
+
Towards Practical
Runtime Type
Instantiation

Karl Naden
TLDI
January 28, 2012

1

Dispatch on Generics

+

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = BinaryMatrixMult(bigMatrix, reallyBigMatrix)

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

∗(x : Matrix�Number�, y : Matrix�Number�) = do
. . . (*) standard algorithm

end
∗(x : Matrix�Z2�, y : Matrix�Z2�) = do

. . . (*) bit vector algorithm
end
bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

Scientific Programming
2

When can this multiplication be optimized?

+

•  Depends on the type of the entries

–  General numbers – use standard algorithm
•  Many individual multiplications

–  Binary Digits – create bit vectors and use bit operators for multiplication
•  Many multiplications at the same time
•  More efficient multiplication

Algorithm choice

3

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = BinaryMatrixMult(bigMatrix, reallyBigMatrix)

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

∗(x : Matrix�Number�, y : Matrix�Number�) = do
. . . (*) standard algorithm

end
∗(x : Matrix�Z2�, y : Matrix�Z2�) = do

. . . (*) bit vector algorithm
end
bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = BinaryMatrixMult(bigMatrix, reallyBigMatrix)

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

∗(x : Matrix�Number�, y : Matrix�Number�) = do
. . . (*) standard algorithm

end
∗(x : Matrix�Z2�, y : Matrix�Z2�) = do

. . . (*) bit vector algorithm
end
bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = BinaryMatrixMult(bigMatrix, reallyBigMatrix)

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

∗(x : Matrix�Number�, y : Matrix�Number�) = do
. . . (*) standard algorithm

end
∗(x : Matrix�Z2�, y : Matrix�Z2�) = do

. . . (*) bit vector algorithm
end
bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

+

•  If know statically operands are binary matrixes
–  Can define a separate function for the programmer to call

•  Otherwise, could use multiple dispatch

–  Define two cases of * operator

–  Binary algorithm chosen dynamically if operands are binary matrixes at runtime

•  Runtime type must include generic information

How to Choose Best Algorithm?
4

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = BinaryMatrixMult(bigMatrix, reallyBigMatrix)

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

∗(x : Matrix�Number�, y : Matrix�Number�) = do
. . . (*) standard algorithm

end
∗(x : Matrix�Z2�, y : Matrix�Z2�) = do

. . . (*) bit vector algorithm
end
bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = binaryMatrixMult(bigMatrix, reallyBigMatrix)

binaryMatrixMult(x:Matrix�Z2�,y:Matrix�Z2�) = . . .

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

1

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = binaryMatrixMult(bigMatrix, reallyBigMatrix)

binaryMatrixMult(x : Matrix�Z2�, y : Matrix�Z2�) = . . .

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

∗(x : Matrix�Number�, y : Matrix�Number�) = do
. . . (*) standard algorithm

end
∗(x : Matrix�Z2�, y : Matrix�Z2�) = do

. . . (*) bit vector algorithm
end
bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

forecast() = do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

bigMatrix : Matrix�Z2�
reallyBigMatrix : Matrix�Z2�
. . .
temp = BinaryMatrixMult(bigMatrix, reallyBigMatrix)

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = if bigMatrix : Matrix�Z2� &&

reallyBigMatrix : Matrix�Z2�
then BinaryMatrixMult(bigMatrix, reallyBigMatrix)
else bigMatrix ∗ reallyBigMatrix

∗(x : Matrix�Number�, y : Matrix�Number�) = do
. . . (*) standard algorithm

end
∗(x : Matrix�Z2�, y : Matrix�Z2�) = do

. . . (*) bit vector algorithm
end
bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

+

•  Instantiated type of objects matters at runtime
–  Used to choose what code is executed – No type erasure!

•  Instantiated type of generic functions matters
–  Instantiated generic used to create objects – must be tagged at runtime

–  Type of resulting List depends on the instantiation of X
–  Want it to be as specific as possible

•  Don’t always know the best answer statically

–  Need runtime type instantiation!

