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1. Introduction

In this paper we prove two results about pure Nash equilibria (PNEs) for 2-person strict games, which are those where
payoff functions are one-to-one. The first result says that a 2-person strict game has at most one PNE iff it is best-response
equivalent (Rosenthal, 1974) to a strictly competitive game (Moulin, 1976; Friedman, 1983). The second result says that
a 2-person strict game is best-response equivalent to an ordinal potential game (Monderer and Shapley, 1996) iff it is
best-response equivalent to a quasi-supermodular game (Topkis, 1998).

These results came out of our project on using computers to discover theorems in game theory (see, e.g. Tang and Lin,
2009). We were looking for conditions that imply the uniqueness and existence of the PNEs, and were using computers to
run through a large set of conjectures. Given the number of all possible games, it made sense to test these conditions first
on some special classes of games, and the class of strict games is a natural choice as in these games, the payoff functions
are one-to-one, thus easier to generate. As it turned out, some interesting conditions hold only for this class of games. We
have described some of them in Tang and Lin (2009). The two results that we report here are special in that their proofs
are non-trivial and had to be done manually.

2. Basic definitions

A 2-person game is a tuple (A, B, u1, u2), where A and B are sets of pure strategies of players 1 and 2, respectively, and
u1 and u2 are functions from A × B to reals called the payoff functions for players 1 and 2, respectively. In this paper we
assume both A and B are finite.

A game is said to be strict if both players’ payoff functions are one-to-one: for any (a1,b1) and (a2,b2) in A × B , if
(a1,b1) �= (a2,b2) then ui(a1,b1) �= ui(a2,b2), i = 1,2. A related notion in the literature is non-degenerate games (see, e.g.

* Corresponding author.
E-mail address: kenshin@cse.ust.hk (P. Tang).

0899-8256/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.geb.2010.04.007



Author's personal copy

480 P. Tang, F. Lin / Games and Economic Behavior 71 (2011) 479–486

Berger, 2007): a game is non-degenerate if for any a1,a2 ∈ A and b1,b2 ∈ B , u1(a1,b1) �= u1(a2,b1) whenever a1 �= a2,
and u2(a1,b1) �= u2(a1,b2) whenever b1 �= b2. Clearly, a strict game is also non-degenerate, but the converse is not true in
general.

For each b ∈ B , let B1(b) be the set of best responses by player one to the action b by player two:

B1(b) = {
a

∣∣ a ∈ A, and for all a′ ∈ A, u1
(
a′,b

)
� u1(a,b)

}
.

Similarly, for each a ∈ A, let

B2(a) = {
b

∣∣ b ∈ B, and for all b′ ∈ N, u2
(
a,b′) � u2(a,b)

}
.

A profile (a,b) ∈ A × B is a pure Nash equilibrium (PNE) if a ∈ B1(b) and b ∈ B2(a).
In this paper we consider only PNEs. Our initial motivation for this work was to capture the class of games with at

most one PNE. We started with strictly competitive games (see below). While every strictly competitive game can have
at most one PNE, the converse is not true in general. This led us to consider notions of equivalence between games that
will preserve PNEs. The one that suits our purpose here is that of best-response equivalence (Rosenthal, 1974): two 2-person
games G1 = (A, B, u1, u2) and G2 = (A, B, u′

1, u′
2) are said to be best-response equivalent if for each a ∈ A, B2(a) in G1 and

G2 are the same, and for each b ∈ B , B1(b) in G1 and G2 are the same.
It is easy to see that best-response equivalent games have the same sets of PNEs.

3. Strictly competitive games and at most one PNE

A game (A, B, u1, u2) is strictly competitive if for every pair of profiles s1 and s2 in A × B , we have that u1(s1) � u1(s2)

iff u2(s2) � u2(s1). We have the following result for strict games.

Theorem 1. A strict 2-person game has at most one PNE if and only if it is best-response equivalent to a strictly competitive game.

