
h-

m this

forward

clidean

ethod

ll
Chapter 5

Efficient Memory Information Retrieval

In this chapter, we will talk about two topics: (1) What is a kd-tree? (2) How can we use kd-

trees to speed up the memory-based learning algorithms? Since there are many details in the

second topic, we only discuss how to improve the efficiency of Kernel regression in this chap-

ter, to demonstrate the approach in principle. In next chapter, we will explain the details of

applying kd-tree techniques to improve the efficiency of locally linear regression and locally

weighted logistic regression.

5.1 Efficient information retrieval

Suppose there are a set of memory data points whose input space is 2-dimensional, shown in

Figure 5-1. Given a query (xq, yq), a task of information retrieval is to find this query’s neig

boring memory data points. The brute force approach is to measure the distances fro

query to each of the memory data points. Then based on these distances, it is straight

to decide which memory data points are the query’s neighbors. The distance may be Eu

or another metric depending on the specific domain. The drawback of the brute force m

is obvious: since its computational cost is , where N is the memory size and d is the

dimensionality of the input space. When the memory size N becomes very large, its costs wi

increase, too.

O N d×()
77

78 Chapter 5: Efficient Memory Information Retrieval

 to be
To improve the efficiency of finding the neighbors, we can partition the input space of the

memory data points into many cells by means of a grid. When a query arrives, we can consult

the cell where the query locates and its neighboring cells, instead of visiting all the memory

data points individually. In this way, the computational cost shrink from to

, where n is the number of memory data points in the concerned cell(s). (If we

neglect the cost of finding the cell where the query resides.) The grid method performs the best

when the memory data points distribute uniformly, so that n tends to be N / G, in which G is

the number of grids in the whole input space. However, there is no guarantee that the memory

data points distribute uniformly forever and wherever. Sometimes most of the memory data

points are packed in only a limited number of cells, while the other cells are almost vacant.

Therefore, the contribution of the grid method to the efficiency is not reliable.

The kd-tree technique [Preparata et al, 85] is similar to the grid method in the sense that it also

partitions the input space into many cells. However, the partition is flexible with respect to the

density of the data points in the input space. Wherever, the density is high in the input space,

the resolution of the kd-tree’s partition at that region is also high, so that the cells tend

x1

x2

Figure 5-1: Grid for efficiency information retrieval.

Query
Query

O N d×()

O n d
2×()

Chapter 5: Efficient Memory Information Retrieval 79
small. Otherwise, for those regions where there are only a limited number of memory data

points, the partition resolutions are low, and the cells are large.

5.2 Kd-tree Construction and Information Retrieval

A kd-tree is a binary tree that recursively splits the whole input space into partitions, in a man-

ner similar to a decision tree [Quinlan, 93] acting on real-valued inputs. Each node in the kd-

tree represents a certain hyper-rectangular partition of the input space; the children of this node

denote subsets of the partition. Hence, the root of the kd-tree is the whole input space, while

the leaves are the smallest possible partitions this kd-tree offers. And each leaf explicitly

records the data points that reside in the leaf. The tree is built in a manner that adapts to the

local density of input points and so the sizes of partitions at the same level are not necessarily

equal to each other.

In our formulation of the kd-tree structure, each node records the hyper-rectangle covered by

it. This is defined as the smallest bounding box that contains all the data points owned by this

node of the tree. Each non-leaf node has two children representing two disjoint subregions of

the parent node. The break between the children is defined by two values: split_d is the

splitting dimension, which determines which component of input space the children will be

split upon; split_v determines the numerical value at which each split occurs. The data

points owned by the left child of a node are those data points owned by the node which are less

than value split_v in input component split_d. The right child contains the other data

points. A sample kd-tree is shown in Figure 5-2.

To construct a tree from a batch of training data points in memory, we use a top-down recursive

procedure. This is the most standard way of constructing kd-trees, described, for example, in

[Preparata et al., 85] [Omohundro, 91]. In our work, we use the common variation of splitting

a hypercube in the center of the widest dimension instead of at the median point. This method

of splitting does not guarantee a balanced tree, but leads to generally more cubic hyper-rectan-

80 Chapter 5: Efficient Memory Information Retrieval
gles, which has empirically proved better than other schemes (pathologically imbalances are

conceivable, but trivial modifications to the algorithm prevent that.) The cost of making a tree

from N data points is O(Nd logN).

