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Abstract support. In our traffic scenarios, the ground plane is not
necessary a dominant plane, and the cluttered background
is hard to be modelled with a small number of planar layers.
It is therefore hard to apply the top-down approaches here.
In the bottom-up approaches, images are first divided into
small patches, and local measurement (such as 2D image
transformation) for each patch is then computed. These lo-
cal measurements are then grouped into layers. Due to the
typical forward motion in vehicle moving, it is necessary
to use projective homography for local 2D measurements.
Givensmalllocal support area and low texture on the road

. . (ground), the recovery of projective homography is not re-
process. The virtual downward-looking camera enables US| able due to large number of unknown parameters, small

to estimate the planar ego-motions even for small'imageﬁeld of view, and ambiguities among its parameters.
patches. Such local measurements are then combined to- In this paper, we assume the camera is calibrated such

ther, r t weightin hem n both groun . ' : . ;
gether, by a robust weig ing scneme baseq ° bq grou qhat its focus length and its relative pose with respect to the
plane geometry and motion compensated intensity reS|du-VehiCIe is known. In such a particular setup, the ground
als, for a global ego-motion estimation and ground plane ! '

detection. We demonstrate the effectiveness of our metho%?:i:eoremﬁl_r'ﬁoii);prilci':ztgggsgfa'?g.de (t:i\(jgvheo(r:r?g trgerre]: ) as
by experiments on both synthetic and real data. 9 ' proj grapny,

the local measurement. Given an image patch thasis
1 Introduction sumedo be on the ground, the estimated ego-motion is the
Ego-motion estimation and ground plane detection haveIocal measurement of such 'mage patch. Using ego-_motlon
o . L .~ as the local measurement is an improvement over using pro-
many applications, such as visual navigation, computer vi-.__. : . .
. o X ) jective homography, since it exploits the ground plane ge-
sion based driving assistance, and 3D environment map re: L .
ometry. However, estimating ego-motion based on small

construction. In this paper we address the case of a single : oo .
L L . image patch still suffers from ambiguities among its param-
camera rigidly mounted on a car moving in traffic scenes

that includes cluttered background including other static or eters due to small field of View [2, 71. .

. ; I, To overcome the above difficulty, we exploit the fact that
moving objects on the ground plane. It is difficult to ap- the vehicle motion can be approximated by planar motion
ply traditional Structure from Motion algorithms here since PP yp

they usually require estimating the depth for such cluttered on the ground. Such planar m_otlon Is of great pract!ce Im-
background. To overcome such difficulty, planes in the portance a‘.‘d has been used in StT“Ct“re from.mot|or'1 and
scene have been used for ego-motion estimation [19, 13] camera calibration [18, 4], and vehicle ego-motion estima-
Ground plane is of special interest. Methods to (,)btai.n tion [22]. In this paper, we use a virtual downward-looking
ground plane include 2D dominant métion estimation [12] camera to exploit the planar motion constraint. Thinking of
and layer extraction [14, 26, 5, 28, 27, 20, 24, 15, 16] a virtual downward-looking camera on planar motion has
These)r:\ roaches can bé cla,ssi,fied ’into ,two ,cate, oriéS' tc; the following advantages: 1) It eliminates the ambiguity be-
down apr))Fr)oaches and bottom-up approaches To%- dowﬁ a tween rotational and translational ego-motion parameters;
proaches either assume that the ground plane is adominan%) It improves the Hessian matrix condition in the direct
plane, or assume that the scene can be approximated With 1ye 4o not need to know the distance from the camera to the ground

a few planar layers who simultaneously compete for layer due to the scale ambiguity between the camera translation and scene depth.

This paper presents a robust method to solve the two
coupled problems: ground layer detection and vehicle ego-
motion estimation, which appear in visual navigation. We
virtually rotate the camera to the downward-looking pose
in order to exploit the fact that the vehicle motion is roughly
constrained to be planar motion on the ground. This camera
geometry transformation, together with planar motion con-
straint, will: 1) eliminate the ambiguity between rotational
and translational ego-motion parameters, and 2) improve
the Hessian matrix condition in the direct motion estimation
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motion estimation process; 3) It induces image motions thatture points.

are linear in terms of image coordinates, and therefore can

be reliably estimated.