The “if ” part of the theorem follows from the well-known fact that all PNEs in a strictly competitive game have the same
payoff for each player (cf. p. 22, Osborne and Rubinstein, 1994), and that for strict games, profiles with same payoffs must
be identical.

To prove the “only if” part of the theorem, for any given game G = (A, B, u1, u2), we associate with it the following
directed graph R: the vertices of R are profiles of the game and the set of arcs is:

{(
(a,b),

(
a′,b

)) ∣∣ a′ ∈ B1(b),a /∈ B1(b)
} ∪

{(
(a,b),

(
a,b′)) ∣∣ b ∈ B2(a),b′ /∈ B2(a)

}
.

Informally, this is a graph where player 1 moves to her best response, and player 2 moves away from her best response.
Thus for a strictly competitive game, player 1’s payoffs increase while player 2’s payoffs decrease along every path of this
graph.

The “only if” part of the theorem follows directly from the following two lemmas that relate strictly competitive games
and acyclicity of the associated graphs.

Lemma 3.1. A 2-person game is best-response equivalent to a strictly competitive game if and only if its directed graph has no cycle.

Proof. Let G = (A, B, u1, u2) be a 2-person game, and R its directed graph as defined above. If R has a cycle, then G cannot
be equivalent to a strictly competitive game because if G ′ = (A, B, u′

1, u′
2) is such a game, then for any profiles s1 and s2,

if there is an arc from s1 to s2 in R , then u′
1(s1) < u′

1(s2). So along the cycle, there must be a sequence u′
1(t1) < u′

1(t2) <

· · · < u′
1(tk) < u′

1(t1), which is a contradiction.
Now if R has no cycle, construct a game G ′ = (A, B, u′

1, u′
2) where u′

1 and u′
2 are defined as follows:

• R0 = {(s, s′) | there is an arc from s to s′ in R}, S0 = {s | s ∈ A × B , there is no s′ such that (s′, s) ∈ R0}.
• Suppose that Rk and Sk is defined, let

Rk+1 = {(
s, s′) ∣∣ (

s, s′) ∈ Rk, and s, s′ /∈ Sk
}
,

Sk+1 = {
s
∣∣ for some s′,

(
s, s′) ∈ Rk but there is no s′ such that

(
s′, s

) ∈ Rk+1
}
.

• Since R has no cycles, there is a finite number n such that for all k > n, Rk = Sk = ∅, and A × B = S0 ∪ · · · ∪ Sn .
• Let u′

1 be a one-to-one function from A × B to the set of positive integers such that if i < j, then for any s ∈ Si and
s′ ∈ S j , u′

1(s) < u′
1(s′).

• Let u′
2 = −u′

1.

Clearly, G ′ is strictly competitive, and best-response equivalent to G . �
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Lemma 3.2. If the directed graph of a 2-person game has a cycle, then the game has at least two PNEs.

Proof. Let G = (A, B, u1, u2) be a 2-person game, and R its directed graph as defined above. Suppose s1, . . . , sk, sk+1 is a
cycle in R . Suppose s1 = (a,b). Then either s2 = (a′,b) for some a′ �= a or s2 = (a,b′) for some b′ �= b. Suppose it is the
first case, s2 = (a′,b). The proof for the second case is similar. Then by our construction of R , s3 = (a′,b′) for some b′ �= b,
s4 = (a′′,b′) for some a′′ �= a′ . We show that s2 and s4 are both PNEs of G . Because there is an arc from (a,b) to (a′,b) in R ,
a′ ∈ B1(b). Because there is an arc from (a′,b) to (a′,b′) in R , b ∈ B2(a′). Thus s2 = (a′,b) is a PNE. Similarly, because there
is arc from (a′,b′) to (a′′,b′) and an arc from (a′′,b′) to (a′′,b′′) in R for some b′′ (it is possible that a = a′′ and b = b′′)
a′′ ∈ B1(b′) and b′ ∈ B2(a′′). Thus s4 = (a′′,b′) is a PNE as well. �

One way to visualize this lemma1 is to think of a path in this directed graph as a sequence of connected arrows that
go either horizontally (player 1’s move) or vertically (player 2’s move). Thus a cycle must have an even number of arcs and
vertices (profiles), and half of those profiles, the ones at the end of the horizontal arrows, must be PNEs.