Generic Dispatch
5

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

N

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

Z2 <: N <: Number <: Any

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

+
Problem – Runtime Instantiation

6

•  Given
–  a generic function signature with type variables Xi
–  the runtime types of the inputs
–  Static return type of the function call

•  Find an instantiation of the Xi such that
–  Type variable bounds met (Valid instantiation)
–  Runtime inputs are subtypes of parameter types

 (Function applicable to arguments)
–  Return type is a subtype of static return type (Type safe)
–  Minimize return type (As specific as possible)

heuristic

+

•  Symmetric Multiple Dispatch
–  Statically guaranteed a most specific function definition exists
–  Chosen at runtime, static information for optimization of search

•  Objects
–  Nominal (declared) subtyping
–  Variant Generics

•  Covariant: If Baz covariant, then if and only if
•  Invariant: If Baz invariant, then if and only if

–  Types form a lattice
•  Meet (greatest lower bound) and join (least upper bound) defined

•  Generic Functions
–  Type variables X bound within

•  Upper bounds of type variables
•  Parameter types
•  Return type

Fortress Overview 7

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l and add n

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

N

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l and add n

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

N

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l and add n

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

N

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l and add n

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

N

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X = Y

2

Towards Practical Runtime Type Instantiation

Karl Naden

Carnegie Mellon University

kbn@cs.cmu.edu

Abstract
Symmetric multiple dispatch, generic functions, and variant type

parameters are powerful language features that have been shown

to aid in modular and extensible library design. However, when

symmetric dispatch is applied to generic functions, type parameters

may have to be instantiated as a part of dispatch. Adding variant

generics increases the complexity of type instantiation, potentially

making it prohibitively expensive. We present a syntactic restriction

on generic functions and an algorithm designed and implemented for

the Fortress programming language that simplifies the computation

required at runtime when these features are combined.

1. Introduction
Symmetric multiple dispatch brings with it several benefits for

writing modular and efficient code. It provides a partial solution to

both the binary method problem and the expression problem and

also ensures that the implementation with the most knowledge of

the representations of the inputs is executed [2]. In exchange, the

runtime must do extra work at each call site to determine the most

specific function declaration that applies to the runtime arguments.

Part of checking a generic function for applicability is finding a

valid instantiation of its type parameters. This potentially intensive

operation involves the evaluation of bounds on the type parameters

and is made more difficult by variant generic types because they can

increase the number of valid instantiations.

Existing work avoids the need to instantiate type bounds at

runtime either by not including generics [2] or by requiring that

the generic signature of each function in an overload set is the

same which allows the instantiation to be generated at compile

time [1]. However, designers of the Fortress programming language

[3] found it useful while writing their standard library to define

both monomorphic and polymorphic versions of functions [4]. In

order to support this, we need to develop strategies to overcome the

challenges of runtime type instantiation.

In this preliminary work, we show that restricting the scope of

type parameters so that they may only appear after their bounds

are declared serves to keep the runtime computation for dispatch

to generic functions reasonable. We introduce an algorithm that

requires only a single pass over the type parameters of a generic

function in a subset of Fortress with co- and invariant generics.

[Copyright notice will appear here once ’preprint’ option is removed.]

2. Dispatch Problem Statement
In contrast with traditional dynamic dispatch, the runtime of a lan-

guage with multiple dispatch cannot necessarily use any static in-

formation about the call site provided by the typechecker. It must

check if there exists a more specific function declaration than the

one statically chosen that has the same name and is applicable to

the runtime types of the provided arguments. The process for deter-

mining when a function declaration is more specific than another is

laid out in [4]. A fully instantiated function declaration is applicable
if the runtime types of the arguments are subtypes of the declared

parameter types. To show applicability for a generic function we

need to find an instantiation that witnesses the applicability and the

type safety of the function call so that it can be used by the code.

Formally, given

1. a function signature f�X <: τX�(y : τy) : τr,

2. the runtime types Ty of the runtime arguments provided to the

function call, and

3. the return type Tr of the statically most specific applicable

function signature,

f is applicable if we can provide an instantiation TX of the type

parameters of f such that for each type parameter X we have

TX <: [TX/X]τX , for each runtime parameter y we have Ty <:
[TX/X]τy , and [TX/X]τr <: Tr.

2.1 Language
In the above definition, the type parameters of f are declared in

between oxford brackets (��). Each type parameter X can have

multiple upper bounds τX . τ denotes possibly generic types, of

the form X or Foo�τ�, where Foo is a declared generic nominal

type. A concrete type T is any fully instantiated nominal type.