The virtual camera is used to collect the local measure-

Given calibrated camera and ground plane normal, we
use direct method to estimate the incremental ego-motion
based on the brightness constancy assumption, by minimiz-

ments, i.e., to estimate the planar ego-motions based oring the sum square difference (SSD) with respect to the in-
small image patches. Such local measurements are theeremental camera motion parametérs= (Q;, T,):

combined together, by a robust weighting scheme for the

global ego-motion estimation and ground plane detection.
Regularization is then applied for the recovery of the re-
maining small non-planar motions.

2 Ego-motion estimation
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In this section, we describe the direct method to estimatep, g, = VI;(p) is the image gradient at Pixglin image

the vehicle ego-motion with respect to a small image patch
that is assumed to be on the ground.

2.1 Ego-motion model

Given a sequence of imagdg, I1, ..., Iy under a per-
spective camera with internal matrix diag(f, f,1), we

1;, andJ,, is the Jacobian at

ov;(p) B/ B
J, = = Prl=1 a8 6

From Eq.(5), we can see that every pixel inside the im-
age patch with non-zero intensity derivative makes a con-

want to compute the camera ego-motion between the referyihytion to the final solution of0. To achieve robust-

ence imagely, and another imagé;,: = 1,2,..., N. The
incrementaimage motion at an image poipt= (x,%) " in
1; is given by (see [11]):

1
Vl(p) Bpﬂl + Z(p) (1)
where; = (wx,wy,wz); andT; = (Tx, Ty, Tz),; are
the camera rotational and translational velocyp) is the
3D scene depth at Poipt,

A,T;

B, = l ENRARE y] @
=(f+%) a r
A= 108 ®

If we are given a 3D plan@ P +d = 0 with n =
(n1,m2,n3)7 the plane normal an® = (X,Y,Z)" the
3D coordinate of points on the plane, then we can rewrite
Eq.(1) as:
n'F

vi(p) = B, + d
whereF = (—%, %, —1)".
Eq.(4) shows that there is a scale ambiguity betwéen
and the camera translatidR;, which means that we can
only recover the direction of the camera translation. With-

out loss of generality, we sdt= —1 in our experiments.

A,T; 4)

2.2 Direct estimation of ego-motion

As has been pointed out in [22], in typical traffic sce-
narios, direct method [11, 8, 6, 17] is more preferable than
optical-flow based approach [1, 10, 23, 21] for ego-motion

ness to outliers, the contribution of each pixel should be
weighted according to some robust criteria. For exam-
ple, robust estimator uses the residaglto determine the
weightw, = w(ey) = @ wherep(-) is some robust
M-estimator. ’

The weighted least square solution of Eq.(5) is given by:

O=L""b (7)
where
L= Z prpgpg;J;— (8)
p
is theHessian
b = Z(_wpepJpgp> 9)

P
is theaccumulated residual
Once we recover the incremental camera motion param-
eters® = (;, T;), we perform an incremental update to
the ego-motiorM;:
R(Q) Ty }
0 1

whereR(€2;) is the incremental rotation matrix given by
the Rodriguez’s formula:

R(Q) =1+ [A]xsind + [A]% (1 —cosf)  (11)
wheref = ||?||, and
1 0 —w, Wy
My == | w, 0 —w, (12)
0
—Wy Wy 0

estimation. The reason is that the road usually has weak The overall direct ego-motion computation is an itera-
texture or linear image structure, while the cluttered back- tive Gauss-Newton gradient decent process. Each iteration
ground including moving objects often contains many fea- consists of the following three steps:



1. Compute the incremental motion parameters (Eq.(7)). 3.1 Virtual forward-looking camera

2. Perform the incremental update to the ego-mofidn In a typical setting, the camera is mounted on the vehicle
(Eq.(10)). looking at the ground at some angle, as shown in Fig.(7).
) ) A simple way to make use of the planar motion constraint
3. Warp the imagel; towards the reference imade, is to virtually rotate the camera such that its optical ais (
using the homography induced by the ground plane axis) points forward horizontally and if§ Z plane parallel
(n, d) u[lder current ego-motionH = K(R(2) — to the ground plane, as has been done in [22]. We will call
7n' )K™', whereK = diag(f, f, 1) is the camera in- it the forward-lookingcamera.
ternal matrix. The planar ego-motion parameters are then reduced to

3 Camera models for planar ego-motion esti- ©f = (wy,Tx,Tz). There still exists ambiguity between
mation wy andTx . In[22], the dominant camera motion set is cho-

sen to be(wy,wy,Tz). Butin real experiments we have
There are several difficulties in estimating the full vehi- opserved non-negligibl&y, especially when the vehicle is
cle ego-motion based onsmallimage patch: changing lanes or turning. Moreover, the camera motion is
e During a short period of time, the vehicle undergoes Not longer planar due tax .
approximately planar motion. For a camera rigidly In the coordinate frame of the forward-looking camera,
mounted on such vehicfe its ego-motion consists of ~ the normal of the ground plane(8, 1, 0), and the Jacobian

a rotation around an axis vertical to the ground plane, W.I-t. Oy is:

and two translations parallel to the ground plane. vi(p) f+£ ey 17
Therefore, full ego-motion model contains more pa- J,= VilP) _ M/f y yf2 ] (13)
rameters than necessary. Estimating such diminishing 99y 7 0 —%

rameters are inherently ill-conditioned. . -
parameters are inherently ill-conditioned In addition to the ambiguity betweein, andTx, the

e There are inherent ambiguities between rotation andabove Jacobian also indicates the following problems:

translation. Given a small image patch, therefore small ) ] o
field of view (FOV), it is hard to differentiate the e Itis usually hard to estimate, andZ’; within a small

wx-induced flow from thely-induced flow, and the FQOV since they introduce image motions that are sec-
wy induced flow from theT'x-induced flow, respec- ond order polynomial terms of the image coordinate

tively [2, 7]. These inherent ambiguities introduce (,y)-
elongated valley in the SSD error function [3], result-

N - e The Hessian matrix is determined by both the image
ing in slow convergence and bad local minima.

texture and the Jacobian. When the texture is low,the
Itis therefore necessary to exploit the planar motion con- second order terms in the Jacobian will contribute to a
straint. To do so, we divide the six ego-motion parameters badly-conditioned Hessian matrix.
into two triples. The first triple consists of the planar mo-
tion parameters, and the second triple consists of the dimin- Coordinate normalization and translation are useful tech-
ishing non-planar motion parameters that can be ignored afique to improve the matrix condition number [9]. In our
the stage of local measurement. In the following, we intro- case, coordinate normalization does not change the condi-
duce two virtual cameras and analyze how the selection oftion of the Hessian matrix, since every element in the Ja-
camera models affects the effectiveness in exploiting planarcobian is multiplied by a same constantTranslating the
motion constraint. coordinates to center arourd, 0) will improve the matrix
Virtual cameras can be achieved by rectifying the images condition. DOing SO eﬁectively translates the camera such
using the homography induced by the ground p|ane and thethat its Optical axis passes through the center of the input
relative pose between the original camera and the virtualimage patch. In the forward-looking camera, it is impos-
camera. Doing so requires camera calibration for the cam-sible to do so given an image patch on the ground that is
era rotational pose with respect to the vehicle. We assumeParallel to the camera optical axis.
the camera is fixed with respect to the vehicle, which means3 2 virtual downward-looking camera

that the calibration can be done before hand (see the Ap- he ab vsi ‘ d-looki
pendix for a simple calibration method). It is important to The above analysis on forward-looking camera geometry

keep the virtual cameras always on the same plane so thafnotivates us to rotate and translate (paraIIeI. to the gr_ound
the camera motions among the rectified images are still pla_plane) the camera _geome}ry such _that we think of a virtual
nar motions. camera whose optical axis is vertical to the ground plane