3.1. Discussion

• The “if” part of Theorem 1 does not hold for general 2-person games – one can easily find a strictly competitive game
that is not strict and has more than one PNE.

• The “only if” part of Theorem 1 holds for general 2-person games as well. This is because our proofs of the two lemmas
above do not use the assumption that the games are strict, thus hold for general 2-person games as well. However, for
general 2-person games, the “only if” part does not hold if we replace “at most one PNE” by “at most one payoff for
the PNE” (meaning all the PNEs have the same payoff for each player). For instance, in the following game

1, 1 2, 2
2, 2 1, 1

the two PNEs have the same payoff pair (2,2). But this game is not best-response equivalent to any strictly competitive
game as the clockwise movement between the profiles is a cycle in its directed graph.

4. Ordinal potential and quasi-supermodular games

We first review ordinal potential games (Monderer and Shapley, 1996). Given a game G = (A, B, u1, u2), a function P from
A × B to reals is an ordinal potential for G , if for every y ∈ B and every x, z ∈ A,

u1(x, y) − u1(z, y) > 0 iff p(x, y) − p(z, y) > 0,

and for every x ∈ A and every y, w ∈ B ,

u2(x, y) − u2(x, w) > 0 iff p(x, y) − p(x, w) > 0.

G is called an ordinal potential game if it admits an ordinal potential function.
Monderer and Shapley (1996) proved that every finite ordinal potential game has a PNE.
Another class of games that always have PNEs is the so-called quasi-supermodular game (Topkis, 1998). A finite game

(A, B, u1, u2) is quasi-supermodular if there are two linear orderings <1 and <2 of A and B , respectively, such that u1 and
u2 satisfies the so-called single crossing property: ∀(a1 <1 a2) ∈ A2 and ∀(b1 <2 b2) ∈ B2, we have

u1(a2,b1) > u1(a1,b1) ⇒ u1(a2,b2) > u1(a1,b2),

u2(a1,b2) > u2(a1,b1) ⇒ u2(a2,b2) > u2(a2,b1)

and

u1(a2,b1) � u1(a1,b1) ⇒ u1(a2,b2) � u1(a1,b2),

u2(a1,b2) � u2(a1,b1) ⇒ u2(a2,b2) � u2(a2,b1).

For strict games, these two pairs of conditions are equivalent.
Given a 2-person game, a best-response path (Voorneveld, 2000) of the game is a sequence of profiles s1, . . . , sn such

that for each 1 � i < n, si and si+1 differ on exactly one coordinate with the deviating player moving to a best response:
if si = (a,b) and si+1 = (a′,b′), then either a = a′ and b′ ∈ B2(a) or b = b′ and a′ ∈ B1(b). A best-response cycle is a best-
response path whose two end points are the same.

Voorneveld (2000) introduced a slightly different notion of best-response cycles, and showed that a game with countable
strategy sets is best-response equivalent to a potential game iff it has no best-response cycles under his definition. The

1 This was suggested by one of the reviewers.
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difference between Voorneveld’s notion and ours is that Voorneveld requires his best-response cycle to include at least one
edge that strictly increases the payoff of the deviating player. The difference disappears for strict games, and without going
into details, we remark here that while an ordinal potential game may not be a potential game, every ordinal potential
game is best-response equivalent to a potential game. Thus from Voorneveld’s result, we see that a 2-person finite strict
game is best-response equivalent to an ordinal potential game iff it has no best-response cycles.

It also follows from the weak finite best response improvement path property2 (cf. e.g. Kukushkin et al., 2005) of quasi-
supermodular games that if a finite 2-person strict game is best-response equivalent to a quasi-supermodular game, then it
has no best-response cycle. In this section, we show the other direction: if a finite 2-person strict game has no best-response
cycle, then it is best-response equivalent to a quasi-supermodular game. Thus, a finite strict 2-person game is best-response
equivalent to an ordinal potential game iff it is best-response equivalent to a quasi-supermodular game:

Theorem 2. A 2-person strict game is best-response equivalent to a quasi-supermodular game if and only of it has no best-response
cycle.

