
Abstract

We demonstrate a new research approach to the
problem of predicting the reading difficulty of a
text passage, by recasting readability in terms of
statistical language modeling.  We derive a measure
based on an extension of multinomial naïve Bayes
classification that combines multiple language
models to estimate the most likely grade level for a
given passage.  The resulting classifier is not spe-
cific to any particular subject and can be trained
with relatively little labeled data.  We perform pre-
dictions for individual Web pages in English and
compare our performance to widely-used semantic
variables from traditional readability measures.  We
show that with minimal changes, the classifier may
be retrained for use with French Web documents.
For both English and French, the classifier main-
tains consistently good correlation with labeled
grade level (0.63 to 0.79) across all test sets.  Some
traditional semantic variables such as type-token
ratio gave the best performance on commercial cal-
ibrated test passages, while our language modeling
approach gave better accuracy for Web documents
and very short passages (less than 10 words).

1 Introduction

In the course of constructing a search engine for stu-
dents, we wanted a method for retrieving Web pages
that were not only relevant to a student's query, but also
well-matched to their reading ability.  Widely-used tra-
ditional readability formulas such as Flesch-Kincaid
usually perform poorly in this scenario.  Such formulas
make certain assumptions about the text: for example,
that the sample has at least 100 words and uses well-
defined sentences.  Neither of these assumptions need
be true for Web pages or other non-traditional docu-
ments.  We seek a more robust technique for predicting
reading difficulty that works well on a wide variety of
document types.

To do this, we turn to simple techniques from statis-
tical language modeling.  Advances in this field in the
past 20 years, along with greater access to training data,
make the application of such techniques to readability
quite timely.  While traditional formulas are based on
linear regression with two or three variables, statistical
language models can capture more detailed patterns of
individual word usage.  As we show in our evaluation,
this generally results in better accuracy for Web docu-
ments and very short passages (less than 10 words).
Another benefit of a language modeling approach is that
we obtain a probability distribution across all grade
models, not just a single grade prediction.  

Statistical models of text rely on training data, so in
Section 2 we describe our Web training corpus and note
some trends that are evident in word usage.  Section 3
summarizes related work on readability, focusing on
existing vocabulary-based measures that can be thought
of as simplified language model techniques.  Section 4
defines the modified multinomial naïve Bayes model.
Section 5 describes our smoothing and feature selection
techniques.  Section 6 evaluates our model's generaliza-
tion performance, accuracy on short passages, and sen-
sitivity to the amount of training data.  Sections 7 and 8
discuss the evaluation results and give our observations
and conclusions.

2 Description of Web Corpus

First, we define the following standard terms when
referring to word frequencies in a corpus.  A token is de-
fined as any word occurrence in the collection.  A type
refers to a specific word-string, and is counted only once
no matter how many times the word token of that type
occurs in the collection.

For training our model, we were aware of no signifi-
cant collection of Web pages labeled by reading diffi-
culty level, so we assembled our own corpus.  There are
numerous commercial reading comprehension tests
available that have graded passages, but this would have
reduced the emphasis we wanted on Web documents.
Also, some commercial packages themselves use read-
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ability measures when authoring the graded passages,
making the data somewhat artificial and biased toward
traditional semantic variables.

We gathered 550 English documents across 12
American grade levels, containing a total of 448,715
tokens and 17,928 types.  The pages were drawn from a
wide variety of subject areas: fiction, non-fiction, his-
tory, science, etc.  We were interested in the accuracy
available at individual grade levels, so we selected
pages which had been assigned a specific grade level by
the Web site author.  For example, in some cases the
assigned grade level was that of the classroom page
where the document was acquired.

Before defining a classification model, we examined
the corpus for trends in word frequency.  One obvious
pattern was that more difficult words were introduced at
later grade levels.  Earlier researchers (e.g. Chall, 1983,
p. 63) have also observed that concrete words like ‘red’
become less likely in higher grades.  Similarly, higher
grade levels use more abstract words with increased fre-
quency.  We observed both types of behavior in our Web
corpus.  Figure 1 shows four words drawn from our cor-

pus.  Data from each of the 12 grades in the corpus are
shown, ordered by ascending grade level.  The solid line
is a smoothed version of the word frequency data.  The
word ‘red’ does indeed show a steady decline in usage
with grade level, while the probability of the word
‘determine’ increases.  Other words like ‘perimeter’
attain maximum probability in a specific grade range,
perhaps corresponding to the period in which these con-
cepts are emphasized in the curriculum.  The word ‘the’
is very common and varies less in frequency across
grade levels.