The base case of the recursion occurs when a node is created with Nmin or fewer data points.

Then those data points are explicitly stored in the leaf node. In our experiments, Nmin = 2.

Queries

Figure 5-2: To implement the grouping idea, we use hyper-rectangles with
kd-tree. To find the neighborhood of a certain query (triangle), we can
recursively search the tree from the root towards to the leave where the query
resides. For different query (reversed triangle), we can use the same kd-tree
but choose different nodes.

*

Chapter 5: Efficient Memory Information Retrieval 81

ward

resides.

rent.

f those

irable,

tion of

le

h the

earch

 cost is

igh-

n the

ighbor

ring
To incrementally add a new data point to the tree, the leaf node containing the point is deter-

mined (O(logN) cost). The data point is inserted there (and a new subtree is recursively built if

the number of nodes exceeds Nmin).

Given a query (xq, yq), to find those memory data points whose input vectors are close to xq,

we can recursively search the tree from the root towards to leaves, referring to Figure 5-2, with

the triangle query. According to the pre-defined range of “neighborhood”, it is straightfor

to find those branches of the kd-tree, which are close to the branches where the query

Two issues to be noticed:

1.With different ranges of the “neighborhood”, the “neighboring” branches can be diffe

The neighboring branches with respect to a strict defined neighborhood is a subset o

neighboring branches corresponding to a loose definition. This characteristic is des

because it allows us to find those neighboring data points corresponding to any defini

the neighborhood along the local-global spectrum.

2.Although we will use the kd-tree to find a set of neighboring data points, it is also possib

to find the “exact” nearest neighboring data point. For the example in Figure 5-2 wit

reversed triangle query, to find its nearest neighbor data point, we wish we could s

from the root of the tree down towards to the leaf where the query locates, so that the

, where N is the memory size. Unfortunately, it is possible that its nearest ne

boring data point is in another leaf of a remote branch of the kd-tree, marked with “*” i

diagram. More theoretical analysis refers to [Kleinberg, 97]. The standard nearest ne

algorithm, [Preparata et al, 85] [Moore, 90], avoids this problem while still only requi

 time.

O Nlog()

O Nlog()

82 Chapter 5: Efficient Memory Information Retrieval

f

n (for

l

 do pre-

ut,

ta

 to pre-
5.3 Cached Kd-tree for Memory-based Learning

The goal of our exploring kd-trees is not to find the nearest neighbor, and not only to find a set

of nearest neighbors, but mainly to enhance the efficiency of the memory-based learning meth-

ods. The basic principle is to cache useful statistical information into the kd-tree nodes, so that

when we do the memory-based learning process, instead of visiting every relevant memory

data point, we mainly rely on the statistical information in the tree nodes. In this chapter, we

focus on using this cached kd-tree to speed up Kernel regression, to demonstrate the approach

in general.

Kernel regression

In Chapter 2, we discussed using Kernel regression’s idea to approximate P(yq | Sp, xq), i.e. the

probability that a given query data point (xq, yq) belongs to a system Sp, where the knowledge

of Sp comes from a set of memory data point, (x1, y1) ..., (xN, yN), which is the observations o

Sp’s previous behavior. Cached kd-trees can improve the efficiency of Kernel regressio

example, [Franke, 82]), not only for the approximation of P(yq | Sp, xq), but also for the genera

purpose use. As a popular machine learning method, Kernel regression is often used to

diction: given an input vector xq, which is called query, Kernel regression predicts its outp

, based on the memory data points (x1, y1), ..., (xN, yN). We assume all the memory da

points were generated by an identical system.

Kernel regression use the weighted average of the outputs of all the memory data points

dict :

(5-1)

yq
ˆ xq()

yq
ˆ xq()

yq
ˆ xq() wiyi

i 1=

N

∑
 
 
 
 

wi

i 1=

N

∑
 
 
 
 

⁄=

Chapter 5: Efficient Memory Information Retrieval 83

se

creas-

 quite

e of

e a

 the

e

e

weights

ion is

llowing:
where wi is the weight assigned to the i’th datapoint in our memory, and is large for points clo

to the query and almost zero for points far from the query. It is usually calculated as a de

ing function of Euclidean distance, for example by Gaussian:

As we have mentioned previously, Kw is the Kernel width. The bigger the parameter Kw is, the

flatter the weight function curve is, which means that many memory points contribute

evenly to the regression. As Kw tends to infinity the predictions approach the global averag

all points in the database. If the Kw is very small, only closely neighboring data points mak

significant contribution. Kw is an important smoothing parameter for kernel regression. If

data is noise free then a small Kw will avoid smearing away fine details in the function. If th

data is relatively noisy, we expect to obtain smaller prediction errors with a relatively largKw.