Corollary 2.1. A 2-person strict game is best-response equivalent to a quasi-supermodular game iff it is best-response equivalent to an
ordinal potential game.

Notice that best-response paths model Cournot dynamics, thus Theorem 2 also implies that if Cournot dynamics does
not cycle, then it must be best-response equivalent to a quasi-supermodular game.

We now prove Theorem 2 through two lemmas. The first one relates quasi-supermodular games to the complementarity
of best response functions, and the second the complementarity of best-response function to the acyclicity of best-response
paths. While the “only if” part of Theorem 2 is already entailed by the current results, these two lemmas also provide an
interesting alternative proof.

Given a 2-person game (A, B, u1, u2), and two linear orderings <1 and <2 of A and B , respectively, we say that the
best-response function B1 for player 1 is non-decreasing with respect to <1 and <2, if for each pair bi <2 b j ai = B1(bi) and
a j = B1(b j), we have ai �1 a j and similarly for player 2, the best-response function B2 is non-decreasing with respect to
<1 and <2, if for each pair ai < a j 1 � i < j � m, bi = B2(ai) and s′

j = (a j,b j), we have bi �2 b j .
Essentially, if both players’ best-response functions are non-decreasing, then they are strategic complementary.

Lemma 4.1. A strict game is best-response equivalent to a quasi-supermodular game iff there exist two linear orderings under which
the best-response functions for both players are non-decreasing.

Non-decreasing best-response functions for quasi-supermodular game is a well-known intuition (the only if part), al-
though we still prove it as follows since it is simple.

Proof of Lemma 4.1. Let G = (A, B, u1, u2) be a strict game.
⇒: Suppose G is best-response equivalent to a quasi-supermodular game G ′ . Clearly, the best-response functions of G

and G ′ are the same under any linear orderings. Now let G ′ = (A, B, u′
1, u′

2). Since G ′ is quasi-supermodular, there are two
linear orderings <1 of A and <2 of B such that u′

1 and u′
2 satisfy the single crossing properties. Then in G ′ , the best-

response functions under <1 and <2 are non-decreasing. For otherwise, suppose that B1 is not non-decreasing in G ′ . Then
there are two profiles (a1,b1) and (a2,b2) such that

a1 ∈ B1(b1), a2 ∈ B1(b2), b1 <2 b2,

a2 <1 a1.

Thus u′
1(a1,b1) > u′

1(a2,b1) and u′
1(a2,b2) > u′

1(a1,b2), which violate the single crossing conditions.
⇐: Suppose the best-response functions of the two players in G are non-decreasing under <1 and <2. We denote in

this part that for ai,a j ∈ A, ai <1 a j if i < j. Similar for bi,b j ∈ B . Now consider the following game G ′ = (A, B, u′
1, u′

2):

• if s < t , then u′
1(ai,bs) < u′

1(a j,bt) for any ai and a j in A;
• for any bs ∈ B , if B1(bs) = {ak} in G , then

◦ if i �= ak , then u′
1(ai,bs) < u′

1(ak,bs);
◦ if i > j > k, then u′

1(ai,bs) < u′
1(a j,bs);

◦ if i < j < k, then u′
1(a j,bs) > u′

1(ai,bs);
◦ if i < k < j, then u′

1(a j,bs) > u′
1(ai,b);

• similarly for u′
2.

2 A game has weak finite best-response improvement path property if every best-response path, in which the deviating player moves to a strictly better
best response, is finite.