Our main hypothesis in this work is that there are
enough distinctive changes in word usage patterns be-
tween grade levels to give accurate predictions with
simple language models, even when the subject domain
of the documents is unrestricted.

3 Related Work

There is a significant body of work on readability that
spans the last 70 years.  A comprehensive summary of
early readability work may be found in Chall (1958) and
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Figure 1.  Examples of four different word usage trends across grades 1-12, as sampled from our 400K-token
corpus of Web documents.  Curves showing word frequency data smoothed across grades using kernel regression
for the words (clockwise from top left): ‘red’, ‘determine’, ‘the’, and ‘perimeter’.



Klare (1963).  In 1985 a study by Mitchell (1985)
reviewed 97 different reading comprehension tests,
although few of these have gained wide use.

‘Traditional’ readability measures are those that rely
on two main factors: the familiarity of semantic units
(words or phrases) and the complexity of syntax.  Mea-
sures that estimate semantic difficulty using a word list
(as opposed to, say, number of syllables in a word) are
termed ‘vocabulary-based measures’. 

Most similar to our work are the vocabulary-based
measures, such as the Lexile measure (Stenner et al.,
1988), the Revised Dale-Chall formula (Chall and Dale,
1995) and the Fry Short Passage measure (Fry, 1990).
All of these use some type of word list to estimate
semantic difficulty: Lexile (version 1.0) uses the Car-
roll-Davies-Richman corpus of 86,741 types (Carroll et
al., 1971); Dale-Chall uses the Dale 3000 word list; and
Fry's Short Passage Measure uses Dale & O'Rourke's
‘The Living Word Vocabulary’ of 43,000 types (Dale
and O'Rourke, 1981).  Each of these word lists may be
thought of as a simplified language model.  The model
we present below may be thought of as a generalization
of the vocabulary-based approach, in which we build
multiple language models - in this study, one for each
grade - that capture more fine-grained information about
vocabulary  usage.

To our knowledge, the only previous work which
has considered a language modeling approach to read-
ability is a preliminary study by Si and Callan (2001).
Their work was limited to a single subject domain - sci-
ence - and three broad ranges of difficulty.  In contrast,
our model is not specific to any subject and uses 12 indi-
vidual grade models trained on a greatly expanded train-
ing set.  While our model is also initially based on naïve
Bayes, we do not treat each class as independent.
Instead, we use a mixture of grade models, which
greatly improves accuracy.  We also do not include sen-
tence length as a syntactic component.  Si and Callan
did not perform any analysis of feature selection meth-
ods so it is unclear whether their classifier was conflat-
ing topic prediction with difficulty prediction.  In this
paper we examine feature selection as well as our
model's ability to generalize.

4 The Smoothed Unigram Model

Our statistical model is based on a variation of the mult-
inomial naïve Bayes classifier, which we call the
‘Smoothed Unigram’ model.  In text classification
terms, each class is described by a language model cor-
responding to a predefined level of difficulty.  For
English Web pages, we trained 12 language models cor-
responding to the 12 American grade levels.

The language models we use are simple: they are
based on unigrams and assume that the probability of a
token is independent of the surrounding tokens, given
the grade language model.  A unigram language model
is defined by a list of types (words) and their individual
probabilities.  Although this is a weak model, it can be
trained from less data than more complex models, and
turns out to give good accuracy for our problem.

4.1 Prediction with Multinomial Naïve Bayes

We define a generative model for a text passage T in
which we assume T was created by a hypothetical
author using the following algorithm:

1. Choose a grade language model Gi  from some
complete set of unigram models G according to a prior
distribution P(Gi).  Each Gi has a multinomial distribu-
tion over a vocabulary V.

2. Choose a passage length L in tokens according to
the distribution  P(L | Gi).

3. Assuming a ‘bag of words’ model for the passage,
sample L tokens from Gi ’s multinomial distribution
based on the ‘naïve’ assumption that each token is inde-
pendent of all other tokens in the passage, given the lan-
guage model Gi.  