Nominal types are declared with type parameters, each of which

is given a variance that defines how different instantiations of

the type are related by subtyping. Concretely, given a generic

nominal type Bar�X� where X is covariant we can say that

Bar�T1� <: Bar�T2� if and only if T1 <: T2. If X is invariant,

then we must have T1 = T2.

In order to guarantee termination of our algorithm, we prevent

type parameters from appearing in bounds prior to their declaration,

including their own.
1

As we will see, this is required to prevent

(infinite) iteration during bound generation.

3. Solution
To solve this problem, we generate all of the concrete upper and

lower bounds on the type parameters from the information provided

and then check that the bounds are consistent. That is, for each type

parameter we check that the join of all of the lower bounds is a

1
This restriction can be relaxed to allow the declared parameter to appear in

its own bound in the case of selftypes.

runtime type instantiation 1 2011/11/10

Towards Practical Runtime Type Instantiation

Karl Naden

Carnegie Mellon University

kbn@cs.cmu.edu

Abstract
Symmetric multiple dispatch, generic functions, and variant type

parameters are powerful language features that have been shown

to aid in modular and extensible library design. However, when

symmetric dispatch is applied to generic functions, type parameters

may have to be instantiated as a part of dispatch. Adding variant

generics increases the complexity of type instantiation, potentially

making it prohibitively expensive. We present a syntactic restriction

on generic functions and an algorithm designed and implemented for

the Fortress programming language that simplifies the computation

required at runtime when these features are combined.

1. Introduction
Symmetric multiple dispatch brings with it several benefits for

writing modular and efficient code. It provides a partial solution to

both the binary method problem and the expression problem and

also ensures that the implementation with the most knowledge of

the representations of the inputs is executed [2]. In exchange, the

runtime must do extra work at each call site to determine the most

specific function declaration that applies to the runtime arguments.

Part of checking a generic function for applicability is finding a

valid instantiation of its type parameters. This potentially intensive

operation involves the evaluation of bounds on the type parameters

and is made more difficult by variant generic types because they can

increase the number of valid instantiations.

Existing work avoids the need to instantiate type bounds at

runtime either by not including generics [2] or by requiring that

the generic signature of each function in an overload set is the

same which allows the instantiation to be generated at compile

time [1]. However, designers of the Fortress programming language

[3] found it useful while writing their standard library to define

both monomorphic and polymorphic versions of functions [4]. In

order to support this, we need to develop strategies to overcome the

challenges of runtime type instantiation.

In this preliminary work, we show that restricting the scope of

type parameters so that they may only appear after their bounds

are declared serves to keep the runtime computation for dispatch

to generic functions reasonable. We introduce an algorithm that

requires only a single pass over the type parameters of a generic

function in a subset of Fortress with co- and invariant generics.

[Copyright notice will appear here once ’preprint’ option is removed.]

2. Dispatch Problem Statement
In contrast with traditional dynamic dispatch, the runtime of a lan-

guage with multiple dispatch cannot necessarily use any static in-

formation about the call site provided by the typechecker. It must

check if there exists a more specific function declaration than the

one statically chosen that has the same name and is applicable to

the runtime types of the provided arguments. The process for deter-

mining when a function declaration is more specific than another is

laid out in [4]. A fully instantiated function declaration is applicable
if the runtime types of the arguments are subtypes of the declared

parameter types. To show applicability for a generic function we

need to find an instantiation that witnesses the applicability and the

type safety of the function call so that it can be used by the code.

Formally, given

1. a function signature f�X <: τX�(y : τy) : τr,

2. the runtime types Ty of the runtime arguments provided to the

function call, and

3. the return type Tr of the statically most specific applicable

function signature,

f is applicable if we can provide an instantiation TX of the type

parameters of f such that for each type parameter X we have

TX <: [TX/X]τX , for each runtime parameter y we have Ty <:
[TX/X]τy , and [TX/X]τr <: Tr.

2.1 Language
In the above definition, the type parameters of f are declared in

between oxford brackets (��). Each type parameter X can have

multiple upper bounds τX . τ denotes possibly generic types, of

the form X or Foo�τ�, where Foo is a declared generic nominal

type. A concrete type T is any fully instantiated nominal type.

