Towards Practical Runtime Type Instantiation

Karl Naden

Carnegie Mellon University

kbn@cs.cmu.edu

Abstract

Symmetric multiple dispatch, generic functions, and variant type
parameters are powerful language features that have been shown
to aid in modular and extensible library design. However, when
symmetric dispatch is applied to generic functions, type parameters
may have to be instantiated as a part of dispatch. Adding variant
generics increases the complexity of type instantiation, potentially
making it prohibitively expensive. We present a syntactic restriction
on generic functions and an algorithm designed and implemented for
the Fortress programming language that simplifies the computation
required at runtime when these features are combined.

1. Introduction

Symmetric multiple dispatch brings with it several benefits for
writing modular and efficient code. It provides a partial solution to
both the binary method problem and the expression problem and
also ensures that the implementation with the most knowledge of
the representations of the inputs is executed [2]. In exchange, the
runtime must do extra work at each call site to determine the most

specific function declaration that applies to the runtime arguments.

Part of checking a generic function for applicability is finding a
valid instantiation of its type parameters. This potentially intensive
operation involves the evaluation of bounds on the type parameters
and is made more difficult by variant generic types because they can
increase the number of valid instantiations.

Existing work avoids the need to instantiate type bounds at
runtime either by not including generics [2] or by requiring that
the generic signature of each function in an overload set is the
same which allows the instantiation to be generated at compile
time [1]. However, designers of the Fortress programming language
[3] found it useful while writing their standard library to define
both monomorphic and polymorphic versions of functions [4]. In
order to support this, we need to develop strategies to overcome the
challenges of runtime type instantiation.

In this preliminary work, we show that restricting the scope of
type parameters so that they may only appear after their bounds
are declared serves to keep the runtime computation for dispatch
to generic functions reasonable. We introduce an algorithm that
requires only a single pass over the type parameters of a generic
function in a subset of Fortress with co- and invariant generics.

[Copyright notice will appear here once ’preprint’ option is removed.]

runtime type instantiation

2. Dispatch Problem Statement

In contrast with traditional dynamic dispatch, the runtime of a lan-
guage with multiple dispatch cannot necessarily use any static in-
formation about the call site provided by the typechecker. It must
check if there exists a more specific function declaration than the
one statically chosen that has the same name and is applicable to
the runtime types of the provided arguments. The process for deter-
mining when a function declaration is more specific than another is
laid out in [4]. A fully instantiated function declaration is applicable
if the runtime types of the arguments are subtypes of the declared
parameter types. To show applicability for a generic function we
need to find an instantiation that witnesses the applicability and the
type safety of the function call so that it can be used by the code.
Formally, given

1. a function signature f[X <: 7x (¥ 7y) : 7,
2. the runtime types T}, of the runtime arguments provided to the
function call, and

3. the return type 7; of the statically most specific applicable
function signature,

f is applicable if we can provide an instantiation Tx of the type
parameters of f such that for each type parameter X we have
Tx <: [T'x/X]|rx, for each runtime parameter y we have T}, <:
[Tx /X]|7y, and [Tx / X7 <: Ts.

2.1 Language

In the above definition, the type parameters of f are declared in
between oxford brackets ([]). Each type parameter X can have
multiple upper bounds 7x. 7 denotes possibly generic types, of
the form X or Foo[7], where Foo is a declared generic nominal
type. A concrete type 1" is any fully instantiated nominal type.
Nominal types are declared with type parameters, each of which
is given a variance that defines how different instantiations of
the type are related by subtyping. Concretely, given a generic
nominal type Bar[X] where X is covariant we can say that
Bar[T1] <: Bar[7>] if and only if T4 <: T>.If X is invariant,
then we must have 71 = T5.

In order to guarantee termination of our algorithm, we prevent
type parameters from appearing in bounds prior to their declaration,
including their own.! As we will see, this is required to prevent
(infinite) iteration during bound generation.

3. Solution

To solve this problem, we generate all of the concrete upper and
lower bounds on the type parameters from the information provided
and then check that the bounds are consistent. That is, for each type
parameter we check that the join of all of the lower bounds is a

! This restriction can be relaxed to allow the declared parameter to appear in
its own bound in the case of selftypes.

1 2011/11/10



subtype of the meet of all of the upper bounds. Since this could
leave us with multiple valid instantiations we choose the lower
bound of each type parameter because that will make the return type
as specific as possible.

3.1 Bound Generation

Our first task is to generate all of the concrete upper and lower
bounds for each type parameter. Upper bounds on type parameters
that are declared as concrete types require no extra processing, but
other bounds require more work.