The probability of T given model Gi is therefore: 

where C(w) is the count of the type w in T.
Our goal is to find the most likely grade language

model given the text T, or equivalently, the model Gi that
maximizes .  We derive L(Gi | T)
from (1) via Bayes’ Rule, which is:

However, we first make two further assumptions:
1. All grades are equally likely a priori, and there-

fore  where NG  is the number of grades.
2. The passage length probability P(L|Gi) is indepen-

dent of grade level.
Substituting (1) into (2), simplifying, and taking log-

arithms, we obtain:

where log Z represents combined factors involving pas-
sage length and the uniform prior P(Gi) which, accord-
ing to our assumptions, do not influence the prediction
outcome and may be ignored.  The sum in (3) is easily
computed: for each token in T, we simply look up its log
probability in the language model of Gi and sum over all
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tokens to obtain the total likelihood of the passage given
the grade.  We do this for all language models, and
select the one with maximum likelihood.  An example
of the set of log-likelihoods calculated across all 12
grade models, with a maximum point clearly evident, is
shown in Figure 2.

5 Implementation

Given the above theoretical model, we describe two fur-
ther aspects of our classification method: smoothing and
feature selection.

5.1 Smoothing

We will likely see some types in test documents that are
missing or rarely seen in our training documents.  This
is a well-known issue in language model applications,
and it is standard to compensate for this sparseness by
smoothing the frequencies in the trained models.  To do
this, we adjust our type probability estimates by shifting
part of the model’s probability mass from observed
types to unseen and rare types.

We first apply smoothing to each grade’s language
model individually.  We use a technique called Simple
Good-Turing smoothing, which is a popular method for
natural language applications.  We omit the details here,
which are available in Gale and Sampson (1995).

Next, we apply smoothing across grade language
models.  This is a departure from standard text classifi-
cation methods, which treat the classes as independent.
For reading difficulty, however, we hypothesize that
nearby grade models are in fact highly related, so that
even if a type is unobserved in one grade’s training data,

we can estimate its probability in the model by interpo-
lating estimates from nearby grade models.

For example, suppose we wish to estimate P(w|G)
for a type w in a grade model G.  If the type w occurs in
at least one grade language model, we can perform
regression with a Gaussian kernel (Hastie et al., 2001, p.
165) across all grade models to obtain a smoothed value
for P(w|G).  With training, we found the optimal kernel
width to be 2.5 grade levels.  If w does not occur in any
grade model (an ‘out-of-vocabulary’ type) we can back
off to a traditional semantic variable.  In this study, we
used an estimate which is a function of type length:

                         

where w is a type, i is a grade index between 1 and 12,
|w| is w’s length in characters, and C = -13, D = 10 based
on statistics from the Web corpus. 

5.2 Feature Selection

Feature selection is an important step in text classifica-
tion: it can lessen the computational burden by reducing
the number of features and increase accuracy by remov-
ing ‘noise’ words having low predictive power.

The first feature selection step for many text classifi-
ers is to remove the most frequent types (‘stopwords’).
This must be considered carefully for our problem: at
lower grade levels, stopwords make up the majority of
token occurrences and removing them may introduce
bias.  We therefore do not remove stopwords.

Another common step is to remove low-frequency
types – typically those that occur less than 2 to 5 times
in a model’s training data.  Because we smooth across
grade models, we perform a modified version of this
step, removing from all models any types occurring less
than 3 times in the entire corpus.

Unlike the usual text classification scenario, we also
wish to avoid some types that are highly grade-specific.
For example, a type that is very frequent in the grade 3
model but that never occurs in any other model seems
more likely to be site-specific noise than a genuine
vocabulary item.  We therefore remove any types occur-
ring in less than 3 grade models, no matter how high
their frequency.  Further study is needed to explore ways
to avoid over-fitting the classifier while reducing the
expense of removing possibly useful features.

We investigated scoring each remaining type based
on its estimated ability to predict (positively or nega-
tively) a particular grade.  We used a form of Log-Odds
Ratio, which has been shown to give superior perfor-
mance for multinomial naïve Bayes classifiers (Mlad-
enic and Grobelnik, 1998).  Our modified Log-Odds
measure computes the largest absolute change in log-
likelihood between a given grade and all other grades.

P w Gi( )log C w
D
------+ i w–( )⋅≈

Figure 2.  The log-likelihood of a typical 100-word Grade
5 passage relative to the language models for grades 1 to
12.  The maximum log-likelihood in this example is
achieved for the Grade 6 language model.  Note the nega-
tive scale.
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We tried various thresholds for our Log-Odds measure
and found that the highest accuracy was achieved by
using all remaining features. 