Nominal types are declared with type parameters, each of which

is given a variance that defines how different instantiations of

the type are related by subtyping. Concretely, given a generic

nominal type Bar�X� where X is covariant we can say that

Bar�T1� <: Bar�T2� if and only if T1 <: T2. If X is invariant,

then we must have T1 = T2.

In order to guarantee termination of our algorithm, we prevent

type parameters from appearing in bounds prior to their declaration,

including their own.
1

As we will see, this is required to prevent

(infinite) iteration during bound generation.

3. Solution
To solve this problem, we generate all of the concrete upper and

lower bounds on the type parameters from the information provided

and then check that the bounds are consistent. That is, for each type

parameter we check that the join of all of the lower bounds is a

1
This restriction can be relaxed to allow the declared parameter to appear in

its own bound in the case of selftypes.

runtime type instantiation 1 2011/11/10

Towards Practical Runtime Type Instantiation

Karl Naden

Carnegie Mellon University

kbn@cs.cmu.edu

Abstract
Symmetric multiple dispatch, generic functions, and variant type

parameters are powerful language features that have been shown

to aid in modular and extensible library design. However, when

symmetric dispatch is applied to generic functions, type parameters

may have to be instantiated as a part of dispatch. Adding variant

generics increases the complexity of type instantiation, potentially

making it prohibitively expensive. We present a syntactic restriction

on generic functions and an algorithm designed and implemented for

the Fortress programming language that simplifies the computation

required at runtime when these features are combined.

1. Introduction
Symmetric multiple dispatch brings with it several benefits for

writing modular and efficient code. It provides a partial solution to

both the binary method problem and the expression problem and

also ensures that the implementation with the most knowledge of

the representations of the inputs is executed [2]. In exchange, the

runtime must do extra work at each call site to determine the most

specific function declaration that applies to the runtime arguments.

Part of checking a generic function for applicability is finding a

valid instantiation of its type parameters. This potentially intensive

operation involves the evaluation of bounds on the type parameters

and is made more difficult by variant generic types because they can

increase the number of valid instantiations.

Existing work avoids the need to instantiate type bounds at

runtime either by not including generics [2] or by requiring that

the generic signature of each function in an overload set is the

same which allows the instantiation to be generated at compile

time [1]. However, designers of the Fortress programming language

[3] found it useful while writing their standard library to define

both monomorphic and polymorphic versions of functions [4]. In

order to support this, we need to develop strategies to overcome the

challenges of runtime type instantiation.

In this preliminary work, we show that restricting the scope of

type parameters so that they may only appear after their bounds

are declared serves to keep the runtime computation for dispatch

to generic functions reasonable. We introduce an algorithm that

requires only a single pass over the type parameters of a generic

function in a subset of Fortress with co- and invariant generics.

[Copyright notice will appear here once ’preprint’ option is removed.]

2. Dispatch Problem Statement
In contrast with traditional dynamic dispatch, the runtime of a lan-

guage with multiple dispatch cannot necessarily use any static in-

formation about the call site provided by the typechecker. It must

check if there exists a more specific function declaration than the

one statically chosen that has the same name and is applicable to

the runtime types of the provided arguments. The process for deter-

mining when a function declaration is more specific than another is

laid out in [4]. A fully instantiated function declaration is applicable
if the runtime types of the arguments are subtypes of the declared

parameter types. To show applicability for a generic function we

need to find an instantiation that witnesses the applicability and the

type safety of the function call so that it can be used by the code.

Formally, given

1. a function signature f�X <: τX�(y : τy) : τr,

2. the runtime types Ty of the runtime arguments provided to the

function call, and

3. the return type Tr of the statically most specific applicable

function signature,

f is applicable if we can provide an instantiation TX of the type

parameters of f such that for each type parameter X we have

TX <: [TX/X]τX , for each runtime parameter y we have Ty <:
[TX/X]τy , and [TX/X]τr <: Tr.

2.1 Language
In the above definition, the type parameters of f are declared in

between oxford brackets (��). Each type parameter X can have

multiple upper bounds τX . τ denotes possibly generic types, of

the form X or Foo�τ�, where Foo is a declared generic nominal

type. A concrete type T is any fully instantiated nominal type.

