a2, b1) and u′1(a2, b2) > u′1(a1, b2), which violate the single crossing

conditions.

⇐: Suppose the best-response functions of the two players in G are non-decreasing under

<1 and <2. We denote in this part that for ai, aj ∈ A, ai <1 aj if i < j. Similar for

bi, bj ∈ B. Now consider the following game G′ = (A,B, u′1, u
′
2):

• if s < t, then u′1(ai, bs) < u′1(aj, bt) for any ai and aj in A;

• for any bs ∈ B, if B1(bs) = {ak} in G, then

– if i 6= ak, then u′1(ai, bs) < u′1(ak, bs);

– if i > j > k, then u′1(ai, bs) < u′1(aj, bs);

– if i < j < k, then u′1(aj, bs) > u′1(ai, bs);

– if i < k < j, then u′1(aj, bs) > u′1(ai, b);

• similarly for u′2.

Clearly, one can find two such functions u′1 and u′2, and that G′ is best-response equivalent

to G. We show that G′ is quasi-supermodular on <1 and <2. Suppose i < j, s < t, and

u′1(aj, bs) > u′1(ai, bs). We show that u′1(aj, bt) > u′1(ai, bt). Let B1(bs) = {ak} and

B1(bt) = {al}. Then k ≤ l according to the non-decreasing property of player one’s

best-response function. Given u′1(aj, bs) > u′1(ai, bs), there are three cases:
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1. j = k. We have i < j ≤ l, thus u′1(aj, bt) > u′1(ai, bt).

2. i < j < k. We have i < j < k ≤ l, thus u′1(aj, bt) > u′1(ai, bt).

3. i < k < j. We have either i < l ≤ j or i < j < l. Either way, we have u′1(aj, bt) >

u′1(ai, bt) by our construction.

Thus u′1 satisfies the single crossing condition. Similarly, u′2 satisfies the single crossing

condition. So G is a quasi-supermodular game.

Lemma 4.15 A strict 2-person game has no best-response cycle iff there are two linear

orderings under which both players’ best response functions are non-decreasing.

Proof: Let G = (A,B, u1, u2) be a strict game.

⇐: Let <1 and <2 be two linear orderings of A and B, respectively, under which the

best-response functions B1 and B2 for player 1 and 2, respectively, are non-decreasing.

We show that G has no best-response cycle. We begin with a profile (a1, b1) where, with

loss of generality, {a1} = B1(b1). Let then player 2 and player 1 deviates to each own

best-response alternatively in the following rounds. If in the first round, player 2 deviates

to an action b2, there are three cases

• Case 1: b1 <2 b2, then according to the non-decreasing property of B1, we have

a1 ≤1 a2 where {a2} = B1(b2). If a1 = a2, it means that (a1, b2) is a PNE, where

the best response path terminates. Otherwise a1 <1 a2, this process will continue

generating new profiles that alternatively increase in each player’s action until it

meets a PNE and terminates. This shows that the best-response path generated

this way can not return to where it started, therefore in this case there is no best-

response cycle.

• Case 2: b2 <2 b1. It is not hard to see that this process will continue generating new

profiles that strictly increases in one of its players rank until it meets a PNE. This

shows again that there is no best-response cycle.

• Case 3: b1 = b2, this means that (a1, b1) is a PNE, where the best-response path

terminates. No cycle exists.

We have proved the ⇐ part of the lemma.

⇒: We prove this part constructively. Suppose there is no best-response cycle in G.

Our following procedure will produce two ranking functions, rankA that maps each a ∈ A

to an integer between 1 and |A|, and rankB that maps each b ∈ B to an integer between
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1 and |B|. From these two rankings, we get two linear orderings on A and B: a <1 a′ if

rankA(a) > rankA(a′), and b <2 b′ if rankB(b) > rankB(b′). We show that under these

two linear orderings, the best-response functions for both players are non-decreasing.

1. Initially, let Ar = A, Br = B, IA = IB = 1, Ac = Bc = [] (the empty list),

rankA(a) = 0 for any a ∈ A, and rankB(b) = 0 for any b ∈ B.

2. while Ar 6= ∅ or Br 6= ∅ do

2.1. Let (a, b) ∈ Ar × Br be a Nash equilibrium of G (there must be such a Nash

equilibrium as we show below), and let Ac = [a], Bc = [b].

2.2. while Ac 6= [] or Bc 6= [] do

i. If Ac 6= [] then

(a) Let a∗ be the first element in Ac.

(b) rankA(a∗) = IA; IA = IA + 1.

(c) Delete a∗ from Ac.

(d) Delete a∗ from Ar.

(e) For each b′ ∈ B such that B1(b
′) = {a∗}, add b′ to the end of Bc. (If

there are more than one such b′, the order by which they are added to

Bc does not matter.)

ii. If Bc 6= [] then

(a) Let b∗ be the first element in Bc.

(b) rankB(b∗) = IB; IB = IB + 1.

(c) Delete b∗ from Bc.

(d) Delete b∗ from Br.

(e) For each a′ ∈ A such that B2(a
′) = {b∗}, add a′ to the end of Ac. (If

there are more than one such a′, the order by which they are added to

Ac does not matter.)

We now show the correctness of step 2.1 and that the best-response sequences for both

players under the orderings output by the procedure are non-decreasing.

Let Ari
and Bri

be the Ar and Br at the beginning of the ith loop and let Gi =

(Ari
, Bri

, u1, u2), we have the following properties of our procedure that guarantee the

precondition of 2.1 can always be satisfied.

Proposition 4.4.1 For each Gi = (Ari
, Bri

, u1, u2), we have

1. For all bj ∈ Bri
, B1(bj) ⊆ Ari

.

31



2. For all aj ∈ Ari
, B2(aj) ⊆ Bri

.

3. Gi has no best-response cycle

4. Every Nash equilibrium of Gi is also one of the original game G.

Proof: We prove this proposition by induction on i.

• Base case: It is easy to verify that G1 = G satisfies 1-4.

• Inductive case: Suppose Gi satisfies 1-4, we now verify 1-4 for Gi+1.

1. Suppose otherwise, there exists bj ∈ Bri+1
such that B1(bj) = {a} ⊆ Ari

\Ari+1

According to our procedure, a will be deleted during this loop, which means bj

will been added to Bc and deleted during this loop because Bc will be empty

at the end of the loop. This means bj ∈ Bri
\Bri+1

, a contradiction.

2. Similar to above.

3. 1-2 tells us the best-responses of Gi+1 are also best-responses of G. Suppose

Gi+1 has a best-response cycle, this cycle would still be one in G, a contradic-

tion.

4. This part also follows directly from 1-2.

Since Gi has no best-response cycle ⇔ Gi is best-response equivalent to an ordinal poten-

tial game ⇒ Gi has a Nash equilibrium. According to 1 and 4 of the above proposition,

Gi always has a Nash equilibrium. Up to now, we have proved that the precondition of

2.1 in our procedure can always be satisfied.

Proposition 4.4.2 The best-response functions under the orderings generated by our pro-

cedure are non-decreasing.

Proof: For B2 and for all a1, a2 ∈ A with a2 <1 a1, let B2(a1) = {b1} and B2(a2) = {b2},
we show in the following that b2 ≤1 b1.

If b1 = b2, we get to the conclusion immediately.

Now consider b1 6= b2, when b1 is the first element of Bc, a1 is added to the end of

Ac because B2(a1) = {b1}. Similarly, when b2 is the first element of Bc, a2 is added to

the end of Ac because B2(a2) = {b2}. Since a2 <1 a1, we must have a2 is added to Ac

later than a1. This means b2 appears as the first element of Bc later than b1. So we get

b2 <2 b1.

Similar for player B1.

32



4.5 Summary and discussion

To sum up, we have conducted theorem discovery on two types of theorems, the conditions

that imply the unique PNE payoffs as well as those imply the existence of PNE.

For the uniqueness part, our program returned a condition that is more general than

the strict competitiveness condition. As it turned out, it exactly corresponds to Kats

and Thisse’s [12] class of weakly unilaterally competitive two-person games. Our program

also returned some other conditions. Two of them capture a class of “unfair” games

where one player has advantage over the other. The remaining ones capture games where

everyone gets what he wants - each receives his maximum payoff in every equilibrium

state, thus there is no real competition among the players. Thus one conclusion that we

can draw from this experiment is that among all classes of games that can be expressed by

a conjunction of two binary clauses, the class of weakly unilaterally competitive games is

the most general class of “competitive” and “fair” games that have unique PNE payoffs.

Of course, this does not mean that the other conditions are not worth investigating. For

instance, sometimes one may be forced to play an unfair game.

For the same set of conditions, we also consider strict two-person games where dif-

ferent profiles have different payoffs for each player. Among the results returned by our

program, two of them are exactly the two conjuncts in Kats and Thisse’s weakly unilat-

erally competitive condition, but the others all turn out to be special cases of games with

dominant strategies. Motivated by these results, we consider certain equivalent classes of

games, and show that a strict game has a unique PNE iff it is best-response equivalent

[31] to a strictly competitive game.

For the existence part, the program outputs per se are not so exciting, as they are

among the special cases of either games with dominant strategies, potential games or

supermodular games. However, a closer look at them gives us very good intuition that

helps to prove a rather surprising result, which says that in strict games, potential games

and supermodular games are best response equivalent.

We want to advocate that this methodology be applied to more theorems. For instance,

one can also prove that if we replace the formula that we describe the unique PNE payoff

by the pareto optimality of PNE, the finitely verifiable property still holds. This amounts

to say that, to prove such a condition is a sufficient condition for pareto optimality of

PNE, it also suffices to verify it for all the 2 × 2 games. Moreover, as we mentioned,

even for some theorem format that may not pertain finitely verifiable property, as in

the existence case, going through our routine test still provides valuable conjectures and

intuitions which can aid later manual discovery.
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Chapter 5

Proving and discovering theorems in social choice
theory

“Social choice theory, a science of the impossible.”

—Handbook of social choices and welfare

Arrow’s Impossibility Theorem is one of the landmark results in social choice theory.

Over the years since the theorem was proved in 1950, quite a few alternative proofs

have been put forward. In this chapter, we propose yet another alternative proof of the

theorem. The basic idea is to use induction to reduce the theorem to the base case with

3 alternatives and 2 agents and then use computers to verify the base case. This turns

out to be an effective approach for proving other impossibility theorems such as Muller-

Satterthwaite and Sen’s theorems as well. Motivated by the insights of the proof, we

discover a new theorem with the help of computer programs. We believe this new proof

opens an exciting prospect of using computers to discover similar impossibility or even

possibility results.