5.3 Implementation Specifics

We found that we could reduce prediction variance with
two changes to the model.  First, rather than choosing
the single most likely grade language model, we calcu-
late the average grade level of the top N results,
weighted by the relative differences in likelihood
(essentially the expected class).  The tradeoff is a small
bias toward the middle grades.  All results reported here
use this averaging method, with N=2.

Second, to account for vocabulary variation within
longer documents, we partition the document text into
passages of 100 tokens each.  We then obtain a grade
level prediction for each passage.  This creates a distri-
bution of grade levels across the document.  Previous
work (Stenner, 1996, also citing Squires et al., 1983 and
Crawford et al., 1975) suggests that a comprehension
rate of 75% for a text is a desirable target.  We therefore
choose the grade level that lies at the 75th-percentile of
the distribution, interpolating if necessary, to obtain our
final prediction.

6 Evaluation

State-of-the-art performance for this classification task
is hard to estimate.  The results from the most closely
related previous work (Si and Callan, 2001) are not
directly comparable to ours; among other factors, their
task used a dataset trained on science curriculum
descriptions, not text written at different levels of diffi-
culty.  There also appear to be few reliable studies of
human-human interlabeler agreement.  A very limited
study by Gartin et al. (1994) gave a mean interlabeler
standard deviation of 1.67 grade levels, but this study
was limited to just 3 samples across 10 judges.  Never-
theless, we believe that an objective element to readabil-
ity assessment exists, and we state our main results in
terms of correlation with difficulty level, so that at least
a broad comparison with existing measures is possible.

Our evaluation looked at four aspects of the model.
First, we measured how well the model trained on our
Web corpus generalized to other, previously unseen, test
data.  Second, we looked at the effect of passage length
on accuracy.  Third, we estimated the effect of addi-
tional training data on the accuracy of the model.
Finally, we looked at how well the model could be
extended to a language other than English – in this
study, we give results for French.

6.1 Overall Accuracy and Generalization Ability

We used two methods for assessing how well our classi-
fier generalizes beyond the Web training data.  First, we
applied 10-fold cross-validation on the Web corpus
(Kohavi 1995).  This chooses ten random partitions for
each grade’s training data such that 90% is used for
training and 10% held back as a test set.  Second, we
used two previously unseen test sets: a set of 228 lev-
eled documents from Reading A-Z.com, spanning grade
1 through grade 6; and 17 stories from Diagnostic Read-
ing Scales (DRS) spanning grades 1.4 through 5.5.  The
Reading A-Z files were converted from PDF files using
optical character recognition; spelling errors were cor-
rected but sentence boundary errors were left intact to
simulate the kinds of problems encountered with Web
documents.  The DRS files were noise-free.

Because the Smoothed Unigram classifier only mod-
els semantic and not syntactic difficulty, we compared
its accuracy to predictions based on three widely-used
semantic difficulty variables as shown below.  All pre-
diction methods used a 100-token window size.

1. UNK:  The fraction of ‘unknown’ tokens in the
text, relative to the Dale 3000 word list.  This is the
semantic variable of the Revised Dale-Chall measure.

2. TYPES:  The number of types (unique words) in
a 100-token passage.

3. MLF: The mean log frequency of the passage rel-
ative to a large English corpus.  This is approximately
the semantic variable of the unnormalized Lexile (ver-
sion 1.0) score.  Because the Carroll-Davies-Richman
corpus was not available to us, we used the written sub-
set of the British National Corpus (Burnard, 1995)
which has 921,074 types. (We converted these to the
American equivalents.)

We also included a fourth predictor: the Flesch-
Kincaid score (Kincaid et al. 1975), which is a linear
combination of the text’s average sentence length (in
tokens), and the average number of syllables per token.
This was included for illustration purposes only, to ver-
ify the effect of syntactic noise. The results of the evalu-
ation are summarized in Table 1.

On the DRS test collection, the TYPES and Flesch-
Kincaid predictors had the best correlation with labeled
grade level (0.93). TYPES also obtained the best corre-
lation (0.86) for the Reading A-Z documents. However,
Reading A-Z documents were written to pre-established
criteria which includes objective factors such as type/
token ratio (Reading A-Z.com, 2003), so it is not sur-
prising that the correlation is high.  The Smoothed Uni-
gram measure achieved consistently good correlation
(0.63 – 0.67) on both DRS and Reading A-Z test sets.