3.1.1 Parameter Bounds

For an instantiation to be valid, the instantiated parameter types
must be supertypes of the runtime types of the arguments. For each
parameter y, we use the subtype inequality 7, <: 7, to either
prove that no instantiation exists or to generate bounds on any type
variables in 7, that ensure the instantiated function is applicable to
this parameter. We do this using a recursive process called structure
matching. Structure matching works because the type on the left
is a concrete runtime type which we can query. For instance, if
7y, = Baz[X], we can determine what instantiation T}, of Baz is
a supertype of T}, (as in [5] we require that this query return the
unique minimal answer) and use the answer to generate bounds on
X (if no T?; exists then we know no instantiation will make the
function declaration applicable). If the type parameter of Baz is
covariant, we add Tz; as a lower bound; if it is invariant, we
add Ty' as both a lower and an upper bound. As there can be arbitrary
nesting, we may have to repeat this process a finite number of times
in order to reach the type variable base case.

3.1.2 Return Type Bounds

In order to be type safe, the return type of a valid instantiation must
be a subtype of the return type for the function call guaranteed by
the typechecker. Unlike parameter bounds, these bounds do not rely
on runtime information. Thus, we can generate additional concrete
bounds on type parameters for more specific function declarations
at each call site.

3.1.3 Declared Generic Upper Bounds

Subtype inequalities with generics on both sides require more care
to ensure that we don’t get into fixed-point iteration, which could be
unbounded or require a prohibitive number of steps. We can avoid
iteration by computing bounds in a smart order. For this purpose we

define bound dependence between the bounds of type parameters.

This relationship signifies the order that the bounds computation
must be completed to avoid iteration. Specifically, if the lower bound
of X is dependent on the lower bound of X’, then all of the lower
bounds of X’ must be computed before we know we have generated
all of the lower bounds of X.

Type parameter upper bounds. If we have X <: Z, then all lower
bounds of X are also lower bonds of Z. Thus we say that the lower
bound of Z is dependent on the lower bound of X. Similarly, all
upper bounds of Z are also upper bounds of X, so the upper bound
of X is dependent on the upper bound of Z.

Generic nominal upper bounds. If a nominal generic type appears
in the upper bound as in X <: 7x, then we have a situation similar
to the parameter bound question because we have a generic type
as the super type. Unlike the parameter case, the subtype is a type
variable and not a concrete type. Therefore, we cannot immediately
use structure matching because we don’t have a concrete type to
query. However, the type we want to query is the lower bound of X
because that is what we ultimately need to guarantee is a subtype
of the upper bound. Therefore, any bounds we would generate by

runtime type instantiation

processing this generic bound are dependent on the lower bound of
X. Once we have all of the lower bounds of X, we can compute the
join of its lower bounds and use the join to generate bounds with
structure matching.

3.2 Algorithm
Our algorithm is as follows:
1. Compute parameter bounds via structure matching.

2. In reverse declaration order, compute the lower bounds of each
type parameter and then use structure matching to generate
concrete bounds from its declared upper bounds.

3. In declaration order, compute the upper bounds of the type
parameters and check that the computed lower bound is a
subtype of the computed upper bound.

4. Choose the lower bounds of each type parameter as the instanti-
ation.

We claim that this algorithm is guaranteed to terminate in a single
pass. The only place iteration could occur is in step 2: if a new lower
bound is added to an already processed type parameter, X, we
need to update its computed lower bound and structure match again.
However, our restriction on the scoping of type parameters ensures
that the lower bounds of X can only be dependent on the lower
bounds of type parameters that are declared after X. So, processing
X and type parameters declared before X will not generate new
lower bounds for X and so we will not need to iterate.

4. Conclusions and Future Work

We conclude that simply restricting the scope of type parameters
in bounds is enough to guarantee a single pass algorithm. While
we have not performed a complete evaluation of the impact of this
restriction, we believe it is reasonable because all functions in the
Fortress standard library conform to it. We have implemented the
algorithm in the open source Fortress runtime.’

This is only the first step towards a reasonable implementation
that maintains the power of generics. A next step would be to add
contravariant generics, which will require an equivalent to structural
matching when the subtype is generic. This algorithm also depends
on the efficient computation of meets, joins, and subtypes over
the type lattice at runtime. Finally, this algorithm may need to
iterate over multiple signatures at a given call site. We are actively
investigating representations and algorithms for these problems.

Acknowledgments

We thank David Chase, Justin Hilburn, Guy Steele, Victor Luchangco
and the rest of the Fortress team for many helpful discussions.

References

[1] Francois Bourdoncle and Stephan Merz. Type checking higher-order
polymorphic multi-methods. In Proceedings of POPL "97, pages 302—
315, New York, NY, USA, 1997.

[2] Curtis Clifton et al. MultiJava: Design rationale, compiler implementa-
tion, and applications. TOPLAS, 28(3):517-575, 2006.

[3] Eric Allen et al. The Fortress Language Specification Version 1.0, March
2008.

[4] Eric Allen et al. Type checking modular multiple dispatch with
parametric polymorphism and multiple inheritance. In Proceedings
of OOPSLA 11, New York, NY, USA, 2011.

[5] Ross Tate et al. Taming wildcards in Java’s type system. SIGPLAN Not.,
46:614-627, June 2011.

2 http://projectfortress.java.net/

2 2011/11/10