This is illustrated in Figure 5-3.

The drawback of kernel regression is the expense of enumerating all the distances and

from the memory points to the query. This expense is incurred every time a predict

required. Several methods have been proposed to address this problem, reviewed as fo

wi Const exp
xq xi, 2

2Kw
2

--------------------–
 
 
 

×=

K is small
K is big

K is big
K is small

Figure 5-3: For the noiseless data in the top example, a small K gives the best
regression (in terms of future predictive accuracy). For the noisy data in the bottom
example, a large K is preferable.

84 Chapter 5: Efficient Memory Information Retrieval
1.[Preparata et al, 85] proposed a range-search solution. Similar to our cached kd-tree method,

the range-search solution finds all points in the kd-tree that have significant weights, and

then only sum together the weighted components of those points. This is only practical if the

kernel width Kw is small. If it is large, all the memory data points may have significant

weights, but with only small local variations, thus range searching would sum all the points

individually. Even in cases of small kernel widths, but if there are many data points in the

neighborhood, the range search method will need to search all the data points individually

and may still end up with a large computational cost.

2.Another solution to the cost of conventional Kernel regression is editing (or prototypes):

most data points are forgotten and only particularly representative ones are used (e.g.

[Kibler and Aha, 88] [Skalak, 94]). Kibler and Aha extended this idea further by allowing

data points to represent local averages of sets of previously-observed data points. This can

be effective, and unlike range-searching can be applicable even for wide kernel widths.

However, the degree of local averaging must be decided in advance, and queries cannot

occur with different kernel widths without rebuilding the prototypes. A second occasional

problem is that if we require very local predictions, the prototypes must either lose local

details by averaging, or else all the data points are stored as prototypes.

3.Decision trees and kd-trees have been previously used to cache local mappings in the tree

leaves [Grosse, 89], [Moore, 90], [Omohundro, 91], [Quinlan, 93]. These algorithms pro-

vide fast access once the tree is built, but a new structure needs to be built each time new

learning parameters, such as Kernel width, are required. Furthermore, the resulting predic-

tions from the tree have substantial discontinuities between boundaries. Only in [Grosse, 89]

is continuity enforced, but at the cost of tree-size, tree-building-cost and prediction-cost all

being exponential in the number of input variables.

Chapter 5: Efficient Memory Information Retrieval 85

te two

e,

ima-

ined

njunc-

de,

e to the

e

Computing the kernel regression sums

Now it is time for us to use the cached kd-tree to improve the efficiency of Kernel regression,

and at the same time avoid the drawbacks of the other competing methods.

Recall that each kd-tree node represents a hyper-rectangle sub-region of the input space, which

covers a set of memory data points. Assume in one node there are n data points, and corre-

sponding to a certain query, these n data points’ weights are all close to a value w; in other

words, the weight of the i’th data point in this node is wi = w + ξi, where all ξi’s are small.

Referring to Equation 5-1, when performing Kernel regression, we need to accumula

sums over all data points in memory, including these n data points in this node,

 and

Restricting our attention to summations over the n data points in the concerned kd-tree nod

we have,

Providing we know n, w and Σyi for the current node, we can therefore compute an approx

tion to Σwiyi and Σwi in constant time without needing to sum individual data points conta

in the node. This approximation to the partial sums is good to the extent that Σεiyi is small with

respect to wΣyi and Σεi is small with respect to nw.

Therefore, we should cache two other pieces of information into each kd-tree node in co

tion with split_v and split_d: the number of data points below the current no

n_below, and the sum Σyi of all output values of the data points contained in the node, sum.

These are two of the three values needed to compute the contribution of a kd-tree nod

partial sums in Kernel regression. The third component, w, depends upon the location of th

query and is determined dynamically in a manner described shortly.

wiyi∑ wi∑

wiyi∑ w εi+()yi∑ w yi∑ εiyi∑+= = and

wi∑ w εi+()∑ nw εi∑+= =

86 Chapter 5: Efficient Memory Information Retrieval
With such cached information in each kd-tree node, we can efficiently approximate Σwiyi and

Σwi, summed over all data points in the kd-tree, so as to speed up the process of Kernel regres-

sion. This is performed by a top-down search over the tree. At each node we make a decision

between:

1.(Cutoff) Treat all the points in this node as one group (a cheap operation) or

2.(Recurse) search the children.