5.1 Social choice theory and impossibility theorems

The particular theorems that we are interested in are the impossibility theorems such as

those by Arrow [2], Sen [35], and Muller and Satterthwaite [23] in social choice theory [1],

an area concerning about how individual preferences can be aggregated to form a collective

preference in a society. Social choice theory has sometimes been called “a science of the

impossible” because of the many famous impossibility theorems that have been proved

in it. Among them, Arrow’s theorem [2] on the non-existence of rational social welfare

function is without doubt the most famous one. It shows the non-existence of the collective

social preference (called social welfare function) even when some minimal standards such

as Pareto efficiency and non-dictatorship are imposed. Arrow’s original proof of this

result is relatively complex, and over the years, quite a few alternative proofs have been

advanced (see e.g [8, 4, 37, 9]).

We propose yet another alternative proof of this result, with the help of computers.

Briefly, Arrow’s theorem says that in a society with at least three possible outcomes

(alternatives) for each agent, it is impossible to have a social welfare function that satisfies
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the following three conditions: unanimity (Pareto efficiency), independent of irrelevant

alternatives (IIA), and non-dictatorship. We shall show by induction that this result

holds if and only if it holds for the base case when there are exactly two agents and

three alternatives (the single agent case is trivial). For the base case, we verify it using

computers in two ways. One views the problem as a constraint satisfaction problem

(CSP), and uses a depth-first search algorithm to generate all social welfare functions

that satisfy the first two conditions, and then verifies that all of them are dictatorial. The

other translates these conditions to a logical theory and uses a SAT solver to verify that

the resulting logical theory is not satisfiable. Either way, it took less than one second on

an AMD Opteron-based server (with 4 1.8GHz CPUs and 8GB RAM) for the base case

to be verified.

As it turns out, this strategy works not just for proving Arrow’s theorem. The same

inductive proof can be adapted almost directly for proving other impossibility results

such as Sen’s and Muller-Satterthwaite theorems. We have used it to prove Gibbard-

Satterthwaite theorem [10, 34] as well, but we leave its proof to the next chapter.

As a byproduct of our proof of Arrow’s theorem, the social welfare functions that

satisfies IIA only in the base case can all be generated by our program. To our surprise,

the number of such functions is so small that we are able to look at them one by one. By

doing so, we form an interesting conjecture and then prove it using the same techniques

as in the previous proofs. We then demonstrate the powerfulness of the newly proved

theorem by showing that it subsumes both Arrow’s and Wilson’s theorems.

These proofs suggest that many of the impossibility results in social choice theory are

all rooted in some small base cases. Thus an interesting thing to do is to use computers to

explore these small base cases to try to come up with new conjectures automatically, and

to understand the boundary between impossibility and possibility results. This is what

we think the long term implication of our new proofs of Arrow’s and other impossibility

theorems lies, and the main reason why we want to formulate the conditions in these

theorems in a logical language and use a SAT solver to check their consistency.

5.2 Arrow’s Theorem

A voting model is a tuple (N,O), where N is a finite set of individuals (agents) and O a

finite set of outcomes (alternatives). An agent’s preference ordering is a linear ordering

of O, and a preference profile > of (N,O) is a tuple (>1, ..., >n), where >i is agent i’s

preference ordering, and n the size of N . In the following, when N is clear from the

context, we also call > a preference profile of O. Similarly, when O is clear from the

context, we also call it a preference profile of N .
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Definition 5.1 Given a voting model (N,O), a social welfare function is a function W :

Ln → L, where L is the set of linear ordering of O, and n the size of N .

A social welfare function defines a social ordering for each preference profile. If we

consider the social ordering given by a social welfare function as the aggregates of the pref-

erence orderings of the individuals in the society, it is natural to impose some conditions

on it. For instance, it should not be dictatorial in that the aggregated societal preference

ordering always is the same as a particular individual’s preference. Arrow showed that a

seemingly minimal set of such conditions turns out to be inconsistent.

In the following, given a preference profile > = (>1, ..., >n), we sometimes write >W

for W (>). Thus both a >W b and a W (>) b mean the same thing: the alternative a is

preferred over the alternative b according to the societal preference ordering W (>).

Definition 5.2 A social welfare function W is unanimous (Pareto efficient) if for all

alternatives a1 and a2, we have that if a1 >i a2 for every agent i, then a1 >W a2

In words, if everyone ranks alternative a1 above a2, then a1 must be ranked above a2

socially.

Definition 5.3 A social welfare function W is independent of irrelevant alternatives

(IIA) if for all alternatives a1 and a2, and all preference profiles >′ and >′′, we have that

∀i a1 >′
i a2 iff a1 >′′

i a2 implies that a1 >′
W a2 iff a1 >′′

W a2.

Literally, IIA means that the relative social ordering of two alternatives depends only on

their relative orderings given by each agent and has nothing to do with other alternatives.

Definition 5.4 An agent i is a dictator in a social welfare function W if for all alterna-

tives a1 and a2, a1 >W a2 iff a1 >i a2. If there is a dictator in W , then it is said to be

dictatorial. Otherwise, W is said to be non-dictatorial.

It is easy to see that if there are at least two alternatives, then there can be at most one

dictator in any social welfare function.

Theorem 5.5 (Arrow’s theorem [2]) For any voting model (N,O), if |O| ≥ 3, then

any social welfare function that is unanimous and IIA is also dictatorial.

Arrow’s original proof of this result is somewhat complicated, and there are several

alternative proofs by others, e.g [8, 4, 9]. We now give yet another one using induction.
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5.3 An inductive proof of Arrow’s Theorem

For ease of presentation, we assume the following notations.

• For any set S, we use S−a to denote S \ {a}, i.e. the result of deleting a in S.

• We extend the above notation to tuples as well: if t = (t1, ..., tn), then we use t−i to

denote the tuple (t1, ..., ti−1, ti+1, ..., tn). Furthermore, we use (t−i, s) to denote the

result of replacing ith item in t by s: (t−i, s) = (t1, ..., ti−1, s, ti+1, ..., tn). We use

t−{i,j} to denote (t−i)−j.

• If > is a linear ordering of O, and a ∈ O, then we let >−a be the restriction of >

on O−a: for any a′, a′′ ∈ O−a, a′ >−a a′′ iff a′ > a′′. On the other hand, if > is a

linear ordering of O−a for some a ∈ O, then we let >+a be the extension of > to O

such that for any a′ ∈ O−a, a′ >+a a. Similarly, we let >a+ to be the extension of

> to O such that for any a′ ∈ O−a, a >a+ a′. Thus if > is a linear ordering of O,

and a ∈ O, then >+a
−a is (>−a)

+a, i.e. the result of moving a to the bottom of the

ordering. These notations extend to tuples of orderings. Thus if > is a preference

profile of (N,O−a), then

>+a = (>1, ..., >n)+a = (>+a
1 , ..., >+a

n ),

which will be a preference profile of (N,O). Similarly for >a+

Like any inductive proof, there are two cases for our proof, the inductive case and the

base case.

5.3.1 The inductive case

Lemma 5.6 If there is a social welfare function for n individuals and m + 1 alternatives

that is unanimous, IIA and non-dictatorial, then there is a social welfare function for n

individuals and m alternatives that satisfies these three conditions as well, for all n ≥
2,m ≥ 3.

Proof: Let N = {1, ..., n} be a set of n agents, O a set of m + 1 alternatives, and W

a social welfare function for (N,O) that satisfies the three conditions in the lemma. We

show that there is an a ∈ O such that the “restriction” of W on O−a also satisfies these

three conditions.

For any a ∈ O, we define the restriction of W on O−a, written Wa, to be the following

function: for any preference profile > = (>1, ..., >n) of O−a, Wa(>) = W (>+a)−a. In

other words, Wa(>) is the result of applying W to the preference profile >+a of O, and
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then projecting it on O−a. The key property of this welfare function is that for any a′

and a′′ in O−a, and any preference profile > of O−a, a′ Wa(>) a′′ iff a′ W (>+a) a′′.

We show that Wa is unanimous and IIA:

• Suppose a′, a′′ ∈ O−a and a′ >i a′′ for all i. By our definition a′ >+a
i a′′ for all i as

well. Since W is unanimous, a′ W (>+a) a′′. Thus a′ Wa(>) a′′. This shows that

Wa is unanimous.

• Let a′, a′′ ∈ O−a and >′, >′′ be two preference profiles of O−a such that ∀i a′ >′
i a′′

iff a′ >′′
i a′′. Thus ∀i a′ >′+a

i a′′ iff a′ >′′+a
i a′′ as well. Since W is IIA, a′ W (>′+a) a′′

iff a′ W (>′′+a) a′′. Hence a′ Wa(>
′) a′′ iff a′ Wa(>

′′) a′′. This shows that Wa is also

IIA.

We now show that there is an a ∈ O such that Wa is not dictatorial. First for any a ∈ O

and any a′, a′′ ∈ O−a, and any profile > of O, we have

a′ >W a′′ iff a′ W (>+a
−a) a′′. (5.1)

This follows because W is IIA and a′, a′′ ∈ O−a.

Now let b be any alternative in O. Suppose Wb has a dictator, say agent 1 in it. Since

W is not dictatorial, there must be a preference profile > of O and some c, d ∈ O such

that c >1 d but d >W c. Since |O| = m+1 > 3, we can find an alternative e ∈ O−b\{c, d}.
We now show that We is not dictatorial. Suppose otherwise. There are two cases:

• Agent 1 is again the dictator in We. Then We(>−e) and >1 agree on c and d.

Thus c We(>−e) d. By our definition of We, this means that c [W (>+e
−e)]−e d. Since

c, d ∈ O−e, this means that c W (>+e
−e) d. By (5.1), we have c >W d, a contradiction

with our assumption that d >W c.

• Another agent, say agent 2 is the dictator in We. Let a1 6= a2 be any two alternatives

in O \ {b, e}. This is possible since |O| > 3. Let >′ be a preference profile of O such

that a1 >′
1 a2 but a2 >′

2 a1. From a1 >′
1 a2, {a1, a2} ⊆ O−b, and that agent 1 is the

dictator in Wb, we can conclude a1 >′
W a2 as we have done in the previous case.

Similarly, from a2 >′
2 a1, {a,a2} ⊆ O−e, and that agent 2 is the dictator in We, we

can conclude a2 >′
W a1, a contradiction.

Thus we have shown that We cannot have a dictator.

Note that it is essential for our proof that m ≥ 3. Notice also that we only use the

assumptions that W is IIA and non-dictatorial in our proof that Wa is not dictatorial for

some a ∈ O. The assumption that W is unanimous is used only in showing that Wa is

also unanimous.
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Lemma 5.7 If there is a social welfare function for n + 1 individuals and m alternatives

that is unanimous, IIA and non-dictatorial, there will also be a social welfare function

for n individual and m alternatives that satisfies these three conditions as well, for all

n ≥ 2,m ≥ 3.