Nominal types are declared with type parameters, each of which

is given a variance that defines how different instantiations of

the type are related by subtyping. Concretely, given a generic

nominal type Bar�X� where X is covariant we can say that

Bar�T1� <: Bar�T2� if and only if T1 <: T2. If X is invariant,

then we must have T1 = T2.

In order to guarantee termination of our algorithm, we prevent

type parameters from appearing in bounds prior to their declaration,

including their own.
1

As we will see, this is required to prevent

(infinite) iteration during bound generation.

3. Solution
To solve this problem, we generate all of the concrete upper and

lower bounds on the type parameters from the information provided

and then check that the bounds are consistent. That is, for each type

parameter we check that the join of all of the lower bounds is a

1
This restriction can be relaxed to allow the declared parameter to appear in

its own bound in the case of selftypes.

runtime type instantiation 1 2011/11/10

Towards Practical Runtime Type Instantiation

Karl Naden

Carnegie Mellon University

kbn@cs.cmu.edu

Abstract
Symmetric multiple dispatch, generic functions, and variant type

parameters are powerful language features that have been shown

to aid in modular and extensible library design. However, when

symmetric dispatch is applied to generic functions, type parameters

may have to be instantiated as a part of dispatch. Adding variant

generics increases the complexity of type instantiation, potentially

making it prohibitively expensive. We present a syntactic restriction

on generic functions and an algorithm designed and implemented for

the Fortress programming language that simplifies the computation

required at runtime when these features are combined.

1. Introduction
Symmetric multiple dispatch brings with it several benefits for

writing modular and efficient code. It provides a partial solution to

both the binary method problem and the expression problem and

also ensures that the implementation with the most knowledge of

the representations of the inputs is executed [2]. In exchange, the

runtime must do extra work at each call site to determine the most

specific function declaration that applies to the runtime arguments.

Part of checking a generic function for applicability is finding a

valid instantiation of its type parameters. This potentially intensive

operation involves the evaluation of bounds on the type parameters

and is made more difficult by variant generic types because they can

increase the number of valid instantiations.

Existing work avoids the need to instantiate type bounds at

runtime either by not including generics [2] or by requiring that

the generic signature of each function in an overload set is the

same which allows the instantiation to be generated at compile

time [1]. However, designers of the Fortress programming language

[3] found it useful while writing their standard library to define

both monomorphic and polymorphic versions of functions [4]. In

order to support this, we need to develop strategies to overcome the

challenges of runtime type instantiation.

In this preliminary work, we show that restricting the scope of

type parameters so that they may only appear after their bounds

are declared serves to keep the runtime computation for dispatch

to generic functions reasonable. We introduce an algorithm that

requires only a single pass over the type parameters of a generic

function in a subset of Fortress with co- and invariant generics.

[Copyright notice will appear here once ’preprint’ option is removed.]

2. Dispatch Problem Statement
In contrast with traditional dynamic dispatch, the runtime of a lan-

guage with multiple dispatch cannot necessarily use any static in-

formation about the call site provided by the typechecker. It must

check if there exists a more specific function declaration than the

one statically chosen that has the same name and is applicable to

the runtime types of the provided arguments. The process for deter-

mining when a function declaration is more specific than another is

laid out in [4]. A fully instantiated function declaration is applicable
if the runtime types of the arguments are subtypes of the declared

parameter types. To show applicability for a generic function we

need to find an instantiation that witnesses the applicability and the

type safety of the function call so that it can be used by the code.

Formally, given

1. a function signature f�X <: τX�(y : τy) : τr,

2. the runtime types Ty of the runtime arguments provided to the

function call, and

3. the return type Tr of the statically most specific applicable

function signature,

f is applicable if we can provide an instantiation TX of the type

parameters of f such that for each type parameter X we have

TX <: [TX/X]τX , for each runtime parameter y we have Ty <:
[TX/X]τy , and [TX/X]τr <: Tr.

2.1 Language
In the above definition, the type parameters of f are declared in

between oxford brackets (��). Each type parameter X can have

multiple upper bounds τX . τ denotes possibly generic types, of

the form X or Foo�τ�, where Foo is a declared generic nominal

type. A concrete type T is any fully instantiated nominal type.

Nominal types are declared with type parameters, each of which

is given a variance that defines how different instantiations of

the type are related by subtyping. Concretely, given a generic

nominal type Bar�X� where X is covariant we can say that

Bar�T1� <: Bar�T2� if and only if T1 <: T2. If X is invariant,

then we must have T1 = T2.