We will use the cutoff option if we are confident that all weights inside the node are similar.

Given the current query xq and the hyper-rectangle of the current node it is an easy matter to

compute Dmin and Dmax: the minimum and maximum possible distances of any datapoint in

this node to the query (computational cost is linear in the number of dimensions). From these

values one can then compute the maximum and minimum possible weights wmax and wmin of

any data points owned by this node, since the weight of a point is a decreasing function of dis-

tance to the query. We thus decide if wmax and wmin are close enough to warrant the cut-off

option.

The search is thus a recursive procedure which returns two values: sum-weights and sum-wy. If

the cutoff option is taken, then estimate the weight of all data points as

and return:

Dmax

xq
Dmin

w wmin wmax+() 2⁄=

sum-weights n_below w×=

sum-wy sum w×=

Chapter 5: Efficient Memory Information Retrieval 87
If the cutoff option is not taken, recursively compute sum-weights and sum-wy for the left and

right children, and then return:

sum-weights = sum-weights(left) + sum-weights(right)

sum-wy = sum-wy(left) + sum-wy(right)

Search cutoffs

Last section described how we can make our approximation arbitrarily accurate by bounding

the maximum deviation we will permit from the true weight estimate with a value εmax > 0 and

then making εmax arbitrarily small. Thus the simplest cutoff rule in the kd-tree search would be

to cutoff if wmax - wmin < εmax. It is easy to show that this guarantees that the total sum of abso-

lute deviations |Σεi| is less than NTεmax / 2 where NT is the number of points in the tree. There

are, however, other possible cutoff criteria which provide arbitrary accuracy in the limit, but

which, when used as an approximation, have more satisfactory properties.

The simple cutoff rule does not take into account that a larger total error will occur if the node

contains very many points than if the node contains only a few points. It does also not account

for the fact that in a practical case we are less concerned about the absolute value of the sum of

deviations |Σεi| but rather the size of |Σεi| relative to the sum of the weights Σwi. Some simple

analysis reveals a cutoff criterion to satisfy both of these intuitions. Cutoff only if

(wmax - wmin) NB < τ Σwi

where NB is the number of data points below the current node. Simple algebra reveals that this

guarantees

| Σεi | < 0.5 G τ Σwi

where G is the number of groups finally used in the search (and thus G < NT, hopefully consid-

erably less). Notice that this cutoff rule requires us to know Σwi in advance, which of course

88 Chapter 5: Efficient Memory Information Retrieval

’s ker-

i-

ation

ns that

nstant

on of

f kd-

ompu-

n

we do not. Fortunately the sum of weights obtained so far in the search can be used as a valid

lower bound, and so the real algorithm makes a cutoff if

where τ is a system constant.

5.4 Experiments and Results

Let us review the performance of the Kernel regression with the help of cached kd-tree in com-

parison to the conventional Kernel regression. In the first experiment we use a trigonometric

function of two inputs with added noise: xi = uniformly generated random vector with all com-

ponents between 0 and 100 and yi = a function of xi (which ranges between 0 and 100 in height),

with gaussian noise of standard deviation 10.

10,000 data points were generated. Experiments were run for different values of kernel width

Kw. In all experiments, the cutoff threshold τ was 0.005. Figure 5-4 (a1) shows the test-set error

on 1000 test points for both regular kernel regression (“Regular KR”) and cached kd-tree

nel regression (“Tree KR”) graphed for different values of Kw. The values are very close, ind

cating that Tree KR is providing, for a wide range of kernel widths, a very close approxim

to Regular KR. Figure 5-4 (a2) shows the computational cost (in terms of the summatio

dominate the cost of KR) of the two methods. Regular KR sums all points, and so is a co

10,000 in cost. Tree KR is substantially cheaper for all values of Kw, but particularly so for very

small and very large values.