Flesch-Kincaid performs much more poorly for the
Reading A-Z data, probably because of the noisy sen-
tence structure. In general, mean log frequency (MLF)
performed worse than expected – the reasons for this
require further study but may be due to the fact the BNC
corpus may not be representative enough of vocabulary
found at earlier grades.

For Web data, we examined two subsets of the cor-
pus: grades 1– 6 and grades 1– 12. The correlation of all
variables with difficulty dropped substantially for Web
grades 1–6, except for Smoothed Unigram, which
stayed at roughly the same level (0.64) and was the best
performer.  The next best variable was UNK (0.38). For
the entire Web grades 1– 12 data set, the Smoothed Uni-
gram measure again achieved the best correlation
(0.79).  The next best predictor was again UNK (0.63).
On the Web corpus, the largest portions of Smoothed
Unigram’s accuracy gains were achieved in grades 4– 8.

Without cross-grade smoothing, correlation for Web
document predictions fell significantly, to 0.46 and 0.68
for the grade 1-6 and 1-12 subsets respectively.

We measured the type coverage of the language
models created from our Web training corpus, using the
Web (via cross-validation) and Reading A-Z test sets.
Type coverage tells us how often on average a type from
a test passage is found in our statistical model. On the
Reading A-Z test set (Grades 1 – 6), we observed a
mean type coverage of 89.1%, with a standard deviation
of 6.65%. The mean type coverage for the Web corpus
was 91.69%, with a standard deviation of 5.86%. These
figures suggest that the 17,928 types in the training set
are sufficient to give enough coverage of the test data
that we only need to back off outside the language
model-based estimates for an average of 8-10 tokens in
any 100-token passage.

6.2 Effect of Passage Length on Accuracy

Most readability formulas become unreliable for pas-
sages of less than 100 tokens (Fry 1990).  With Web
applications, it is not uncommon for samples to contain
as few as 10 tokens or less.  For example, educational
Web sites often segment a story or lesson into a series of
image pages, with the only relevant page content being a
caption.  Short passages also arise for tasks such as esti-

mating the reading difficulty of page titles, user queries,
or questionnaire items.  Our hypothesis was that the
Smoothed Unigram model, having more fine-grained
models of word usage, would be less sensitive to pas-
sage length and give superior accuracy for very short
passages, compared to traditional semantic statistics.

In the extreme case, consider two single-word ‘pas-
sages’: ‘bunny’ and ‘bulkheads’.  Both words have two
syllables and both occur 5 times in the Carroll-Davies-
Richman corpus.  A variable such as mean log fre-
quency would assign identical difficulty to both of these
passages, while our model would clearly distinguish
them according to each word’s grade usage.

To test this hypothesis, we formed passages of
length L by sampling L consecutive tokens from near
the center of each Reading A-Z test document.  We
compared the RMS error of the Smoothed Unigram pre-
diction on these passages to that obtained from the UNK
semantic variable.  We computed different predictions
for both methods by varying the passage length L from 3
tokens to 100 tokens.

The results are shown in Figure 3.  Accuracy for the
two methods was comparable for passages longer than
about 50 tokens, but Smoothed Unigram obtained statis-
tically significant improvements at the 0.05 level for 4,
5, 6, 7, and 8-word passages.  In those cases, the predic-
tion is accurate enough that very short passages may be
reliably classified into low, medium, and high levels of
difficulty.

6.3 Effect of Training Set Size on Accuracy

We derived the learning curve of our classifier as a func-
tion of the mean model training set size in tokens.  The
lowest mean RMS error of 1.92 was achieved at the
maximum training set size threshold of 32,000 tokens
per grade model.  We fit a monotonically decreasing
power-law function to the data points (Duda et al. 2001,
p. 492).  This gave extrapolated estimates for mean
RMS error of about 1.79 at 64,000 tokens per model,
1.71 at 128,000 tokens per model, and 1.50 at 1,000,000
tokens per model.

While doubling the current mean training set size to
64,000 tokens per model would give a useful reduction
in RMS error (about 6.7%), each further reduction of

Files Grade 
Range

Smoothed
Unigram UNK TYPES MLF FK

DRS 17 1.4 - 5.5 0.67 0.72 0.93 0.50 0.93
Reading A-Z 228 1.0 - 6.0 0.63 0.78 0.86 0.49 0.30
Web (Gr. 1-6) 250 1.0 - 6.0 0.64 0.38 0.26 0.36 0.25
Web (Gr. 1-12) 550 1.0 - 12 0.79 0.63 0.38 0.47 0.47
Table 1. Correlations between predictors and grade level, for the English collections used in our study.
All predictors were trained on the Web corpus, with the Web tests using 10-fold cross-validation.



that magnitude would require a corresponding doubling
of the training set size.  This is the trade-off that must be
considered between overall RMS accuracy and the cost
of gathering labeled data.