Proof: Let N = {1, ..., n, n + 1} be a set of agents, and O a set of m alternatives, and

W a social welfare function for (N,O) that satisfies the three conditions in the lemma.

For any i 6= j ∈ N , we define Wi,j to be the following social welfare function for (N−i, O):

for any preference profile > of (N,O), Wi,j(>−i) = W (>−i, >j), where (>−i, >j), as we

defined earlier, is the result of replacing >i in > by >j. Thus the social welfare function

Wi,j is defined through W by making agent i and agent j always agreeing with each

other. Clearly, for any i, j, Wi,j is unanimous and IIA because W satisfies these two

conditions. We now show that we can find two distinct agents i and j such that Wi,j is

not dictatorial. Suppose otherwise, for every pair i > j ∈ N , Wi,j is dictatorial. Now

consider three distinct agents i1 < i2 < i3 in N . This is possible because |N | = n+1 ≥ 3.

Suppose i is the dictator in Wi1,i2 , j the dictator in Wi1,i3 , and k the dictator in Wi2,i3 .

There are two cases:

• Case 1: i = j = k. Since W is not dictatorial, there is a profile > of (N,O)

and two alternatives a1 and a2 such that >W and >i disagree on a1 and a2, say

a1 >i a2 but a2 >W a1. Now at least two players from {i1, i2, i3} must agree on

a1, a2. Let these two players be j1 and j2, and without loss of generality, suppose

j1 < j2. Now consider the profile (>−j1 , >j2). Since W is IIA, and because >j1

and >j2 agree on a1 and a2, >W and W (>−j1 , >j2) must agree on a1 and a2. So

a2 W (>−j1 , >j2) a1. But i is the dictator in Wj1,j2 , Wj1,j2(>−j1) must agree with >i.

Since Wj1,j2(>−j1) is defined to be W (>−j1 , >j2), thus W (>−j1 , >j2) agrees with >i,

so a1 W (>−j1 , >j2) a2, a contradiction.

• Case 2: i 6= j or i 6= k or j 6= k. First, by our definition of Wx,y, and our assumption

that agents i, j, and k are dictators in Wi1,i2 , Wi1,i3 , and Wi2,i3 , respectively, for

any preference profile > of (N,O), if >i1 = >i2 = >i3 , then >W = >i, >W = >j,

and >W = >k. Since two of {i, j, k} must be distinct, this means that {i, j, k} ⊆
{i1, i2, i3}. Since i must be in N−i1 , so i 6= i1, thus i ∈ {i2, i3}. Similarly, j ∈ {i2, i3}
and k ∈ {i1, i3}. This leads to eight possible combinations for i, j, and k. Each of
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them will lead to a contradiction, using the following table:

(i, j, k) >i1 >i2 >i3

(i2, i2, i1) c > a > b a > b > c a > c > b

(i2, i2, i3) case 1

(i2, i3, i1) case 1

(i2, i3, i3) c > a > b b > c > a a > b > c

(i3, i2, i1) c > a > b a > b > c b > c > a

(i3, i2, i3) b > a > c b > c > a a > b > c

(i3, i3, i1) b > c > a b > a > c a > b > c

(i3, i3, i3) case 1

Each row in the above table either gives a preference profile that will lead to a

contradiction or point to “case 1”, meaning a contradiction can be derived similar

to case 1. For instance, consider the row (i, j, k) = (i2, i3, i1), which says “case 1”.

This case can be reduced to “case 1” as follows. Since i = i2 is the dictator in Wi1,i2 ,

i1 is the dictator in Wi2,i1 . Similarly, i1 is the dictator in Wi3,i1 because i3 = k is the

dictator in Wi1,i3 . Thus i1 is the dictator in Wi2,i1 , Wi3,i1 , and Wi2,i3 , and the same

reasoning in case 1 will lead to a contradiction here.

Now consider the first row (i, j, k) = (i2, i2, i1), and the preference profile > given

in the row:

c >i1 a >i1 b, a >i2 b >i2 c, a >i3 c >i3 b.

Because i2 = j is the dictator in Wi1,i3 , W (>−i1 , >i3) = >i2 . But >i1 and >i3 agree

on b and c, thus by IIA:

b >W c iff b W (>−i1 , >i3) c iff b >i2 c.

So

b >W c. (5.2)

Similarly, >i1 and >i2 agree on a and b, and i2 is the dictator in Wi1,i2 , thus a >W b

iff a >i2 b. So

a >W b. (5.3)

Now >i2 and >i3 agree on a and c, and i1 is the dictator in Wi2,i3 , thus a >W c iff

a >i1 c. So c >W a, which contradicts with (5.2) and (5.3). The other cases are

similar.

This means that there must be some i 6= j ∈ N such that Wi,j is not dictatorial.
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Again notice that it is essential for our proof that |N | = n + 1 ≥ 3, and that the

existence of a non-dictatorial Wi,j depends only on the assumptions that W is IIA and

non-dictatorial.

By these two lemmas, we see that Arrow’s theorem holds iff it holds for the case when

there are exactly two agents and three possible outcomes.1

5.3.2 The base case

We now turn to the proof of the base case, and as we mentioned earlier, we use computer

programs to do that.

The base case says that when |N | = 2 and |O| = 3, there is no social welfare function

on (N,O) that is unanimous, IIA, and non-dictatorial. A straightforward way of verifying

this is to generate all possible social welfare functions in (N,O) and check all of them

one by one for these three conditions. However, there are too many such functions for

this to be feasible on current computers: there are 3! = 6 number of linear orderings of

O, resulting in 6× 6 = 36 total number of preference profiles of (N,O), and 636 possible

social welfare functions.

Thus one should not attempt to explicitly generate all possible social welfare functions.

What we did instead is to generate explicitly all social welfare functions that satisfy the

conditions of unanimity and IIA, and then check if any of them is non-dictatorial.

We treat the problem of generating all social welfare functions that satisfy the condi-

tions of unanimity and IIA as a constraint satisfaction problem (CSP). A CSP is a triple

(V, D,C), where V is a set of variables, and D a set of domains, one for each variable

in V , and C a set of constraints on V (see, e.g. [33]). An assignment of the CSP is a

function that maps each variable in V to a value in its domain. A solution to the CSP is

an assignment that satisfies all constraints in C.

Now consider the voting model ({1, 2}, {a, b, c}) in our base case. We define a CSP

for it by introducing 36 variables x1, ..., x36, one for each preference profile of the voting

model. The domain of these variables is the set of 6 linear orderings of {a, b, c}, and

the constraints are the instantiations of the unanimity and IIA conditions on the voting

model. As can be easily seen, there is a one-to-one correspondence between the social

welfare functions of the voting model and the assignments of the CSP. Furthermore, a

solution to the CSP corresponds to a social welfare function that satisfies the unanimity

and IIA conditions, and vice versa.

To solve this CSP, we use a depth-first search that backtracks whenever the current

partial assignment violates the constraints, and implemented it in SWI-Prolog. As we

1Technically speaking, we also need to consider the case when |N | = 1, but this is a trivial case.
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mentioned earlier, when run on our AMD server machine, our Prolog program returned

in less than one second two solutions, one corresponds to the social welfare function where

agent 1 is the dictator, and the other agent 2 the dictator.

This verifies the base case of our inductive proof of Arrow’s theorem, thus completes

our proof. As mentioned in the introduction, we also verified the base case using a SAT

solver. This requires a logical language to encode postulates in social choice theory, and

will be described in a separate section below.

At last, it is worth noting that Suzumura [37] also provided, in his presidential address

to the Japanese Economic Association, a specific backwards induction proof that reduces

Arrow’s theorem to two agents (but n alternatives) base case and then proves the base

case with almost the same amount of efforts as the inductive case. In contrast, our further

reduction to three alternatives case makes the computational verification possible and as

we will show, our reduction to two agents case is more general and can be used to prove

other impossibility theorems.

5.4 Muller-Satterthwaite Theorem

As mentioned before, the same strategy that we used for proving Arrow’s theorem can

be used to prove other impossibility theorems. In fact, we have modified the above proof

for proving Sen’s and Muller-Satterthwaite theorems. We prove in the following Muller-

Satterthwaite theorem (cf. eg. [18]).

Arrow’s theorem is about the social welfare function which maps a preference profile

to a preference ordering. In comparison, Muller-Satterthwaite theorem concerns about

social choice function which maps a preference profile to an outcome which is supposed

to be the “winner” of the election (as represented by the preference profile).

Definition 5.8 Given a voting model (N,O), a social choice function is a function C :

Ln → O, where L is the set of linear orders on O, and n the number of agents in N .

Instead of the conditions of unanimity, IIA, and non-dictatorship in Arrow’s theorem,

Muller and Satterthwaite considered the following three corresponding conditions.

Definition 5.9 A social choice function C is weakly unanimous if for every preference

profile >, if there is a pair of alternatives a1, a2 such that a1 >i a2 for every agent i, then

C(>) 6= a2.

Thus according to this condition, an alternative that is dominated by another should

never be selected.
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Definition 5.10 A social choice function C is monotonic if, for every preference profile

> such that C(>) = a, if >′ is another profile such that a >′
i a′ whenever a >i a′ for

every agent i and every alternative a′, then C(>′) = a as well.

In words, monotonicity means that if a choice function selects an outcome for a preference

profile, then it will also select this outcome for any other preference profile that does not

decrease the ranking of this outcome.

Definition 5.11 An agent i is a dictator in a social choice function C if C always selects

i’s top choice: for every preference profile >, C(>) = a iff for all a′ ∈ O that is different

from a, a >i a′. C is non-dictatorial if it has no dictator.

Theorem 5.12 (Muller-Satterthwaite Theorem [23]) For any voting model (N,O)

such that |O| ≥ 3, any social choice function that is weakly unanimous and monotonic is

also dictatorial.

Like our proof of Arrow’s theorem, we prove this theorem by induction. The inductive

step is again by two lemmas similar to the ones for Arrow’s theorem.

Lemma 5.13 If there is a social choice function for n individuals and m+1 alternatives

that is weakly unanimous, monotonic and non-dictatorial, then there is also a social choice

function for n individuals and m alternatives that satisfies these three conditions, for all

n ≥ 2,m ≥ 3.

Proof: Let (N,O) be a voting model such that |N | = n and |O| = m + 1, and C a social

choice function that satisfies the three conditions in the lemma. Just like our proof of the

corresponding Lemma 6.7, for any a ∈ O, we define Ca to be a social choice function that

is the “restriction” of C on O−a: for any preference profile > of O−a, Ca(>) = C(>+a).

Again it can be easily seen that for any a ∈ O, Ca is weakly unanimous and monotonic.