Author's personal copy

P. Tang, F. Lin / Games and Economic Behavior 71 (2011) 479–486 483

Clearly, one can find two such functions u′
1 and u′

2, and that G ′ is best-response equivalent to G . We show that G ′ is
quasi-supermodular on <1 and <2. Suppose i < j, s < t , and u′

1(a j,bs) > u′
1(ai,bs). We show that u′

1(a j,bt) > u′
1(ai,bt). Let

B1(bs) = {ak} and B1(bt) = {al}. Then k � l according to the non-decreasing property of player one’s best-response function.
Given u′

1(a j,bs) > u′
1(ai,bs), by our construction, there are three cases:

1. j = k. We have i < j � l, thus u′
1(a j,bt) > u′

1(ai,bt).
2. i < j < k. We have i < j < k � l, thus u′

1(a j,bt) > u′
1(ai,bt).

3. i < k < j. We have either i < l � j or i < j < l. Either way, we have u′
1(a j,bt) > u′

1(ai,bt) by our construction.

Thus u′
1 satisfies the single crossing condition. Similarly, u′

2 satisfies the single crossing condition. So G is a quasi-super-
modular game. �

Given Lemma 4.1, Theorem 2 then follows from the following lemma, which says non-decreasing best response functions
are further equivalent to absence of best-response cycle. Before we start stating the lemma and the proof, we have some
brief remarks on a related work.

At first sight, the “only if ” part of the lemma below is closely related to an existing result, Echenique’s (2004) Propo-
sition 11, which says every non-degenerate ordinal potential game (thus without best-response cycle) is a game of strategic
complementarities.3 However, the definition of game of strategic complementarities differs from ours in that the orders on
strategies are partial and complete lattice while we further require them to be linear. In other words, the set of games that
are best-response equivalent to a quasi-supermodular game in our definition is a proper subset of the set of games of strate-
gic complementarities. Therefore, our result generalizes Echenique’s result but not vice versa. In addition, Echenique’s (2004)
proof relies on Theorem 5, which says a game with at least two PNEs is a GSC defined on lattices. However, there are games
with at least two PNEs that are not GSC under any linear orderings (see the game given in Fig. 4 in Echenique’s paper, for
example). This means that Echenique’s proof does not work on the games that we consider in our paper.

Lemma 4.2. A strict 2-person game has no best-response cycle iff there are two linear orderings under which both players’ best response
functions are non-decreasing.

Proof. Let G = (A, B, u1, u2) be a strict game.
⇐: Let <1 and <2 be two linear orderings of A and B , respectively, under which the best-response functions B1 and B2

for player 1 and 2, respectively, are non-decreasing. We show that G has no best-response cycle. We begin with a profile
(a1,b1) where, with loss of generality, {a1} = B1(b1). Let then player 2 and player 1 deviates to each own best-response
alternatively in the following rounds. If in the first round, player 2 deviates to an action b2, there are three cases:

• Case 1: b1 <2 b2, then according to the non-decreasing property of B1, we have a1 �1 a2 where {a2} = B1(b2). If a1 = a2,
it means that (a1,b2) is a PNE, where the best response path terminates. Otherwise a1 <1 a2, this process will continue
generating new profiles that alternatively increase in each player’s action until it meets a PNE and terminates. This
shows that the best-response path generated this way cannot return to where it started, therefore in this case there is
no best-response cycle.

• Case 2: b2 <2 b1. It is not hard to see that this process will continue generating new profiles that strictly increases in
one of its players rank until it meets a PNE. This shows again that there is no best-response cycle.

• Case 3: b1 = b2, this means that (a1,b1) is a PNE, where the best-response path terminates. No cycle exists.

We have proved the ⇐ part of the lemma.
⇒: We prove this part constructively. Suppose there is no best-response cycle in G . Our following procedure will produce

two ranking functions, rankA that maps each a ∈ A to an integer between 1 and |A|, and rankB that maps each b ∈ B to an
integer between 1 and |B|. From these two rankings, we get two linear orderings on A and B: a <1 a′ if rankA(a) > rankA(a′),
and b <2 b′ if rankB(b) > rankB(b′). We show that under these two linear orderings, the best-response functions for both
players are non-decreasing. For an informal description of how the following algorithm works, see an illustrative example
below:

1. Initially, let Ar = A, Br = B , I A = I B = 1, Ac = Bc = [] (the empty list), rankA(a) = 0 for any a ∈ A, and rankB(b) = 0 for
any b ∈ B .