Figures 5-4 (b1) and (b2) show corresponding figures for a similar trigonometric functi

five inputs. This still shows similar prediction performance as Regular KR. The cost o

tree’s Kernel regression is still always less than Regular KR, but in the worst case the c

tational saving is only a factor of three (when Kw = 40, Tree KR cost = 3,200). This is not a

wmax wmin–()NB

weight so far in search
-- τ<

Chapter 5: Efficient Memory Information Retrieval 89

cost of
especially impressive result. However, for any fixed dimensionality and kernel width, costs rise

sub-linearly (in principle logarithmically) with the number of data points. To check this, we ran

the same set of experiments for a dataset of ten times the size: 100,000 points. The results, in

Figure 5-4 (c1) and (c2), show that with this large increase in data, the effectiveness of cached

kd-tree’s KR becomes more apparent. For example, consider the Kw = 40 case. With 100,000

data points instead of 10,000, the cost is only increased from 3,200 to 5,700 while the

Regular KR (of course) increased from 10,000 to 100,000.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

K

E
rr

o
r

Comparison of Kdtree and Kernel Errors

______x______ Multires KR

......o...... Regular KR

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

K

C
o

s
t

Comparison of The Two KRs Costs

____x____ Multires KR

----+---- Regular KR

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11

K

E
rr

o
r

Comparison of Kdtree and Kernel Errors, 5D

___x___ Multires KR

........o........ Regular KR

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

K

C
o

s
t

Comparison of The Two KRs Costs, 5D

----+---- Regular KR

____x____ Multires KR

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

K

E
rr

o
r

Comparison bet/ Two KRs Errors

___x___ Multires KR

.......o....... Regular KR

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

4

K

C
o

s
t

Comp. Of The Costs Of The Two KRs, 5-d, Huge Mem

Figure 5-4: Comparison between the errors (*1) and the costs (*2) between regular
kernel regression versus cached kd-tree’s one. In the cases of (a*), the dataset is of 2-
d inputs, of size 10,000. In (b*), 5-d inputs, dataset size 10,000. In (*c), 5-d inputs,
100,000 data points.

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

10,000 data points, 2-d 10,000 data points, 5-d 100,000 data points, 5-d

90 Chapter 5: Efficient Memory Information Retrieval

es with

 robot-

include

onable

 of 100

r KR.

es taken
Investigating the τ threshold parameter

Next, we will examine the effect of the τ parameter on the behavior of the algorithm. As τ is

increased we expect the computational cost to be reduced, but at the expense of the accuracy

of the predictions in comparison to the regular KR. The results in Figure 5-5 agree with this

expectation: the left hand graph shows that for 2-d, 3-d, 4-d and 5-d datasets (each with 10,000

points) the proportional error between cached kd-tree’s and regular regression increas

τ. The right hand graph shows a corresponding decrease in computational cost.

Real datasets

In another experiment, we ran cached kd-tree’s KR on data from several real-world and

learning datasets. Further details of the datasets can be found in [Maron et al, 94]. They

an industrial packaging process for which the slowness of prediction had been a reas

cause for concern. Encouragingly, cached kd-tree’s KR speeds up prediction by a factor

with no discernible difference in prediction quality between cached kd-tree’s and regula

This and other results are tabulated below. The costs and error values given are averag

(a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000
Crit --> cost

Crit

C
o

s
t

2d
3d

4d
5d

τ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100

120

140

160

180

Crit

(K
d

tr
e

e
 e

rr
o

r
-

K
e

rn
e

l
e

rr
o

r)
/K

e
rn

e
l
e

rr
o

r
x
 1

0
0

%
Crit --> Error ratio

2d

3d

4d

5d

Figure 5-5: (Upper) the relative accuracy and (lower) the computational
cost of kd-tree’s KR against τ --- the cutoff threshold.

τ τ

Chapter 5: Efficient Memory Information Retrieval 91
over an independent test set. Notably, the datasets with the least savings were pool, which had

few data points, and robot, which was high dimensional.

High dimensional, non-uniform data

Our final experiment concerned the question of how well the method performs if the number

of input variables is relatively large, but if the attributes are not independent. For example, a

common scenario in robot learning is for the input vectors to be embedded on a lower-dimen-

sional manifold. We performed two experiments, each with 9 inputs and 10,000 data points. In

the first experiment, the components of the input vectors were distributed uniformly randomly.

In the second experiment the input vectors were distributed on a non-linear 2-d manifold of the

9-d input space. The results were:

 Table 5-1: Real dataset test of cached kd-tree’s kernel regression

Domain
Dataset

Size
Dim of
Input

Regular
KR Cost

Tree’s KR
Cost

Regular
KR Err.