Now we show that there is one such a such that Ca is non-dictatorial.

Suppose otherwise: for any a, Ca is dictatorial. We start by assuming Cb has a dictator

i. Since C is non-dictatorial, we can find a profile >∈ O such that C(>) = c 6= d, where

d is top ranked outcome according to >i. Since there are |m + 1| ≥ 4 outcomes, we can

find another outcome e that is distinct from b, c, d. Now we consider Ce, there are two

cases:

• Ce still has agent i as its dictator. We have d = Ce((>)−e) = C((>)+e
−e), but accord-

ing to monotonicity, we have C((>)+e
−e) = C(>) = c, which leads to a contradiction

since c 6= d.
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• Ce has a dictator j 6= i. For any preference profile >′∈ O such that f is ranked top

according to >′
i, g is ranked top according to >′

j, f 6= g and f, g are distinct from b, e,

we consider the following two preference profiles >′′= ((>)+b
−b)

+e
−e and >′′′= ((>)+e

−e)
+b
−b.

Clearly, we have C(>′′) = g and C(>′′′) = f . However, according to monotonicity,

we have C(>′′) = C(>′′′). This leads to a contradiction.

Therefore, Ce cannot have a dictator. So we have prove that there is always a outcome a

so that Ca is non-dictatorial.

Lemma 5.14 If there is a social choice function for n+1 individuals and m alternatives

that is weakly unanimous, monotonic and non-dictatorial, then there is also a social choice

function for n individuals and m alternatives that satisfies these three conditions, for all

n ≥ 2,m ≥ 3.

Proof: Let (N,O) be a voting model such that |N | = n + 1 and |O| = m, and C a

social choice function that satisfies the three conditions in the lemma. Just like our proof

of Lemma 6.8, for any pair of agents i 6= j ∈ N , we define Ci,j to be the following

social welfare function for (N−i, O): for any preference profile > of (N,O), Ci,j(>−i) =

C(>−i, >j). Again it can be easily seen that for any pair of agents i 6= j, Ci,j is weakly

unanimous and monotonic.

We prove in the following that we can find two distinct agents i, j such that Ci,j is

non-dictatorial. Suppose not, then for every pair of agents i, j, there is an agent di,j that is

a dictator of Ci,j. We first show that di,j = j for any i, j. Suppose otherwise, di,j = k 6= j.

Since C is non-dictatorial, we can find a profile > such that a = C(>) 6= b where b is on

top of >k. We then still have C(>−{i,j}, (>j)
a+
−a, (>j)

a+
−a) = a according to monotonicity

of C. But according to the dictatorship of Ci,j, we have C(>−{i,j}, (>j)
a+
−a, (>j)

a+
−a) = b, a

contradiction. Therefore, we have di,j = j for any i, j.

Now consider a profile any > on (N + 1, O), any triple of agents i, j, k and any triple

of alternatives (this is possible since |N + 1| ≥ 3, |O| ≥ 3) where

• a >i c >i b >i ... for >i

• c >j b >j a >j ... for >j

• b >k a >k c >k ... for >k

Notice that >i, >j, >k only differ in {a, b, c}. There are the following cases:

1. C(>) = a, then we change >j to >k and denote the new profile >′. By monotonicity,

we still have C(>′) = a. This leads to the contradiction that dj,k 6= k.
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2. Other cases where C(>) = b, c or other alternatives are similar to the case above.

Therefore, we conclude that there are two distinct agents i, j such that Ci,j is non-

dictatorial.

For the base case again notice that the case for N = 1 is trivial, thus we need only

to consider the case when there are two agents and three alternatives. Again the number

of all possible social choice functions is too large to enumerate explicitly, but both our

methods for verifying the base case in Arrow’s theorem can be adapted here. For the

depth-first search method, our program similarly reported that there are exactly two

social choice functions that are weakly unanimous and monotonic, and both of them are

dictatorial.

One additional interesting thing to note is that it is also extremely fast to generate all

the social choice functions that satisfy monotonicity only. There are 17 functions returned

in total: 2 are dictatorships, 3 are constant and the remaining 12 are all functions whose

ranges contain 2 elements. Since a generalization of Muller Satterthwaite theorem [26]

says that the condition weak unanimity can be weakened by only requiring that the range

contains at least 3 elements, these 12 functions are the only interesting ones to look at

when one wants to completely generalize the monotonicity condition.

Notice that our proof outlined above parallels our earlier proof of Arrow’s theorem

but does not make use of Arrow’s theorem. In contrast, the existing proofs such as those

in [23, 18, 26] are more complicated and [23, 18] rely on Arrow’s theorem.

5.5 Sen’s Theorem

We show in the following that our proof can also be copied to prove the impossibility

theorem by Sen [35].

Definition 5.15 A collective choice rule is a functional relationship F : Ln → R that

specifies one and only one social preference relation r for any preference profile.

The set R of preference relations includes all the possible binary relations. Particularly,

the members of R are not necessarily transitive or complete. However, Sen focused only

on social decision functions, a subset of collective choice rules with certain restriction on

R.

Definition 5.16 A social decision function is a collective choice rule C : Ln → R such

that for each r ∈ R, r should generate a choice function.
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A preference relation r should generate a “choice function” if according to r, there

exists a best alternative in every subset of alternatives. In other words, there exists an

alternative that is at least as preferred as any other alternative in that subset.

Sen then suggested three conditions which should be satisfied by any rational social

decision function, namely unrestricted domain (condition U), unanimity (condition P,

named after Pareto principle) and liberalism (condition L).

The first two conditions are mentioned explicitly or implicitly in Arrow’s framework:

unrestricted domain says that all the possible preference profiles should be included in

the domain of a social decision function while unanimity is exactly the same one as in

Arrow’s theorem.

The third condition, liberalism, is somewhat debatable. The intuitive justification

behind is that each individual has the freedom to determine at least one social choice.

For example, I should feel free to have my own garden planted lily rather than rose.

Definition 5.17 Liberalism: For each individual i, there is at least one pair of alterna-

tives, say (a1, a2), such that this individual is decisive for (a1, a2)
2.

Theorem 5.18 (Sen’ Theorem [35]) There is no social decision function that can

simultaneously satisfy U, P and L.

Sen further weakened the condition L to be the following form L∗,

Definition 5.19 Liberalism* There are at least two individuals such that for each of them

there is at least one pair of alternatives over which he is decisive.

In other words, condition L∗ only guarantees the freedom for two individuals instead

of everyone in the society, as required by condition L. The following theorem subsumes

Theorem 5.18.

Theorem 5.20 (Sen’ Theorem [35]) There is no social decision function that can

simultaneously satisfy Conditions U, P, and L∗, for any voting model with |N | ≥ 2 and

|O| ≥ 3.

We prove in the following Theorem 5.20. The inductive step consists of the following

two lemmas

Lemma 5.21 If there is a social decision function for m+1 alternatives and n outcomes

that satisfies U, P and L∗, then there is a social decision function for m outcomes and n

individuals that satisfies these three conditions as well, for all m ≥ 4.

2i is decisive for (a1, a2) if i prefers a1 to a2 implies that a1 is preferred to a2 according to the social

preference relation returned by the decision function.
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Proof: Let (N,O) be a voting model such that |N | = n and |O| = m + 1, and C a social

decision function that satisfies the three conditions in the lemma. For any a ∈ O, we

define Ca to be a function that is the “restriction” of C on O−a: for any preference profile

> of O−a, Ca(>) = C(>+a)−a.

• Ca is still a social decision function. Since C is a social decision function, so the

range of C is the set of preferences that can generate a choice function. That is,

for any subset of outcomes, there is a best outcome. This outcome will still be the

best after we restrict on Ca since a is less preferred than any other outcome by

unanimity.

• The property of U and P of Ca follows directly from that of C.

• Since C satisfies L∗, we can always find two individuals and their decisive pairs

(a1, a2) and (a3, a4) respectively. Since |m + 1| ≥ 5, we can find an element a5

that is not in {a1, a2, a3, a4}. Now we can see that Ca5 still satisfies L∗ because the

two decisive individuals are still decisive for their pairs of alternatives (a1, a2) and

(a3, a4).

Lemma 5.22 If there is a social decision function for m alternatives and n+1 outcomes

that satisfies U, P and L∗, then there is a social decision function for m outcomes and n

individuals that satisfies these three conditions as well, for all n ≥ 2.

Proof: By the property L∗ of C, we have two individuals j, k that are decisive for their

own pair of outcomes. We can also find another distinct agent i, since there are at least

2+1 three individuals for C. We now define Ci,j to be the following social welfare function

for (N−i, O): for any preference profile > of (N,O), Ci,j(>−i) = C(>−i, >j). Then Ci,j is

still a social decision function and all the three properties follows directly from that of C.

Notice that we have m ≥ 4 in lemma 5.21, so the base case for Sen’s theorem is |N | = 2

and |O| = 3, 4. We can still check it by our depth-first search algorithm, which we do not

want to repeat here.

5.6 Discovering new theorems

We have been advocating a methodology of theorem discovering using computers [15, 39].

The basic idea is to look for conjectures that are true in small domains using computers.
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Once we find such a conjecture, we then hope it to be true in general. In the following,

we present a new theorem discovered this way.

5.6.1 An observation in small domain

Recall that in our CSP formulation of the base case of Arrow’s theorem, constraints are

the instantiations of both IIA and Unanimity conditions. Using the same algorithm, we

can generate all the functions that satisfies IIA by restricting the constraints to be the

instantiations of IIA only.

To our surprise (not so surprised if one is familiar with Wilson’s theorem [45], which

will be introduced later in this section), among the total 636 social welfare functions, they

are only 94 of them satisfying IIA. This seems to suggest that the impossibility in Arrow’s

theorem is actually not caused by the conflict between unanimity and IIA but mostly by

IIA, which is too strong for a social welfare function to satisfy.

Among these 94 functions, 2 of them are dictatorial, 2 of them are inversely dictatorial

which means the social order of the function is always opposite to someone’s individual

order, and each of the remaining 90 functions has at most two values in the range. Of

course among the 90 functions, there are 6 constant functions, each of which has exactly

one value. Moreover, for any of the remaining 84 functions which have two different

values, the distance between these values is at most one pair of outcomes. For example,

if one value is a1 >W a2 >W a3, then the other value can only be a2 >W a1 >W a3 or

a1 >W a3 >W a2.

Definition 5.23 An agent i is a inverse dictator in W if for all alternatives a1 and a2,

a1 >W a2 iff a2 >i a1. If there is a inverse dictator in W , then it is said to be inversely

dictatorial.

Definition 5.24 The (Kendall tau) distance of two orderings on O is the number of pairs

of outcomes where two orderings disagree.