In order to guarantee termination of our algorithm, we prevent

type parameters from appearing in bounds prior to their declaration,

including their own.
1

As we will see, this is required to prevent

(infinite) iteration during bound generation.

3. Solution
To solve this problem, we generate all of the concrete upper and

lower bounds on the type parameters from the information provided

and then check that the bounds are consistent. That is, for each type

parameter we check that the join of all of the lower bounds is a

1
This restriction can be relaxed to allow the declared parameter to appear in

its own bound in the case of selftypes.

runtime type instantiation 1 2011/11/10

+

•  List Definition

•  Number hierarchy

•  Function

•  Code

Problem Example
8

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

N

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�
Z2 <: N <: Number

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�
Z2 <: N <: Number <: Any

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�
Z2 <: N <: Number <: Any

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

Static return type:

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�
Z2 <: N <: Number <: Any

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

+
Instantiation Calculation for X

9

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

N

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

2

•  Given - l : , n : ,
•  Parameters:

–  implies (covariance)
– 

•  Type Variable Bounds
– 

•  Return Type Bounds
–  implies (covariance)

•  Upper Bound
– 

•  Lower Bound
– 

•  Best (most specific) choice =

List�N� <: List�X�

3

List�N� <: List�X�

N <: X

3

List�N� <: List�X�

N <: X

Z2 <: X

3

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

3

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

3

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

X <: Number

3

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

X <: Number

meet(Any, Number) = Number

join(N,Z2) = N

3

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

X <: Number

meet(Any, Number) = Number

join(N,Z2) = N

3

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

X <: Number

meet(Any, Number) = Number

join(N,Z2) = N

3

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�
Z2 <: N <: Number <: Any

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�
Z2 <: N <: Number <: Any

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

X <: Number

meet(Any, Number) = Number

join(N,Z2) = N

Tr = List�Number�

badlyScoped�X <: Y, Y <: List�X��(x : X, y : Y) : Any

3

+
General Algorithm

10

Given , runtime input types ,
 and static return type

1.  Generate upper and lower bounds for each X from

–  Parameter constraints
–  Return type constraints
–  Type variable bound constraints

2.  Let XL=join(lowerBounds(X)) and XU=meet(upperBounds(X))
3.  Check XL <: XU
4.  If true, return XL as the instantiation

•  Single pass algorithm
–  If type variables scoped left to right

–  Otherwise could result in infinite iteration on bound generation

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

X <: Number

meet(Any, Number) = Number

join(N,Z2) = N

badlyScoped�X <: Y, Y <: List�X��(x : X, y : Y) : Any

3

Towards Practical Runtime Type Instantiation

Karl Naden

Carnegie Mellon University

kbn@cs.cmu.edu

Abstract
Symmetric multiple dispatch, generic functions, and variant type

parameters are powerful language features that have been shown

to aid in modular and extensible library design. However, when

symmetric dispatch is applied to generic functions, type parameters

may have to be instantiated as a part of dispatch. Adding variant

generics increases the complexity of type instantiation, potentially

making it prohibitively expensive. We present a syntactic restriction

on generic functions and an algorithm designed and implemented for

the Fortress programming language that simplifies the computation

required at runtime when these features are combined.

1. Introduction
Symmetric multiple dispatch brings with it several benefits for

writing modular and efficient code. It provides a partial solution to

both the binary method problem and the expression problem and

also ensures that the implementation with the most knowledge of

the representations of the inputs is executed [2]. In exchange, the

runtime must do extra work at each call site to determine the most

specific function declaration that applies to the runtime arguments.

Part of checking a generic function for applicability is finding a

valid instantiation of its type parameters. This potentially intensive

operation involves the evaluation of bounds on the type parameters

and is made more difficult by variant generic types because they can

increase the number of valid instantiations.

Existing work avoids the need to instantiate type bounds at

runtime either by not including generics [2] or by requiring that

the generic signature of each function in an overload set is the

same which allows the instantiation to be generated at compile

time [1]. However, designers of the Fortress programming language

[3] found it useful while writing their standard library to define

both monomorphic and polymorphic versions of functions [4]. In

order to support this, we need to develop strategies to overcome the

challenges of runtime type instantiation.