2. while Ar �= ∅ or Br �= ∅ do
2.1. Let (a,b) ∈ Ar × Br be a Nash equilibrium of G (there must be such a Nash equilibrium as we show below), and let

Ac = [a], Bc = [b].
2.2. while Ac �= [] or Bc �= [] do

(i) If Ac �= [] then

3 We thank the advisory editor for exposing us to this work.
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(a) Let a∗ be the first element in Ac .
(b) rankA(a∗) = I A ; I A = I A + 1.
(c) Delete a∗ from Ac .
(d) Delete a∗ from Ar .
(e) For each b′ ∈ B such that B1(b′) = {a∗}, add b′ to the end of Bc . (If there are more than one such b′ , the

order by which they are added to Bc does not matter.)
(ii) If Bc �= [] then

(a) Let b∗ be the first element in Bc .
(b) rankB(b∗) = I B ; I B = I B + 1.
(c) Delete b∗ from Bc .
(d) Delete b∗ from Br .
(e) For each a′ ∈ A such that B2(a′) = {b∗}, add a′ to the end of Ac . (If there are more than one such a′ , the

order by which they are added to Ac does not matter.)

We now show the correctness of step 2.1 and that the best-response sequences for both players under the orderings output
by the procedure are non-decreasing.

Let Ari and Bri be the Ar and Br at the beginning of the ith loop and let Gi = (Ari , Bri , u1, u2), we have the following
properties of our procedure that guarantee the precondition of 2.1 can always be satisfied.

Proposition 4.1. For each Gi = (Ari , Bri , u1, u2), we have:

1. For all b j ∈ Bri , B1(b j) ⊆ Ari .
2. For all a j ∈ Ari , B2(a j) ⊆ Bri .
3. Gi has no best-response cycle.
4. Every Nash equilibrium of Gi is also one of the original game G.

Proof. We prove this proposition by induction on i.

• Base case: It is easy to verify that G1 = G satisfies 1–4.
• Inductive case: Suppose Gi satisfies 1–4, we now verify 1–4 for Gi+1.

1. Suppose otherwise, there exists b j ∈ Bri+1 such that B1(b j) = {a} ⊆ Ari \ Ari+1 . According to our procedure, a will be
deleted during this loop, which means b j will been added to Bc and deleted during this loop because Bc will be
empty at the end of the loop. This means b j ∈ Bri \ Bri+1 , a contradiction.

2. Similar to above.
3. 1–2 tells us the best-responses of Gi+1 are also best-responses of G . Suppose Gi+1 has a best-response cycle, this

cycle would still be one in G , a contradiction.
4. This part also follows directly from 1 to 2. �

Since Gi has no best-response cycle ⇔ Gi is best-response equivalent to an ordinal potential game ⇒ Gi has a Nash
equilibrium. According to 1 and 4 of the above proposition, Gi always has a Nash equilibrium. Up to now, we have proved
that the precondition of 2.1 in our procedure can always be satisfied.

Proposition 4.2. The best-response functions under the orderings generated by our procedure are non-decreasing.

Proof. For B2 and for all a1,a2 ∈ A with a2 <1 a1, let B2(a1) = {b1} and B2(a2) = {b2}, we show in the following that
b2 �1 b1.

If b1 = b2, we get to the conclusion immediately.
Now consider b1 �= b2, when b1 is the first element of Bc , a1 is added to the end of Ac because B2(a1) = {b1}. Similarly,

when b2 is the first element of Bc , a2 is added to the end of Ac because B2(a2) = {b2}. Since a2 <1 a1, we must have a2 is
added to Ac later than a1. This means b2 appears as the first element of Bc later than b1. So we get b2 <2 b1.

Similar for player B1. �
A few more words about the proof above:

• As we can see, our proof is algorithmic thus provides a means to sort acyclic best-response functions into non-
decreasing order. In other words, given a strict (more generally, non-degenerate) game without best-response cycle,
our procedure tells how to order the strategies to make the game quasi-supermodular.