2The camera can have any orientation, but is otherwise fixed w.r.t. the  3Notice thatf also needs to be scaled according to the normalization
vehicle body. to preserve the correctness of Eq.(1).




and passing through the center of input image patch. We 2. Combine the local estimations according to their

call it thedownward-lookingcamera. weights for global ego-motion estimation, including
In the coordinate frame of downward-looking camera, the non-planar motions.

the normal of the ground plane {8,0,1). The dominant )

motion become®, = (wyz,Tx,Ty), and the Jacobian 3. Recompute the robust weight based on current ego-

W.r.t. ©4 is: motion.

Step 1 is an important bootstrap step to provide a good
initialization for further global estimation. Step 2 and 3 are
the two iterative steps. In our experiments, we have found
The advantages of using the downward-looking cameragne or two iterations are enough, due to the accurate local

are: ego-motion estimation by the downward-looking camera.
e The above Jacobian consists of only zero and first or- The ground plane is detected based on the final weights.
der polynomial terms, which, together with the virtual 4.1  Geometry based robust weighting
camera translation so that its image coordinates are
center around0, 0), will result in a well-conditioned
Hessian matrix even when the road has low texture.

_sz«p):{y / OT @

Ip = 00y, z 0 f

Traditional robust weighting uses motion compensated
pixel intensity residuals,, i.e.,w, = w(ep) in Eq.(7). The
residuale,, depends on both geometry and texture. Pixels
e There is not inherent ambiguities among the parame-not on the ground plane but with low texture will also have

ters in©,. Itis easy to differentiate the flow induce by low residuals when compensated by the motion correspond-

wyz from the flow induced byTx,T7). Indeed, 0, ing to the ground plane, and will be given large weights
can be reliably estimated since they induce image mo-if weighting is purely based on intensity residuals. When
tions that are linear in terms of image coordinatey) the ground layer has low texture, the inclusion of those
(no perspective distortion). false pixels will affect the final ego-motion estimation. We

should exclude such false pixels by exploiting the ground

Notice that equally treating the pixels in the rectified im- . o
plane geometry in the robust weighting.

age is equivalent to give larger weights to pixels (in the orig-

inal un-rectified image) that correspond to points further- ||:or ‘;?Ch patcg 'T the |mage|, me |n|t|]fll|z§t|ts Iplane hor- |
away on the ground plane, due to the perspective distor-Ma! as the ground piane normal, thén refine Its plane norma

tion (front-shorten) in the un-rectified image. We can ad- (Section 4.1.1) under the currently estimated ego-motion. If

just such scene-dependent weighting by non-uniform imagethe patch is in fact on the ground, the refined plane normal

sampling. Also notice that translating the camera to look at W'" be close to the ground normal due to accurate initial-

the patch center effectively enlarges the camera field of view!zatfor.]' Otherwise, we will end up with a plane normal that
(FOV). We avoid the degenerate case of infinite rectified IS d'St'n_Ct from _the_plane normal of the grouf’_ld . .
image area by using only the image pixels below the hori- Our final weighting scheme use both_ the intensity resid-
zon line (vanishing line of the ground plane), since pixels uals, and the angle between the re-estimated plane normal
above the horizon line in the image are obvious non-ground™ and the ground normal,:

pixels. Given the camera pose relative to the vehicle, it is wy = w(ey, 0) (15)
straightforward to calculate the horizon line (see Appendix

. . . . o n'n, )
for details). wheree,, is the intensity residual) = arccos (7 ,

[l [Ing|]
. andw(-, o) is the robust weighting with scale that is set
4 Groynd plgne _deteCt'Or_‘ and global ego- o the robust standard deviation (see [5])dy= 1.4826 -
motion estimation by virtual downward- mediany|ep|.

looking camera 4.1.1 Compute plane normal

This section describes a robust technique to combine 10-Thjs section describes the direct method to estimating the
cally estimated ego-motions for ground plane detection a”dplane normal based on current ego-motion. We re-use
global ego-mqtion estimation. The general framework of Eq.(7) and the corresponding algorithm in Section 2.2,
the algorithm is: except that the unknowns are the plane normal=

1. Bootstrap from local estimations: Divide the image (71,72,n3) instead of ego-motio®. We therefore need

into smalln x n patches*. For each patch, estimate to derive the new Jacobiah, = %. Given the ego-
an ego-motion (Section 3.2) and compute its robust motion and the ground plane equation, we prefer using the
weights based on both geometry and intensity resid- exact homography to representp), instead of using the
uals (Section 4.1).

