

Karl Naden TLDI January 28, 2012

Scientific Programming

```
forecast() = do
```

... (*) number crunching

temp = bigMatrix * reallyBigMatrix

...(*) more number crunching

end

When can this multiplication be optimized?

Algorithm choice

temp = bigMatrix * reallyBigMatrix

Depends on the type of the entries

```
bigMatrix: Matrix[Number]
reallyBigMatrix: Matrix[Number]
```

- General numbers use standard algorithm
 - Many individual multiplications

```
bigMatrix: Matrix[\![\mathbb{Z}_2]\!] reallyBigMatrix: Matrix[\![\mathbb{Z}_2]\!]
```

- Binary Digits create bit vectors and use bit operators for multiplication
 - Many multiplications at the same time
 - More efficient multiplication

How to Choose Best Algorithm?

temp = bigMatrix * reallyBigMatrix

- If know statically operands are binary matrixes
 - Can define a separate function for the programmer to call binaryMatrixMult $(x: \mathtt{Matrix}[\![\mathbb{Z}_2]\!], y: \mathtt{Matrix}[\![\mathbb{Z}_2]\!]) = \dots$ temp = binaryMatrixMult(bigMatrix, reallyBigMatrix)
- Otherwise, could use multiple dispatch
 - Define two cases of * operator

```
*(x: \mathtt{Matrix}[\mathtt{Number}], y: \mathtt{Matrix}[\mathtt{Number}]) = \mathbf{do} \dots (*) \ standard \ algorithm end *(x: \mathtt{Matrix}[\mathbb{Z}_2], y: \mathtt{Matrix}[\mathbb{Z}_2]) = \mathbf{do} \dots (*) \ bit \ vector \ algorithm end
```

- Binary algorithm chosen dynamically if operands are binary matrixes at runtime
 - Runtime type must include generic information

+

Generic Dispatch

- Instantiated type of objects matters at runtime
 - Used to choose what code is executed No type erasure!
- Instantiated type of generic functions matters
 - Instantiated generic used to create objects must be tagged at runtime

```
\begin{split} \operatorname{append}[\![X <: \mathtt{Any}]\!](l : \operatorname{List}[\![X]\!], n : X) : \operatorname{List}[\![X]\!] &= \operatorname{\mathbf{do}} \\ \dots (*) \ duplicate \ l, \ add \ n \ to \ duplicate, \ return \ duplicate \\ \operatorname{\mathbf{end}} \end{split}
```

- Type of resulting List depends on the instantiation of X
- Want it to be as specific as possible

```
\texttt{removeNegatives}(l: \texttt{List}[\texttt{Number}]): \texttt{List}[\texttt{Number}] = \dots (*) \ iterate \\ \texttt{removeNegatives}(l: \texttt{List}[\mathbb{N}]): \texttt{List}[\mathbb{N}] = \dots (*) \ no \ op
```

- Don't always know the best answer statically
 - Need runtime type instantiation!

+

Problem - Runtime Instantiation

- Given
 - a generic function signature with type variables X_i
 - the runtime types of the inputs
 - Static return type of the function call
- Find an instantiation of the X_i such that
 - Type variable bounds met (Valid instantiation)
 - Runtime inputs are subtypes of parameter types (Function applicable to arguments)
 - Return type is a subtype of static return type (Type safe)
 - Minimize return type (As specific as possible)

+Fortress Overview

Symmetric Multiple Dispatch

- Statically guaranteed a most specific function definition exists
- Chosen at runtime, static information for optimization of search

Objects

- Nominal (declared) subtyping
- Variant Generics
 - Covariant: If Baz covariant, then $\operatorname{Baz}[X] <: \operatorname{Baz}[Y]$ if and only if X <: Y
 - Invariant: If Baz invariant, then Baz[X] <: Baz[Y] if and only if X = Y
- Types form a lattice
 - Meet (greatest lower bound) and join (least upper bound) defined

• Generic Functions $f[X \overline{<: au_X}](\overline{y: au_y}): au_{\mathrm{r}}$

- Type variables X bound within
 - Upper bounds of type variables TX
 - Parameter types au_y
 - Return type $au_{
 m r}$

+

Problem Example

- List Definition List $\llbracket \mathbf{covariant} \ X <: \mathtt{Any}
 Vert$
- Number hierarchy $\mathbb{Z}_2 <: \mathbb{N} <: \mathtt{Number} <: \mathtt{Any}$
- Function
 $$\begin{split} &\text{append} [\![X <: \mathtt{Any}]\!](l : \mathtt{List}[\![X]\!], n : X) : \mathtt{List}[\![X]\!] = \mathbf{do} \\ &\dots (*) \ duplicate \ l, \ add \ n \ to \ duplicate, \ return \ duplicate \\ &\mathbf{end} \end{split}$$
- Code

```
theList:List[Number]
toAdd:Number
```

oonaa . wambo.

Instantiation Calculation for X

 $\begin{aligned} & \text{append} [\![X <: \texttt{Any}]\!](l : \texttt{List}[\![X]\!], n : X) : \texttt{List}[\![X]\!] = \mathbf{do} \\ & \dots (*) \ duplicate \ l, \ add \ n \ to \ duplicate, \ return \ duplicate \end{aligned}$ end

- Given I: List $[\![\mathbb{N}]\!]$, n: \mathbb{Z}_2 , $T_r = \mathtt{List}[\![\mathtt{Number}]\!]$
- Parameters:
 - List $[\![\mathbb{N}]\!] <:$ List $[\![X]\!]$ implies $\mathbb{N} <: X$ (covariance)
 - $\mathbb{Z}_2 <: X$
- Type Variable Bounds
 - X <: Any
- Return Type Bounds
 - List[X] <: List[Number] implies X <: Number (covariance)
- Upper Bound
 - -meet(Any, Number) = Number
- Lower Bound
 - $join(\mathbb{N}, \mathbb{Z}_2) = \mathbb{N}$
- Best (most specific) choice = \mathbb{N}

General Algorithm

Given
$$f[X \le \tau_X](\overline{y:\tau_y}):\tau_r$$
 , runtime input types T_y , and static return type T_r

- Generate upper and lower bounds for each X from
 - Parameter constraints
 - Return type constraints
 - Type variable bound constraints
- 2. Let X_L =join(lowerBounds(X)) and X_U =meet(upperBounds(X))
- 3. Check $X_L <: X_U$
- 4. If true, return X_1 as the instantiation
- Single pass algorithm
 - If type variables scoped left to right

$$\texttt{badlyScoped} \llbracket X \mathrel{<:} Y, Y \mathrel{<:} \mathtt{List} \llbracket X \rrbracket \rrbracket (x : X, y : Y) : \mathtt{Any}$$

Otherwise could result in infinite iteration on bound generation

Remaining Challenges

- 1. Multiple potentially applicable function definitions
 - Run this algorithm on each to find most specific applicable
- 2. Contravariance
 - Function types in Fortress
 - May be undecidable
- 3. Efficient computation of meets, joins, and comparisons in subtype lattice
- 4. Enough performance gains to offset overhead?

```
result = forecast() do
...(*) number crunching

temp = bigMatrix * reallyBigMatrix
...(*) more number crunching
```

end