When IIA holds for a function W , we can define from it a social welfare function WY :

Ln
Y → LY , the restriction of W on an arbitrary non-empty subset Y of O, where LY is

the restriction of L on Y and for any profile >′∈ Ln
Y , WY (>′) = W (>)Y , for any >∈ Ln

such that >Y =>′.

We then generalize the above observation in small domain into the following theorem.

Theorem 5.25 If a social welfare function W on (N,O) satisfies IIA, then for every

subset Y of O such that |Y | = 3,

1. WY is dictatorial, or
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2. WY is inversely dictatorial, or

3. The range of WY has at most 2 elements, whose the distance is at most 1.

Notice that 1-3 are pairwise disjoint. Fortunately, by observation we have already proved

the base case for theorem 5.25.

Lemma 5.26 If a social welfare function W on (N,O) where |N | = 2, |O| = 3 satisfies

IIA,

1. W is dictatorial, or

2. W is inversely dictatorial, or

3. The range of W has at most 2 elements, whose distance is at most 1.

We show in the following the inductive step hold for this theorem too.

5.6.2 The inductive step

We first prove the following lemma that translates dictatorship to unanimity and trans-

lates inverse dictatorship to inverse unanimity under IIA.

Definition 5.27 A social welfare function W is inversely unanimous (inversely Pareto

efficient) if for all alternatives a1 and a2, we have that if a1 >i a2 for all agent i, then

a2 >W a1

Lemma 5.28 If a social welfare function W on (N,O) where |O| ≥ 3 satisfies IIA, then

1. W is dictatorial iff W is unanimous;

2. W is inversely dictatorial iff W is inversely unanimous.

Proof: Assuming IIA,

1. if W is unanimous, by Arrow’s theorem, it is dictatorial; if W is dictatorial, by the

definition of unanimity, it is unanimous.

2. Now if W is inversely dictatorial, but W is not inversely unanimous, we can construct

a new function W ′ such that a >W b iff b >W ′ a for any (a, b) and any preference

profile >. We can see that W ′ satisfies IIA and dictatorial, but not unanimity. This

contradicts to what we have proved above; similarly, if W is inversely unanimous

but not inversely dictatorial, we can construct the same W ′ that satisfies IIA and

unanimity but not dictatorial, violating Arrow’s theorem.
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By the following lemma, together with Lemma 5.28, we can extend Lemma 5.26 to

voting models with any number of agents.

Lemma 5.29 If there is a social welfare function for n + 1 individuals and 3 outcomes

that is IIA, but not unanimous or inversely unanimous and its range has two elements

whose distance is at least 2, then there is a social welfare function for n individuals and

3 outcomes that is IIA, but not unanimous or inversely unanimous and its range has two

elements whose distance is at least 2 as well.

Proof: Let N = {1, ..., n, n+1} be a set of agents, and O = {a, b, c} a set of 3 alternatives,

and W a social welfare function for (N,O) that satisfies the four conditions in the lemma.

The same as before, for any i 6= j ∈ N , we define Wi,j to be the following social welfare

function for (N−i, O): for any preference profile > of (N,O), Wi,j(>−i) = W (>−i, >j),

where (>−i, >j) is the result of replacing >i in > by >j. Clearly, for any i, j, Wi,j is IIA,

not unanimous or inversely unanimous because W satisfies these three conditions. We

now show that we can find two distinct agent i, j such that the range of Wi,j has two

elements whose distance is at least 2.

Since there exist two preference profiles > and >′ such that W (>) differs from W (>′)

in at least two pair of outcomes, say (a, b) and (a, c). Since W is IIA, its restrictions

W{a,b} and W{a,c} are well defined. Now we consider W{a,b}(a > b, . . . , a > b), W{a,b}(b >

a, . . . , b > a), W{a,c}(a > c, . . . , a > c) and W{a,c}(c > a, . . . , c > a). There are four cases

as follows:

1. W{a,b}(a > b, . . . , a > b) 6= W{a,b}(b > a, . . . , b > a) and W{a,c}(a > c, . . . , a >

c) 6= W{a,c}(c > a, . . . , c > a). Without loss of generality, we suppose W (>) agrees

with W{a,b}(a > b, . . . , a > b) in (a, b) and agrees with W{a,c}(a > c, . . . , a > c)

in (a, c), therefore W (>′) agrees with W{a,b}(b > a, . . . , b > a) in (a, b) and agrees

with W{a,c}(c > a, . . . , c > a) in (a, c). Now we consider a profile >′′= (a > b >

c, . . . , a > b > c), clearly W (>) agrees with W (>′′) in (a, b), (a, c); similarly, for

>′′′= (c > b > a, . . . , c > b > a), W (>′) agrees with W (>′′′) in (a, b), (a, c). So

W (>′′) and W (>′′′) differ in (a, b), (a, c). For two profiles >′′
−i, >′′′

−i, their values of

Wi,j differ in (a, b), (a, c) for any j.

2. W{a,b}(a > b, . . . , a > b) = W{a,b}(b > a, . . . , b > a) and W{a,c}(a > c, . . . , a > c) 6=
W{a,c}(c > a, . . . , c > a). Without loss of generality, we suppose W (>) agrees with

W{a,b}(a > b, . . . , a > b) in (a, b) and agrees with W{a,c}(a > c, . . . , a > c) in (a, c),

therefore W (>′) agrees with W (c > a, . . . , c > a) in (a, c). Now we consider a profile

>′′= (a > b > c, . . . , a > b > c), clearly W (>) agrees with W (>′′) in (a, b), (a, c);
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we can also construct another profile >′′′ such that >′′′ has c > a for each agent and

>′′′ with >′ on (a, b) for each agent. So W (>′′) and W (>′′′) differ in (a, b), (a, c).

Now we look at the relation of (a, b) in >′′′, since there are at least 3 agents, we

can always find two agents, say i, j that agree on (a, b). For profiles >′′
−i, >′′′

−i, their

values of Wi,j differ in (a, b), (a, c).

3. W{a,b}(a > b, . . . , a > b) 6= W{a,b}(b > a, . . . , b > a) and W{a,c}(a > c, . . . , a > c) =

W{a,c}(c > a, . . . , c > a). This case is similar to case 2 above.

4. W{a,b}(a > b, . . . , a > b) = W{a,b}(b > a, . . . , b > a) and W{a,c}(a > c, . . . , a > c) =

W{a,c}(c > a, . . . , c > a). In this case, we first show that there exist two profiles

>1 and >2 such that W (>1) and W (>2) differ in (b, c). We construct >1 in such a

way that >1 agrees with either > or >′ in (a, b) for each player so that b >1
W a and

>1 agrees with either > or >′ in (a, c) for each player so that a >1
W c. Therefore,

we have b >1
W a >1

W c. Similarly, we can construct >2 so that c >2
W a >2

W b. In

this way, W (>1) and W (>2) differ in (a, b), (b, c), (a, c). Now we consider further

W{b,c}(c > b, . . . , c > b) and W{b,c}(b > c, . . . , b > c). There are two cases:

• W{b,c}(c > b, . . . , c > b) 6= W{b,c}(b > c, . . . , b > c), then this case will still be

case 2 by considering (a, b), (b, c) instead.

• W{b,c}(c > b, . . . , c > b) = W{b,c}(b > c, . . . , b > c). We prove in the following

that this case is impossible. Suppose W (a > b > c, . . . , a > b > c) = o1 >

o2 > o3 where (o1, o2, o3) is a permutation of (a, b, c). Now we construct a

new profile >∗ where o2 is always on top of each agent’s preference and >∗

agrees with either >1 or >2 in (o1, o3) for each player so that o3W (>∗)o1. But

since o2 is always on top such that we have o1W (>∗)o2 and o2W (>∗)o3 because

W{a,b}(a > b, . . . , a > b) = W{a,b}(b > a, . . . , b > a), W{a,c}(a > c, . . . , a > c) =

W{a,c}(c > a, . . . , c > a) and W{b,c}(c > b, . . . , c > b) = W{b,c}(b > c, . . . , b > c).

By transitivity, we have o1W (>∗)o3, which is a contradiction.

Since W is IIA, its restriction on any non-empty subset Y of |O| is still IIA. Therefore

our Theorem 5.25 follows from Lemma 5.26, 5.28 and 5.29.

5.6.3 The implication of the new theorem

We show in the following how to use Theorem 5.25 to prove two existing theorems.

A brief proof of Arrow’s Theorem
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One immediate implication of theorem 5.25 is Arrow’s theorem. Given that a social

welfare function W on (O,N) is IIA, by applying theorem 5.25, we know WY is either

of the three cases when Y ⊆ |O|, |Y | = 3. If W is further unanimous assumed by

Arrow’s theorem, so is WY . Clearly WY can only be case 1 for any Y . In other words,

The restriction of W on any three-element subset is dictatorial. Now we arbitrarily

choose such a Y = {a1, a2, a3}, suppose the dictator in WY is i. Then i will still be a

dictator in WY 1 , where Y 1 = {a1, a2, a4} for any a4 ∈ O \ Y , since there can only be

one agent that is decisive for the pair (a1, a2). Similarly, i is still the dictator for WY 2 ,

where Y 2 = {a1, a3, a4} or {a2, a3, a4}, {a1, a4, a5} or {a4, a5, a6} for any distinct a5, a6.

Therefore, we prove that all the restrictions of W on three-elements subset have a common

dictator i. Since i is decisive for any pair in O2, i is a dictator in W .

A brief proof of Wilson’s Theorem

There have been fruitful researches on relaxing the unanimity condition in Arrow’s

framework. In other words, these researches also aim at finding the implication of IIA

condition. One of the most famous one is Wilson’s Theorem [45]. It states that even with

a condition called nonimposition that is much weaker than unanimity, IIA can already

imply dictatorship or inverse dictatorship.

Definition 5.30 A social welfare function W is nonimposition if for all distinct alterna-

tives a1 and a2, there exists a preference profile > such that a1 >W a2

Theorem 5.31 (Wilson’s theorem [45]) For any voting model (N,O), if |O| ≥ 3,

then any social welfare function that satisfies nonimposition and IIA is either dictatorial

or inversely dictatorial.

Theorem 5.25 also implies Wilson’ theorem as well. Given that a social welfare function

W on (O,N) is IIA, by applying Theorem 5.25, we know WY is either of the three cases

when Y ⊆ |O|, |Y | = 3. If W is further nonimposition assumed by Wilson’s theorem,

so is WY . Therefore WY can only be dictatorial or inversely dictatorial since case 3 in

Theorem 5.25 obviously violates nonimposition. Dictatorship or inverse dictatorship then

follows from similar arguments to those of Arrow’s theorem above.