5We do not care if such non-ground plane normal is actually correct, as
4We use overlap image patches. long as it is distinct from the normal of the ground plane.




instantaneous representation in Eq.(4). The reason is thézed cost function isE(05) =

following. In each step of incremental ego-motion estima- - 2 )

tion, the instantaneous representation is a good approxima- Z [Ii(P +vi(p, 02)) — IO(p)} +A Z vi(p, ©2)

tion since the incremental ego-motion is very small. But P (18)

once the final ego-motio@ is recovered, instantaneous rep- = . .

resentation is no longer a good approximation, especially wherel; is the imagel; warped by the homograpy induced
' by the ground plane under current ego-motidn The sec-

when multiple frames are used. ond summation term is the regularization term, which states
Suppose the initial plane normalis we want to com-  that the image motion induced by parameter&gmust be

pute the incremental plane normal updaigo n. The ho- small. A > 0 is a constant parameter. A largeenforces
mographyH induced by the updated plate+m)P +d = stronger regularization.
0is: T T . B_y setting%@?) = 0, the weighted least square solu-
H = K(R(Q) o EHT)K71 o KEmTKfl tion is: »
- R- K%mTK‘l ) O = | D_wplileg, TADIS | D (—uwpepdngy)
p p
whereK = diag(f, f,1) is the camera internal matrix. (19)

Enforcing the regularization is equivalent to “virtually im-

~ T T
Denoter; thei-th row of R, and[z, 9] = [}, (%2].  prove” the texture, as shown by the diagonal maixn
The incremental image motion at poit= (,y,1)T is: Eq.(19), and will therefore improve the condition of Hes-
o sian matrix.
T -
vi(p) = [ :}‘ } = }ﬁ;{f, ) (17) 5 Experimental results
by p 5.1 Local planar ego-motion estimation

T i
whereh; s thei-th row vector oft. This section presents the experimental results on estimat-

The Jacobiad,, with respect tam is: J,, = 5‘éﬁr7r§lp) = ing the planar ego-motion based on small image patches,

} B +  which is an important bootstrap step for further global ego-

diagiw,y,1) | 5Tz —Tx 5Tz -Tx Tz - fTx motion estimation and ground plane detection. To deal with
dr3Tp Iz =Ty 4Tz -Ty yTz— [Ty large motion, in the experiments we use a multi-resolution
Gaussian pyramid of the input images. In all experiments,
we only use the image pixels below the horizon line, since
n—n+m pixels above the horizon line in the image are obvious non-

The new plane normal is then plugged into Eq.(16) to com- ground pixels.

pute the new homography for the next iteration.

At each iteration, the plane normal is updated by:

5.1.1 Synthetic case

] o ) To compare different motion models, we use a synthetic
4.2 Recovering remaining non-planar motion parame-  jmage sequence with ground truth. Fig.(1) shows the two
ters synthesized images, where the camera simulates a moving

vehicle on the ground plane by simultaneously moving for-

After the planar ego-motions have been recovered, Weward and turning left (around an axis at some distance to

can estimate other small non-planar motions, which might the vehicle and vertical to the ground). The normal of the
exhibit due to vehicle bouncing or non-planar road condi- ground p|ane and the camera focus |ength are known.