Tree’s KR
Error

Energy 2144 5-d 2144 232.9 1.687 1.690

Package 32000 3-d 32000 289.0 6.07 6.09

Pool 213 3-d 213 50.7 2.125 2.123

Protein 4664 3-d 4664 383.8 1.036 1.106

Robot 871 14-d 871 225 6.354 6.976

 Table 5-2: Cached kd-tree’s kernel regression for sub-manifold cases

9-d uniform 9-d inputs on 2-d manifold

Regular KR cost 10,000 10,000

Cached kd-tree’s KR cost 3,100 430

Regular KR mean testset error 13.07 1.06

Cached kd-tree’s KR mean testset error 13.08 1.15

92 Chapter 5: Efficient Memory Information Retrieval

’s KR is

uted

 needs

ining

Once

t ker-

ored,

e same

 set in

is an

 high

 useful

er, we

cally

istic

 each

e. This
The results indicate that, as would be expected, the cost advantage of cached kd-tree

not large (a factor of 3) for 9-d uniform inputs, but is far better if the inputs are distrib

within a lower-dimensional space.

5.5 Summary

Kernel regression with the help of the cached kd-tree is preferable in case the application

the following properties:

•Flexibility to work throughout the local/global spectrum.

•The ability to make predictions with different parameters without needing a retra

phase.

In addition, cached kd-tree’s Kernel regression has a number of additional flexibilities.

the kd-tree structure is built, it is possible to make different queries with not only differen

nel widths Kw, but also different Euclidean distance metrics, with subsets of attributes ign

or with some other distance metrics such as Manhattan. It is also possible to apply th

technique with different weight functions and for classification instead of regression.

Dimensionality is a weakness of cached kd-tree’s Kernel regression. Diminishing returns

above approximately 10 dimensions if the data points are distributed uniformly. This

inherent problem for which no solution seems likely because uniform data points in

dimensions will have almost all data points almost exactly the same distance apart, and a

notion of locality breaks down.

This chapter discussed an efficient implementation of kernel regression. In next chapt

will apply exactly the same algorithm to locally weighted linear regression and lo

weighted logistic regression, in which a prediction fits a local polynomial or a local log

function to minimize the locally weighted sum squared error. The only difference is that

node of the kd-tree stores the regression design matrices of all points below it in the tre

Chapter 5: Efficient Memory Information Retrieval 93
permits fast prediction and also fast computation of confidence intervals and analysis of vari-

ance information.

94 Chapter 5: Efficient Memory Information Retrieval

	Chapter 5
	Efficient Memory Information Retrieval
	5.1 Efficient information retrieval
	Figure 5-1: Grid for efficiency information retrieval.

	5.2 Kd-tree Construction and Information Retrieval
	Figure 5-2: To implement the grouping idea, we use hyper-rectangles with kd-tree. To find the nei...
	1. With different ranges of the “neighborhood”, the “neighboring” branches can be different. The ...
	2. Although we will use the kd-tree to find a set of neighboring data points, it is also possible...

	5.3 Cached Kd-tree for Memory-based Learning
	Kernel regression
	(5-1)
	Figure 5-3: For the noiseless data in the top example, a small K gives the best regression (in te...

	1. [Preparata et al, 85] proposed a range-search solution. Similar to our cached kd-tree method, ...
	2. Another solution to the cost of conventional Kernel regression is editing (or prototypes): mos...
	3. Decision trees and kd-trees have been previously used to cache local mappings in the tree leav...

	Computing the kernel regression sums

	and
	1. (Cutoff) Treat all the points in this node as one group (a cheap operation) or
	2. (Recurse) search the children.

	sum-weights = sum-weights(left) + sum-weights(right)
	sum-wy = sum-wy(left) + sum-wy(right)
	Search cutoffs

	(wmax - wmin) NB < t Swi
	| Sei | < 0.5 G t Swi
	5.4 Experiments and Results
	Figure 5-4: Comparison between the errors (*1) and the costs (*2) between regular kernel regressi...
	Figure 5-5: (Upper) the relative accuracy and (lower) the computational cost of kd-tree’s KR agai...
	Investigating the t threshold parameter
	Real datasets
	Table 5-1: Real dataset test of cached kd-tree’s kernel regression

	High dimensional, non-uniform data
	Table 5-2: Cached kd-tree’s kernel regression for sub-manifold cases

	5.5 Summary