5.7 A logical language for social choice theory

As we mentioned earlier, we are not only interested in alternative proofs of existing theo-

rems or even the manual discovery of new theorem like what we did in section 5.25. Our

long term goal is to automate the discovery of theorems in social choice theory, game

theory, and others [15, 39]. One insight of our new proofs is that these known impossi-

bility results are all rooted in some small base cases. Thus by experimenting with other
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conditions in small cases, we could discover some new results. To fully automate the

enumeration and verification process of these conditions, we propose a logical language

for social choice theory.

This language is a variant of the situation calculus [20], one of the best known lan-

guages in AI. For representing Arrow’s theorem, we use two predicates: p(x, a, b, s) (in

the situation s, agent x prefers a over b) and w(a, b, s) (in the situation s, a is preferred

over b according to the social welfare function). The intuition is that in each situation,

there is a preference ordering for each player (represented by predicate p), and a social

welfare function for the society (predicate w). The requirement that the preferences be

linear corresponds to the following axioms:

p(x, a, b, s) ∨ p(x, b, a, s) ∨ a = b, (5.4)

¬p(x, a, a, s) ∧ ¬w(a, a, s), (5.5)

p(x, a, b, s) ∧ p(x, b, c, s) ⊃ p(x, a, c, s), (5.6)

w(a, b, s) ∨ w(b, a, s) ∨ a = b, (5.7)

w(a, b, s) ∧ w(b, c, s) ⊃ w(a, c, s), (5.8)

where “⊃” is the logical implication operator. We have used the convention that all

free variables in a formula are implicitly universally quantified from outside unless stated

otherwise. So the full sentence for the first axiom above is:

∀x, a, b, s.p(x, a, b, s) ∨ p(x, b, a, s) ∨ a = b.

We also need an axiom which says that the predicate w indeed represents a function that

aggregates individual preferences:

[∀x, a, b.p(x, a, b, s1) ≡ p(x, a, b, s2)] ⊃
[∀a, b.w(a, b, s1) ≡ w(a, b, s2)]. (5.9)

The unanimity condition corresponds to the following axiom:

∀a, b, s.[∀x p(x, a, b, s)] ⊃ w(a, b, s), (5.10)

the non-dictatorship condition the following axiom:

¬∃x∀s, a, b.p(x, a, b, s) ≡ w(a, b, s), (5.11)

and the IIA condition the following one:

∀a, b, s1, s2.[∀x.p(x, a, b, s1) ≡ p(x, a, b, s2)] ⊃
[w(a, b, s1) ≡ w(a, b, s2)], (5.12)
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Furthermore, we need to say that each preference profile is represented by some situation

(the assumption of unrestricted domain). One way to do it is to introduce an action

swap(x, a, b) which when performed will swap the positions of a and b in agent x’s pref-

erence ordering.

p(x, a, b, do(swap(x, a, b), s)) ≡ p(x, b, a, s),

where in general, do(A, s) denotes the situation resulting from doing action A in s. We

also need other axioms to say that in the new situation, agent x prefers a′ over b iff she

prefers a′ over a before, she prefers a′ over a iff she prefers a′ over b before, that this

action has no effects on the orderings of other pairs of alternatives, and no effect on the

preference orderings of other agents. All these can be conveniently specified using Reiter’s

successor state axioms:

p(x, a, b, do(swap(y, a1, b1), s)) ≡
p(x, a, b, s) ∧ [x 6= y ∨ (a 6= a1 ∧ a 6= b1 ∧

b 6= a1 ∧ b 6= b1)] ∨
x = y ∧ a = a1 ∧ b = b1 ∧ p(x, b, a, s) ∨
x = y ∧ a = a1 ∧ b 6= b1 ∧ b 6= a ∧ p(x, b1, b, s) ∨
x = y ∧ b = b1 ∧ a 6= a1 ∧ b 6= a ∧ p(x, a, a1, s).

This way, given an initial situation S0 that encodes any preference profile, we can get

any other preference profile by performing a sequence of swapping actions in S0.

However, if we are given a specific voting model, we can name each preference profile

explicitly by a situation constant. For instance, for the voting model ({1, 2}, {a, b, c}) cor-

responding to the base case in our proof of Arrow’s theorem, there are 36 different profiles,

so we introduce 36 situation constants S1, ..., S36, and add axioms like the following ones

to define them:

p(1, a, b, S1) ∧ p(1, a, c, S1) ∧ p(1, b, c, S1),

p(2, a, b, S1) ∧ p(2, a, c, S1) ∧ p(2, b, c, S1).

In fact, this is what we did for using a SAT solver to verify the base case in our inductive

proof of Arrow’s theorem. We instantiated the axioms (5.10) – (5.12) as well as the general

axioms about p and w on ({1, 2}, {a, b, c}), and converted them as well as the axioms like

the above ones for the 36 situation constants to clauses. The resulting set of clauses has

35973 variables and 106354 clauses, and we were surprised that the SAT solver Chaff2 [22]

returned in less than 1 second when run on our AMD server machine and confirmed that

the set of clauses has no models.
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5.8 Summary and discussion

We have given a new proof of Arrow’s theorem. The basic idea is extremely simple:

use induction to reduce it to the base case which is then verified using computers. One

remarkable thing about it is that it appears to be a very general approach for proving other

theorems in the area. In fact, we have adapted it almost straightforwardly to proving two

other well-known theorems of the same nature, one by Muller and Satterthwaite and the

other by Sen.

One insight we have obtained from the proof is that theorems that are verified to be

true in the small base cases are extremely likely to be true in general. That is how we

have discovered and proved our new theorem in section 5.6.

If all these axioms in social choice theory can be checked in base case as fast as those

in Arrow’s theorem, an interesting future work is to verify all the possible combinations of

these candidate axioms using a computer program and then try to extend the survivors to

general case using the “two-lemma trick” introduced in the inductive step. To facilitate

the above systematical generation and verification process, it becomes nature to describe

these axioms in a logical language that is easy in syntax and semantics as well as allows

for fast implementation. That is why we have proposed a new logical formalism for social

choice theory despite the rich literature. In fact, we did discover this way two theorems,

as described in [17]. It is pity that both theorems can be implied immediately by existing

theorems. We are still exploring this territory to see if we could come up with something

new.
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Chapter 6

Proving theorems in implementation theory

Implementation theory, which, given a social goal, characterizes when we can

design a mechanism whose predicted outcomes (i.e., the set of equilibrium

outcomes) coincide with the desirable outcomes, according to that goal.

—Eric Maskin

The Gibbard-Satterthwaite Theorem is a landmark result in both social choice the-

ory and implementation theory, as it bridges normative and strategic analysis of voting

problems. The theorem states that any social choice function that is strategy-proof and

onto is also dictatorial. In this chapter, we provide a computer-aided inductive proof for

the theorem. We first show that this result holds if and only if it holds for the base case

where there are exactly 2 agents and 3 alternatives. We then verify the base case using

a computer program. Following the same strategy, we prove Maskin’s theorem on Nash

implementation as well. These proofs successfully generalize this general methodology

from social choice theory to implementation theory.

6.1 Gibbard-Satterthwaite Theorem

As introduced before, a voting model is a tuple (N,O), where N is a finite set of individuals

(agents) and O a finite set of outcomes (alternatives). An agent’s preference ordering is

a linear ordering of O, and a preference profile > of (N,O) is a tuple (>1, ..., >n), where

>i is agent i’s preference ordering, and n the size of N . In the following, when N is clear

from the context, we also call > a preference profile of O. Similarly, when O is clear from

the context, we also call it a preference profile of N .

Definition 6.1 Given a voting model (N,O), a social choice function is a function W :

Ln → O, where L is the set of linear ordering of O, and n the size of N .

The first assumption about a social choice function is that of onto.

Definition 6.2 A social choice function C is an onto if for each a ∈ O, there exists a

>∈ Ln such that C(>) = a.
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In other words, this assumption guarantees that every alternative has a chance to win.

Before we get to the second assumption called strategy-proof, we need another concept

called manipulation.

Definition 6.3 A social choice function C is manipulable at profile > by individual i via

>′ if C(>−i, >
′
i) >i C(>), where (>−i, >

′
i) is the profile resulting from replacing >i with

>′
i in >.

Manipulability is a typical feature of strategic voting in contrast with normative voting

where agents always report the truth. If a social choice function C is manipulable, there

is always a state where some agent is better off by lying about his true preference, thus

the resulting outcome may not truthfully represent a social choice. Manipulability is not

a desirable property and should be precluded from the picture of a rational social choice

function.

Definition 6.4 A social choice function is strategy-proof if it is not manipulable by any

individual at any profile.

Strategy-proof is sometimes said to be dominant strategy incentive compatible, because

if a choice function is strategy-proof, then every agent always has the incentive to report

his true preference in the sense that no matter what the other agents report, he is better

off to report his true preference.

Definition 6.5 An agent i is a dictator in a social choice function C if C always selects

i’s top choice: for every preference profile >, C(>) = a iff for all a′ ∈ O that is different

from a, a >i a′. C is non-dictatorial if it has no dictator.

Theorem 6.6 (Gibbard-Satterthwaite Theorem)[10, 34] For any voting model (N,O)

such that |O| ≥ 3, any social choice function that is strategy-proof and onto is also dicta-

torial.

6.2 An inductive proof of Gibbard-Satterthwaite The-

orem

For ease of presentation, we assume the following notations.

• For any set S, we use S−a to denote S \ {a}, i.e. the result of deleting a in S.

• We extend the above notation to tuples as well: if t = (t1, ..., tn), then we use t−i

denotes the tuple (t1, ..., ti−1, ti+1, ..., tn). Furthermore, we use (t−i, s) to denote the

result of replacing ith item in t by s: (t−i, s) = (t1, ..., ti−1, s, ti+1, ..., tn). We use

t−{i,j} to denote (t−i)−j.
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• If > is a linear ordering of O, and a ∈ O, then we let >−a be the restriction of >

on O−a: for any a′, a′′ ∈ O−a, a′ >−a a′′ iff a′ > a′′. On the other hand, if > is a

linear ordering of O−a for some a ∈ O, then we let >+a to be the extension of > to

O such that for any a′ ∈ O−a, a′ >+a a. Similarly, we let >a+ to be the extension

of > to O such that for any a′ ∈ O−a, a >a+ a′. Thus if > is a linear ordering of O,

and a ∈ O, then >+a
−a is (>−a)

+a, i.e. the result of moving a to the bottom of the

ordering. These notations extend to tuples of orderings. Thus if > is a preference

profile of (N,O−a), then

>+a = (>1, ..., >n)+a = (>+a
1 , ..., >+a

n ),

which will be a preference profile of (N,O). Similarly for >a+

6.2.1 The inductive step

The inductive step consists of the following two lemmas.