tion. Under the coordinate frame of the dOWnWﬂrd-lOOking The Synthetic case in Table (1) quantitative]y compares

camera, the non-planar motion setis = (wx,wy,Tz).  the condition number of the Hessian matrix and the re-
The Jacobiar, w.r.t. the non-planar motion parameters covered ego-motion parameters using four different motion
O is: models. The image patch used to compute the ego-motion
zy z? n'F 17 is indicated by the rectangle in Fig.(1a).
ovi(p) - f+5 —any , o
Jp = 50, — 2 oy JTF From Table (1), we can see that removing the dimin-
2 —(f 7) N —Y7a ishing parameters greatly improves the condition of Hes-

Estimating®- is inherently ill-conditioned since it induces sian matrix, since diminishing parameters are inherently ill-
very small or diminished image motions that are second or-conditioned. As a result, the 8-parameter model has the
der polynomial terms of image coordinates. Nevertheless,worst condition since its number of unknown parameters
small or diminishing motions mean that it is safe to apply is far more than necessary. The downward-looking camera
strong regularization to improve the condition. The regular- improves the condition number by orders of magnitudes,



synthetic case (Fig.(1)) real case (Fig.(3))
condition num. ego-motion condition num. ego-motion
8-parameter 1.6312e+006 N/A 1.7618e+006 N/A
. 0.2162 -0.1360 -1.592¢€ -0.7710 -0.1182 0.213C
fullego-motion | 3.0674e+003 | | 1301 o226  -0.1264 | 508380041 | 5001 02367  0.0636
forward-looking 2.1349e+002 [-0.472%,0.0058 0.0903] 4.5254e+003 [0.0108, -0.0064 0.0595]
downward-looking| 8.4357e+000 [-0.9997,-0.0181 0.1066] 5.5469e+001 [-0.0840, -0.1222 0.2497]

Table 1. Ego-motion estimation and condition of Hessian (larger condition number means worse condition). For synthetic case,
the ground truth of ego-motion istwy,Tx,T7) = (—1.0°,-0.0175,0.1), in the coordinate frame of forward-looking camera.
Translations are measured by the unit of image height. The motion parameters of the 8-parameter model do not directly indicate the
ego-motion parameters, and are not shown here.

Figure 1. Synthesized images where the ground plane has Figure 3. Real images with low textures on the ground
low textures. The rectangle shows one of the patch used to plane, and moving cars/bus in the background.
compute the camera ego-motion.

(c): forward-looking (d): downward-looking

(c): forward-looking (d): downward-looking . . . .
Figure 4. Motion compensated residual images. The
Figure 2. Motion compensated residual images by mo- residuals are scaled up by a factor of 4 for visibility. No-
tions from Table (1). The residuals are scaled up by a factor tice the residuals of lane-marks at the bottom left, and
of 4 for visibility. the residuals of car dash-board right below the lane-marks.

The downward-looking camera model compensates the lane
marks best, and shows correct parallax on the car dash-
and recovers the most accurate ego-motion, which supports board.
our observations in Section 3.2. The forward-looking model
performs better than the full ego-motion model. But it ap- 5.1.2 Real case

pears that part of the left-turn has been confused by left-|, s subsection, we use real images to compare the per-

translation in the forward-looking model. formance of ego-motion estimation based on small image
Fig.(2) shows the motion-compensated residual imagespatches. Fig.(3) shows the images we use, where the cam-
for qualitative comparison. As we can see, pixels inside theera is put on a car that is simultaneously moving forward
used rectangle are well-compensated in all models, but onlyand turning left (around an axis at some distance to the ve-
the downward-looking camera fully compensates all pixels hicle and vertical to the ground). The rectangle shows the
in the ground plane, which means that it actually recovers aimage patch we randomly select to compute the ego-motion.
good global motion model based on a small image patch. It is quite a challenging task due to the very low texture of