• Also as a byproduct of our proof, in two-person strict quasi-supermodular game, the set of PNEs is actually linearly
ordered (of course, this is partially caused by the fact that we require the orders on the strategy sets to be linear), in
contrast to a previous result (Zhou, 1994) that says the set of PNEs is a complete lattice in a supermodular game.
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Fig. 1. Sorting the best-response matrix of a 7 × 7 acyclic game.

4.1. An illustrating example of the algorithm

We illustrate the algorithm for proving Lemma 4.2 using an example.
Consider a 7 × 7 2-player strict game whose best-response matrix is given in Fig. 1(1.1). In the matrix, the 1’s indicate

the player 1’s best response, and 2’s the player 2’s best response. So the number 1 in the cell (a1,b1) means that the
player 1’s best response to b1 is a1, and the number 2 in (a1,b3) means that the player 2’s best response to a1 is b3, and
so on. This is a game that has no best-response cycles. However, if we order player 1’s strategies from top to down, and
player 2’s strategies from left to right, then the best response functions are not non-decreasing. For instance, b3 <2 b6, but
B1(b3) = a3 >1 a1 = B1(b6). We now show how the procedure in our proof of Lemma 4.2 will re-arrange the two players’
strategies so make the best response functions non-decreasing. The procedure is iterative. Step 2.1 finds a PNE, and moves it
to the left top corner, as shown in Fig. 1(1.2). Step 2.2, as shown in Fig. 1(1.3) and (1.4), keeps swapping rows and columns
until the matrix is divided into four regions: The top-left one is sorted, the top-right and the bottom-left ones have no best
response entries in them and the bottom-right one is a sub-matrix that needs to be sorted recursively. For this particular
game, this sub-matrix is sorted in one more iteration as shown in Fig. 1(1.5). In general, the number of iterations needed is
the same as the number of PNEs in the game.

4.2. Discussions

Theorem 2 still holds for non-degenerate games, since the only assumption we made is that the best-response functions
are single valued.

For general two person games, there are three ways to define a best response cycle:

1. Normal cycle. In this definition, as long as any best-response function is multi-valued, there is always a trivial cycle in
which one player deviates among multiple best-responses.
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2. Voorneveld’s cycle. This definition is essentially the same to above except that it requires at least one edge in the
cycle that strictly increases the payoff for the deviating player. In this way, it rules out the trivial cycle in our original
definition.

3. Strict cycle. In this definition, every edge in the cycle must strictly increases the payoff for the deviating player.

Three definitions are equivalent when consider strict games only. We now discuss the extension of Theorem 2 to general
2-person games with respect to three types of cycles.

The “only if” part of Theorem 2 does not hold for general 2-person games for normal cycle and Voorneveld’s cycle but
still holds for strict cycle. For instance, the following general game:

1, 1 2, 1
2, 2 1, 2

is a quasi-supermodular game under the ordering that orders player 1’s (row player) strategies from top to down and player
2’s action from left to right. However, going counterclockwise starting in any cell will form both a normal cycle as well
as Voorneveld’s cycle. Thus this game is not best-response equivalent to any ordinal potential game. However, according to
Theorem 3 in Kukushkin et al. (2005), there is no strict cycle if a game is quasi-supermodular (therefore no strict cycle for
a game that is best-response equivalent to it).

The “if” part of theorem 2 does not hold for general 2-person games for Voorneveld’s as well as strict cycles but holds
for normal cycles. To show this, consider the following general game:

2, 2 2, 1 2, 2
1, 1 1, 2 1, 2
1, 2 1, 2 1, 1

It has no Voorneveld’s nor strict cycles. However it is not best-response equivalent to any quasi-supermodular game since
there is no ordering of strategies under which player 2’s best-response function satisfies single crossing condition. On the
other hand, if we assume that a game has no normal cycle, it implies that its best-response functions are single-valued.
Therefore, the if part holds for normal cycles.
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