Lemma 6.7 If there is a social choice function for n individuals and m + 1 alternatives

that is onto, strategy-proof and non-dictatorial, then there is a social choice function

for n individuals and m alternatives that satisfies these three conditions as well, for all

n ≥ 2,m ≥ 3.

Proof: Let (N,O) be a voting model such that |N | = n and |O| = m + 1, and C a social

choice function that satisfies the three conditions in the lemma. For any a ∈ O, we define

Ca to be a social choice function that is the “restriction” of C on O−a: for any preference

profile > of O−a, Ca(>) = C(>+a).

• We first show that Ca is well defined. That is, Ca(>) 6= a for any > on O−a.

Suppose Ca(>) = C(>+a) = a for some >. We have C(>−i, >
′
i) = a for any

agent i and any ordering >′
i, otherwise i can manipulate at > via >′

i. Similarly, we

have C(>−{i,j}, >′
i, >

′
j) = a, otherwise j can manipulate at (>−i, >

′
i) via >′

j. We

continue the above argument until we get C(>′) = a for any >′, which leads to the

contradiction that C is an onto.

• We now show that Ca is strategy-proof. Suppose otherwise: some agent i can

manipulate at > via >′
i in Ca. This is equivalent of saying i can manipulate at >+a

via >′+a, which leads to the contradiction that C is not strategy-proof.

• Instead of showing Ca is an onto, we prove C and Ca are unanimous, which implies

onto by letting each alternative on top of everyone’s preference. Since C is an onto,

we can find some > for each b such that C(>) = b. We have C(>−i, (>
′
i)

b+
−b) = b.
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In words, by moving b to the top of any >′
i, the resulting choice will still be b.

Otherwise, i can manipulate at (>−i, (>
′
i)

b+
−b) via >i. We continue the argument

until we get C((>′)b+
−b) = b. Therefore C is unanimous and so is Ca by definition.

• We finally show that an alternative a can be chosen properly so that Ca is non-

dictatorial. We proceed in two steps:

1. We now prove that for any two distinct alternative c, d, Cc and Cd have the

same dictator, if they have one. Suppose otherwise, that is, Cc has dictator i,

Cd has dictator j and i 6= j. We consider the following profile >, where we

have

– a >s b >s ... >s d >s c, for all s 6= j

– b >j a >j ... >j d >j c, for >j

Obviously, C(>) = a because Cc has dictator i. Now we change >i into

a >′
i b >′

i ... >′
i c >′

i d, then we still have C(>−i, >
′
i) = a. Otherwise i

can manipulate at (>−i, >
′
i) via >i. We continue the same argument until we

get C(>′
−j, >j) = a. However, there is a manipulate for j at (>′

−j, >j) via

>′
j: b >′

j a >′
j ... >′

j c >′
j d. So contradiction occurs.

2. Now suppose Ca has a dictator for each a ∈ O, by (1) above, ∀a ∈ O Ca has

the same dictator i. Since C is non-dictatorial, there exists some > so that

C(>) = a1 is different from the topmost alternative a2 of >i. Now consider

>′= (>a1+
−a1

)+a3−a3
, where a3 is distinct from a1 and a3. We can continue to change

>s to >′
s for all s 6= i without changing the social value until we get C(>′

−i

, >i) = a1. Now we have a manipulation for agent i at (>′
−i, >i) via (>i)

+a3−a3
,

which contradicts to the strategy-proof property of C.

Therefore, there exists some a such that Ca is non-dictatorial.

Lemma 6.8 If there is a social choice function for n + 1 individuals and m alternatives

that is onto, strategy-proof and non-dictatorial, then there is a social choice function

for n individuals and m alternatives that satisfies these three conditions as well, for all

n ≥ 2,m ≥ 3.

Proof: Let (N,O) be a voting model such that |N | = n + 1 and |O| = m, and C a social

choice function that satisfies the three conditions in the lemma. For any pair of agents

i 6= j ∈ N , we define Ci,j to be the following social choice function for (N−i, O): for any

59



preference profile > of (N,O), Ci,j(>−i) = C(>−i, >j). That is, let agent i always agree

with agent j.

• Again the onto property of Ci,j follows from the unanimity of C as shown in the

proof of lemma 6.7.

• For the strategy-proofness of Ci,j, suppose otherwise that Ci,j(>−k, >
′
k) >k Ci,j(>)

for some >, >′
k and k. There are two cases:

1. If k 6= j, then C is not strategy-proof since Ci,j(>−k, >
′
k) = C(>−k, >

′
k, >j) >k

C(>,>j) = Ci,j(>)1. A contradiction.

2. If k = j, by definition of Ci,j, we have a1 = C(>−j, >
′
j, >

′
j) >j C(>−j, >j, >j

) = a2. Now consider C(>−j, >j, >
′
j) = a3.

– If a1 >j a3, then j can manipulate at (>−j, >j, >
′
j) via >′

j

– If a3 ≥j a1, then i can manipulate at (>−j, >j, >j) via >′
j (since i, j have

the same preference in this profile).

Either way, there is a contradiction to the strategy-proofness of C.

So Ci,j is strategy-proof.

• We prove in the following that we can find two distinct agents i, j such that Ci,j

is non-dictatorial. Suppose not, then for every pair of agents i, j, there is an agent

di,j that is a dictator of Ci,j. We first show that di,j = j for any i, j. Suppose

otherwise, di,j = k 6= j. Since C is non-dictatorial, we can find a profile > such

that a = C(>) 6= b where b is on top of >k. We then still have C(>−i, (>i)
a+
−a) = a,

otherwise there would be a manipulation for i at >′= (>−i, (>i)
a+
−a) via >i. Similarly,

we have C(>′
−j, >

′
i) = a. Now we have a contradiction, since according to di,j = k,

we would have C(>′
−j, >

′
i) = b.

Now consider a profile any > on (N +1, O), any triple of agents i, j, k and any triple

of alternatives (this is possible since |N + 1| ≥ 3, |O| ≥ 3) where

– a >i c >i b >i ... for >i

– c >j b >j a >j ... for >j

– b >k a >k c >k ... for >k

Notice that >i, >j, >k only differ in {a, b, c}. There are the following cases:

– C(>) = a, then we change >j to >k and denote the new profile >′. Then,

1According to the definition of Ci,j , (>−k, >′k, >j) is a preference profile on |N | = n + 1 by adding >j

as agent i’s preference to (>−k, >′k), which is on N \ {i}; similarly for (>,>j) and others.
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1. If C(>′) 6= b, then dj,k 6= k

2. If C(>′) = b, then j can manipulate at > via >′
j

– Other cases where C(>) = b, c or other alternatives are similar to the case

above.

Therefore, we conclude that there are two distinct agents i, j such that Ci,j is non-

dictatorial.

6.2.2 The base step

We use computer programs to verify this part. The base case says that when |N | = 2

and |O| = 3, there is no social choice function on (N,O) that is onto, strategy-proof, and

non-dictatorial. One might start to wonder if it is possible to generate all possible social

choice functions in (N,O) and check all of them one by one for these three conditions.

However, there are too many such functions for this to be feasible on current computers:

there are 3! = 6 number of linear orderings of O, resulting in 6× 6 = 36 total number of

preference profiles of (N,O), and 336 possible social choice functions.

Our approach here is similar to what we did to verify the base case of Arrow;s theorem

in [41]: we generate explicitly all social welfare functions that satisfy the conditions of

strategy-proof and onto, and then check if any of them is non-dictatorial.

To achieve this, we formulate the above function generation problem as a constraint-

satisfaction problem (CSP). A CSP is a triple (V, D,C), where V is a set of variables, and

D a set of domains, one for each variable in V , and C a set of constraints on V (see, e.g.

[33]). An assignment of the CSP is a function that maps each variable in V to a value in

its domain. A solution to the CSP is an assignment that satisfies all constraints in C.

Now consider the voting model ({1, 2}, {a, b, c}) in our base case. We define a CSP for

it by introducing 36 variables x1, ..., x36, one for each preference profile of the voting model.

The domain of these variables is the set of 3 elements in {a, b, c}, and the constraints

are the instantiations of the strategy-proof and onto conditions on the voting model.

Apparently, there is a one-to-one correspondence between the social welfare functions

of the voting model and the assignments of the CSP. Furthermore, a solution to the

CSP corresponds to a social welfare function that satisfies the strategy-proof and onto

conditions, and vice versa.

To tackle this CSP, we use the standard depth-first search that backtracks whenever

the current partial assignment violates the constraints. We implement the above idea

SWI-Prolog. Our program returns in less 1 second on an old laptop with 2.0GHZ CPU
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and 512MB RAM. There are 17 strategy-proof social choice functions when |N | = 2 and

|O| = 3. Among these 17 functions, 3 of them are constant functions which choose a

single outcome for all the preference profiles, 12 of them have the ranges of size 2, the

remaining 2 of them are onto which correspond to the dictatorships of two agents. In

fact, all these 17 functions are all dictatorial on their images (p256, [1]).

This verifies the base case, thus completes our inductive proof of Gibbard-Satterthwaite

Theorem.

6.2.3 Related work

There are several existing proofs of the Gibbard-Satterthwaite theorem. Gibbard [10]

finds a connection between a social welfare function that satisfies Arrow’s condition and

a social choice function, thus by proving the strategy-proofness of the underlying social

choice function, dictatorship follows from that of Arrow’s impossibility theorem. Muller

and Satterthwaite [24] find an equivalent relation between strategy-proofness and strong

monotonicity and generalize Gibbard-Satterthwaite theorem to their celebrated Muller-

Satterthwaite theorem. Others [5, 30] prove them directly without using Arrow’s theorem.

Particularly, Sen [36] also provides a semi-inductive proof in which he reduces the theorem

to a base case where there are n agents and 3 outcomes, which makes proving the base

case intellectually demanding as well. In our proof, we completely reduce the theorem to

the base case where there are exactly 2 agents and 3 outcomes so that we can verify it

using a simple computer program. Our proof follows the same structure of proof given

for Arrow’s theorem and other impossibility theorems [38].

6.3 Maskin’s Theorem

As we mentioned, Gibbard-Satterthwaite theorem not only states the sad fact that design-

ing strategy-proof voting rule is impossible (unless being dictatorial) but also describes a

more general paradox that implementation in dominant strategy is also impossible (again,

unless begin dictatorial)2.

Definition 6.9 A mechanism M is a tuple 〈S, g〉, where

• S =
∏

Si, is the product set of each agent’s action space Si.

• g : S → O, is the outcome function that maps each action profile to an outcome.