their colors are quite different from the majority pixels of
the road plane. The car dash-board at the bottom-left in the
first image sequence, and the trees and moving cars on the
ground in both image sequences, are excluded due to sig-
nificantly lower weights. Notice that some of the outliers,
such as the trees at the right side of the road in the second
sequence, have very low texture and therefore low intensity
residuals, but still be excluded due to the fact that their ge-
ometries (plane normals) are significantly different from the
ground plane normal. Fig.(6d) shows the motion compen-
the road and the small image patch. sated residuals by the global ego-motion estimated based on
The last two columns in Table (1) show the condi- the weights in (b). As we can see, the pixels on the road are
tion number of the Hessian matrix and the recovered ego-"Vell compensated, while pixels from other objects, such as
motion. As we can see, the downward-looking camera hasthe buildings, trees, and the moving cars with their shadows,
the best condition number, and its recovered ego-motionSNOW correct parallax.
_correctly indicates that the_ car is moving forward and turn- g conclusion
ing left. The forward-looking camera model does not re-
cover the correct left-turn motion, which appears to be  Vehicle ego-motion estimation and ground layer detec-

Figure 5. Traffic scene in city with cluttered background
containing moving cars. The road has weak or linear tex-
tures.

caused by the confusion betwees and Tx. The full tion are challenging tasks due to low texture on the road
ego-motion model has large non-planar motions, which is and the non-linear perspective distortion. By ways of vir-
obviously incorrect. tual camera, we have made use of the constraint that the

The motion compensated residual images in Fig.(4) vehicle is undergoing planar motion on the ground. Enforc-
qualitatively show the performance. As we can see, all mo- ing such constraint is necessary to avoid the estimation of
tion models well compensate the pixels inside the rectanglediminishing parameters that are ill-conditioned. By using
that are used for estimation, but only the downward-looking Virtual downward-looking camera, we further improve the
camera compensates all the pixels on the ground, as can bgondition of the Hessian matrix, and eliminate the ambigu-
indicated by the yellow lane marks at the bottom-left of the 1i€S among the unknown parameters, which are linear in
images. The darker pixels at the very bottom-left of the im- €rms of image coordinates and can be reliably estimated.
ages (right below the yellow lane marks) in Fig.(3) are part 10gether with a geometry-based robust weighting scheme,
of the car dash-board, and their corresponding residuals inVe have shown promising results on vehicle ego-motion es-
the downward-looking camera model show correct parallax. imation and ground layer detection. .

We also use the shape of the image boundaries to indicate e have assumed that the camera focus length is known.
the ego-motion. As we can see, only the downward-looking !N Practice, we only require a rough initialization of the fo-

camera has correct shape corresponding to forward and leftcus length, since the error in the focus length only intro-
turn motions. duces systematic bias on the estimated ego-motion, but does

_ _ not affect the ground layer detection. We can therefore use
5.2 Ground layer detection and global ego-motion es-  the algorithm presented in this paper to derive the ground

timation plane. Then use the detected ground plane to calibrate the

In this section, we show the results of ground layer de- c@Mera [25] to correct the bias in ego-motion.
te_ctlon and the globa_l ego-motion estimation. F|g.(3)_ and References
Fig.(5) show the two image sequences we used in this ex- _ o _ _
periment. The roads have either very weak texture, or linear [1] G.Adiv. Determining 3-d motion and structure from optical
image structure. The backgrounds are cluttered and contain ~ floW generated by several moving objecBAMI, 7(4):384—

f . 401, July 1985.
moving objects. 2] G. Adiv." Inherent ambiguities in recovering 3-d motion and

[
Fig.(6) shows the experimental results. The first row is structure from a noisy flow fieldPAMI, 11(5), May 1989.

the result on Fig.(3), and the second row is the result on [3] Y. Aloimonos. Harmonic computational geometry: A new
Fig.(5). Fig.(6b) shows the weights (see Eg.(15)) indicat- tool for visual correspondence. BMVC 2002 2002.
ing the ownership (ground layer or non-ground layer) of [41 M. Armstrong, A. Zisserman, and R. I Hartley. Self-
the pixels. Outliers, such as moving cars (and their shad- ., calibration from image triplets. IRCCV96 . .

.. . . [5] S. Ayer and H. Sawhney. Layered representation of motion
ows), bUIId_IngS, an_d trees on the side, are clearly indicated video using robust maximum-likelihood estimation of mix-
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