6.4 Application to French Web Pages

To test the flexibility of our language model approach,
we did a preliminary study for French reading difficulty
prediction.  We created a corpus of 189 French Web
pages labeled at 5 levels of difficulty, containing a total
of  394,410 tokens and 27,632 types (unstemmed).

The classification algorithm was identical to that
used for English except for a minor change in the fea-
ture selection step.  We found that, because of the
inflected nature of French and the relatively small train-
ing set, we obtained better accuracy by normalizing
types into ‘type families’ by using a simplified stem-
ming algorithm that removed plurals, masculine/femi-
nine endings, and basic verb endings.

A chart of the actual versus predicted difficulty label
is shown in Figure 4.  The classifier consistently under-
predicts difficulty for the highest level, while somewhat
over-predicting for the lowest level.  This may be partly
due to the bias toward central grades caused by averag-
ing the top 2 predictions.  More work on language-spe-
cific smoothing may also be needed.  With 10-fold
cross-validation, the French model obtained a mean cor-
relation of 0.64 with labeled difficulty.  For comparison,
using the type/token ratio gave a mean correlation of
0.48.  While further work and better training data are
needed, the results seem promising given that only a few
hours of effort were required to gather the French data
and adjust the classifier’s feature selection.

7 Discussion

While word difficulty is well-known to be an excellent
predictor of reading difficulty (Chall & Edgar, 1995), it
was not at all clear how effective our language model
approach would be for predicting Web page reading dif-
ficulty.  It was also unknown how much training data
would be required to get good vocabulary coverage on
Web data.  Although retraining for other applications or
domains may be desirable, two factors appear responsi-
ble for the fact that our classifier, trained on Web data,
generalizes reasonably well to unseen test data from
other sources.

First, smoothing across classes greatly reduces the
training data required for individual grade models. By
‘borrowing’ word frequency data from nearby grades,
the effective number of types for each grade model is
multiplied by a factor of five or more.  This helps
explain the type coverage of about 90% on our test data.

Second, because we are interested in the relative
likelihoods of grade levels, accurate relative type proba-
bilities are more important than absolute probabilities.
Indeed, trying to learn absolute type probabilities would
be undesirable since it would fit the model too closely to
whatever specific topics were in the training set.  The
important functions of relative likelihood appear to be
general indicators such as the grade when a word is first
introduced into usage, whether it generally increases or
decreases with grade level, and whether it is most fre-
quent in a particular grade range.

Further study is required to explore just how much
this model of vocabulary usage can be generalized to
other languages.  Our results with French suggest that
once we have normalized incoming types to accommo-
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onal line represents perfect prediction.



date the morphology of a language, the same core classi-
fier approach may still be applicable, at least for some
family of languages.

8 Conclusions

We have shown that reading difficulty can be estimated
with a simple language modeling approach using a mod-
ified naïve Bayes classifier.  The classifier's effective-
ness is improved by explicitly modeling class
relationships and smoothing frequency data across
classes as well as within each class.

Our evaluation suggests that reasonably effective
models can be trained with small amounts of easily-
acquired data.  While this data is less-rigorously graded,
such material also greatly reduces the cost of creating a
readability measure, making it easy to modify for spe-
cific tasks or populations. 

As an example of retraining, we showed that the
classifier obtained good correlation with difficulty for at
least two languages, English and French, with the only
algorithm difference being a change in the morphology
handling during feature processing. 

We also showed that the Smoothed Unigram method
is robust for short passages and Web documents.  Some
traditional variables like type/token ratio gave excellent
correlation with difficulty on commercial leveled pas-
sages, but the same statistics performed inconsistently
on Web-based test sets.  In contrast, the Smoothed Uni-
gram method had good accuracy across all test sets.

The problem of reading difficulty prediction lies in
an interesting region between classification and regres-
sion, with close connections to ordinal regression (Mac-
Cullagh, 1980) and discriminative ranking models
(Crammer and Singer, 2001).  While simple methods
like modified naïve Bayes give reasonably good results,
more sophisticated techniques may give more accurate
predictions, especially at lower grades, where vocabu-
lary progress is measured in months, not years.
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