2This conclusion can be derived directly from the theorem as well as revelation principle, which states

that a social choice function is implementable in dominant strategy equilibrium or Nash equilibrium if

and only if it is implementable in a mechanism where each agent reports their truthful preference as

an equilibrium strategy. We will make use of this principle when we prove Maskin’s theorem.
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Maskin’s theorem gives a necessary condition for a social choice function to be Nash

Implementable.

Definition 6.10 A mechanism M implements a social choice function C in Nash equi-

librium if for each preference profile > and each Nash equilibrium s in the game induced

by M and >, we have g(s) = C(>). Such a C is called Nash implementable.

A condition of a social choice function that is closely related to the Nash imple-

mentability is called monotonicity.

Definition 6.11 A social choice function C is monotonic if, for every preference profile

> such that C(>) = a, if >′ is another profile such that a >′
i a′ whenever a >i a′ for

every agent i and every alternative a′, then C(>′) = a as well.

In other words, monotonicity means that if a choice function selects an outcome for

a preference profile, then it will also select this outcome for any other preference profile

that does not decrease the ranking of this outcome.

Theorem 6.12 Maskin’s Theorem [19]. If a social choice function C is Nash imple-

mentable, then C is monotonic.

As we mentioned, the above theorem gives a tight necessary condition to character-

ize the Nash implementatbility as Maskin [19] later showed that together with another

extremely weak condition called no veto power, monotonicity suffices for Nash implemen-

tatbility. These findings gave Maskin the honor of Nobel Prize in Economics in 2007. We

prove Theorem 6.12 in the following again using our computer-aided approach.

6.4 An inductive proof of Maskin’s Theorem

For consistency, we keep the notation we used for the proof of Gibbard-Satterthwaite

theorem.

6.4.1 The inductive step

Again, the inductive step consists of two lemmas.

Lemma 6.13 If there is a social choice function for n individuals and m+1 alternatives

that is Nash-implementable and non-monotonic, then there is a social choice function

for n individuals and m alternatives that satisfies these two conditions as well, for all

n ≥ 2,m ≥ 2.
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Proof: Let (N,O) be a voting model such that |N | = n and |O| = m + 1, and C a

social choice function that satisfies the two conditions in the lemma. We define Ca to be

the same one as we defined in the previous proof. That is, for any preference profile > of

O−a, Ca(>) = C(>+a). We now prove separately that,

• Ca is well defined. That is, Ca(>) 6= a. Suppose otherwise that Ca(>) = C(>+a

) = a. Since C is Nash-implementable, there exists a mechanism M = 〈S, g〉 and an

action profile s such that s is a Nash equilibrium in the game induced by >+a and

g(s) = a. We must have g(s−i, s
′
i) = a for any s′i ∈ Si since otherwise will contradict

to the fact that s is a Nash equilibrium in >+a. In fact, this further implies that

s is a Nash equilibrium in the game induced by any preference profile >′∈ O. By

the definition of Nash implementation, we must have C(>′) = a for any >′. Notice

that such a C is monotonic in a trivial sense, contradicting to our assumption that

C is non-monotonic.

• Ca is Nash-implementable. We can use the mechanism that implements C to im-

plement Ca.

• We can find a o ∈ O such that Co is non-monotonic. Since C is non-monotonic,

there exist C(>) = a and C(>′) = b 6= a such that a improves its ranking in >′ with

respect to >. Let o 6= a, b and we prove that Co(>−o) = a and Co(>
′
−o) = b. Since

C(>) = a, there exists a mechanism M = 〈S, g〉 and an action profile s such that

s is a Nash equilibrium in the game induced by > and g(s) = a. s is still a Nash

equilibrium in the game induced by >−o. By the definition of Nash implementation,

we have Co(>−o) = a. Similarly, we have Co(>
′
−o) = b. We also have a improves its

ranking in >′
−o with respect to >−o. Therefore, we find a monotonic violation in Co

too. In other words, Co is non-monotonic.

Lemma 6.14 If there is a social choice function for n+1 individuals and m alternatives

that is Nash-implementable and non-monotonic, then there is a social choice function

for n individuals and m alternatives that satisfies these two conditions as well, for all

n ≥ 2,m ≥ 2.

Proof: Let (N,O) be a voting model such that |N | = n + 1 and |O| = m, and C

a social choice function that satisfies the two conditions in the lemma. For any pair of

agents i 6= j ∈ N , we similarly define Ci,j on (N−i, O) such that for any preference profile

> of (N,O), Ci,j(>−i) = C(>−i, >j). That is, let agent i always agree with agent j. We

now show that,
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• Ci,j is Nash Implementable. Suppose C is implemented by 〈S, g〉 and we define

gi,j(s−i) = g(s−i, sj), the same way as we define Ci,j. Suppose Ci,j(>−i) = C(>−i

, >j) is implemented by any Nash Equilibrium s in the game induced by >−i, >j

and g. We now show that s−i is still a Nash Equilibrium in game induced by >−i

and gi,j (and all the Nash Equilibria in it can be generated this way). It follows

immediately that, for any agent k 6= i, j, his unilateral deviation cannot lead to a

better outcome. The only exception is agent j, whose unilateral deviation in gi,j

now leads to the deviation of both i and j in g. We now show that this deviation

cannot lead to a better outcome either. By revelation principle, we can restrict our

attention on direct revelation mechanism, i.e, C = g. Suppose otherwise, that is,

Ci,j(>) = C(>,>j) = a and Ci,j(>−j, >
′
j) = C(>−j, >

′
j, >

′
j) = b with b >j a. On

one hand, since we have C(>,>j) = a, we still have C(>,>′′
j ) = a where >′′

j = {c >

a > . . . , }. This is because the Nash equilibrium that implements >,>j is still a

Nash equilibrium that implements (>,>′′
j ). Similarly, we have C(>−j, >

′′
j , >

′′
j ) = a;

on the other hand, for the same reason, since C(>−j, >
′
j, >

′
j) = b, we also have

C(>−j, >
′′
j , >

′′
j ) = b 6= a. This leads to a contradiction. To sum up, we have proved

that gi,j implements Ci,j.

• We can find i, j such that Ci,j is non-monotonic. Again, by revelation principle,

we consider C = g only. Since C is non-monotonic, there exist C(>) = a and

C(>′) = b 6= a such that a improves its ranking in >′ with respect to >. There are

two cases,

– Case 1. We can find two agents i, j such that a > b in both >i and >j. For

the same reason we argued in the previous part, we have C(>−i,−j, >
′′
j , >

′′
j ) =

a = Ci,j(>−i,−j, >
′′
j ) where >′′

j = {a > b > . . . , }. Similarly, since a improves its

ranking in >′ with respect to >, we have a > b in both >′
i and >′

j. Similarly, we

have C(>′
−i,−j, >

′′
j , >

′′
j ) = b = Ci,j(>′−i,−j ,>′′j ). As one can see, a still improves its

ranking in (>′
−i,−j, >

′′
j ) with respect to (>−i,−j, >

′′
j ). Thus, we find a monotonic

violation in Ci,j

– Case 2. Otherwise (since there are at least 3 agents), we can find two agents

i, j such that b > a in both >i and >j. The remaining follows similar arguments

to Case 1.

65



6.4.2 The base step

To verify the base case where there are two agents and two outcomes, notice again that we

could apply the revelation principle and verify only if there is any social choice function

that can be truthfully implemented by a direct revelation mechanism. The technical

details, which we omit here, are similar to those of Gibbard-Satterthwaite theorem. Up

till now, we have finished the proof of Maskin’s theorem.

6.5 Summary and discussion

In this chapter, we follow the methodology we used earlier for proving Arrow’s theorem and

successfully prove Gibbard-Satterthwaite theorem. We first show that GS theorem holds if

and only if it holds for the base case where there are exactly 2 agents and 3 alternatives.

We then verify the base case using a computer program. Following similar strategy,

we prove Maskin’s theorem on Nash implementation as well. These proofs successfully

generalize our methodology from social choice theory to implementation theory.
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Chapter 7

Concluding remarks

“That’s one small step for a man, one giant leap for mankind.”

—Neil Armstrong

From the beginning of this thesis, we have been advocating a methodology for discov-

ering and proving theorems using computers. We now restate it as follows.

• Start from an existing theorem describing a sufficient condition of a property.

• Formulate the theorem and underlying theory in a logical language.

• Substitute the sufficient condition in the theorem with any logical sentence (within

certain length) in the language and all such substitutions form a set of conjectures.

• Base step: Model-check these conjectures on small domains.

• Inductive step: Extend these survivors by finite verifiable property or any other

means.

• Post-processing: delete those subsumed by others and return the remainings.

We have also seen some initial applications of this approach to economic theory. Some

highlights are,

1. Game Theory

• Starting from strictly competitiveness, we find a set of conditions that are

also sufficient for uniqueness of PNE payoffs in two-person games. Among

these conditions, we re-discover unilateral competitiveness and discover several

new conditions. For strictly games, among others, we discover that unilateral

competitiveness for individual player is suffice.

• Strictly competitiveness is best-response equivalent to Uniqueness of PNE in

strict two-person games.

• In strict two-person games, a game is best-response equivalent to ordinal po-

tential game iff it is best response equivalent to a quasi-supermodular game.

2. Social-Choice Theory
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• We reprove Arrow’s, Muller-Satterthwaite and Sen’s impossibility Theorems.

• We discover two generalizations of Arrow’s theorem.

• We discover a characterization theorem for Arrow’s IIA condition.

3. Implementation Theory.

• We reprove Gibbard-Satterthwaite and Maskin’s Theorems.

We plan to expand our methodology in at least two directions.

1. One direction is to seek other fields where the methodology is applicable. One

potential field we wish to explore is the classic bargaining theory. Nash’s axiomatic

approach reveals a sufficient condition for the optimal solution. One straightforward

idea is to weaken this condition and search for a condition that is both sufficient

and necessary. To achieve this, we first need to formulate the bargaining problem

in a concise language and then apply our computer-aided approach to search for

formulas that describe various sufficient conditions. Other potential fields include

impossibility theorems in auction as well as those in mechanism design theory.

2. The other direction is to precisely define an algorithmic procedure that can be car-

ried out given a target theory. This presents challenges for knowledge representation,

that is, how to precisely represent a target theory.

When hopping on the moon, Neil Armstrong said that,

“It suddenly struck me that that tiny pea, pretty and blue, was the Earth.

I put up my thumb and shut one eye, and my thumb blotted out the planet

Earth. I didn’t feel like a giant. I felt very, very small.”

That’s also how we feel in front of the skyscraper of science. As Lenat [14] pointed

out, theorem discovery is a science that requires the cooperation of domain experts. A

nice theorem may be overlooked without appreciation of experts in the field. That is why

we would hope a call to arms for this great adventure. After all, we have nothing to lose,

because at least we give a computer-aided proof to the theorem we started with.
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