In this preliminary work, we show that restricting the scope of

type parameters so that they may only appear after their bounds

are declared serves to keep the runtime computation for dispatch

to generic functions reasonable. We introduce an algorithm that

requires only a single pass over the type parameters of a generic

function in a subset of Fortress with co- and invariant generics.

[Copyright notice will appear here once ’preprint’ option is removed.]

2. Dispatch Problem Statement
In contrast with traditional dynamic dispatch, the runtime of a lan-

guage with multiple dispatch cannot necessarily use any static in-

formation about the call site provided by the typechecker. It must

check if there exists a more specific function declaration than the

one statically chosen that has the same name and is applicable to

the runtime types of the provided arguments. The process for deter-

mining when a function declaration is more specific than another is

laid out in [4]. A fully instantiated function declaration is applicable
if the runtime types of the arguments are subtypes of the declared

parameter types. To show applicability for a generic function we

need to find an instantiation that witnesses the applicability and the

type safety of the function call so that it can be used by the code.

Formally, given

1. a function signature f�X <: τX�(y : τy) : τr,

2. the runtime types Ty of the runtime arguments provided to the

function call, and

3. the return type Tr of the statically most specific applicable

function signature,

f is applicable if we can provide an instantiation TX of the type

parameters of f such that for each type parameter X we have

TX <: [TX/X]τX , for each runtime parameter y we have Ty <:
[TX/X]τy , and [TX/X]τr <: Tr.

2.1 Language
In the above definition, the type parameters of f are declared in

between oxford brackets (��). Each type parameter X can have

multiple upper bounds τX . τ denotes possibly generic types, of

the form X or Foo�τ�, where Foo is a declared generic nominal

type. A concrete type T is any fully instantiated nominal type.

Nominal types are declared with type parameters, each of which

is given a variance that defines how different instantiations of

the type are related by subtyping. Concretely, given a generic

nominal type Bar�X� where X is covariant we can say that

Bar�T1� <: Bar�T2� if and only if T1 <: T2. If X is invariant,

then we must have T1 = T2.

In order to guarantee termination of our algorithm, we prevent

type parameters from appearing in bounds prior to their declaration,

including their own.
1

As we will see, this is required to prevent

(infinite) iteration during bound generation.

3. Solution
To solve this problem, we generate all of the concrete upper and

lower bounds on the type parameters from the information provided

and then check that the bounds are consistent. That is, for each type

parameter we check that the join of all of the lower bounds is a

1
This restriction can be relaxed to allow the declared parameter to appear in

its own bound in the case of selftypes.

runtime type instantiation 1 2011/11/10

append�X <: Any�(l : List�X�, n : X) : List�X� = do
. . . (*) duplicate l, add n to duplicate, return duplicate

end

append(f : Any, s : Any) : List�Any� = do
. . . (*) create new list with f following s

end

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)

List�N�

Z2 <: N <: Number <: Any

removeNegatives(l : List�Number�) : List�Number� = . . . (*) iterate
removeNegatives(l : List�N�) : List�N� = . . . (*) no op

theList : List�Number�
toAdd : Number
. . .
temp = append(theList, toAdd)
removeNegatives(temp)

Ty <: [TX/X]τy

Baz�X� <: Baz�Y �

X <: Y

List�covariant X <: Any�

2

List�N� <: List�X�

N <: X

Z2 <: X

X <: Any

List�X� <: List�Number�

X <: Number

meet(Any, Number) = Number

join(N,Z2) = N

Tr

badlyScoped�X <: Y, Y <: List�X��(x : X, y : Y) : Any

3

+
Remaining Challenges

11

1.  Multiple potentially applicable function definitions
–  Run this algorithm on each to find most specific applicable

2.  Contravariance
–  Function types in Fortress
–  May be undecidable

3.  Efficient computation of meets, joins, and comparisons in
subtype lattice

4.  Enough performance gains to offset overhead?

result = forecast() do

. . . (*) number crunching

temp = bigMatrix ∗ reallyBigMatrix

. . . (*) more number crunching

end

bigMatrix : Matrix�Number�
reallyBigMatrix : Matrix�Number�
. . .
temp = bigMatrix ∗ reallyBigMatrix

1

