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Abstract
The atomic block, a synchronization primitive provided to
programmers in transactional memory systems, has the po-
tential to greatly ease the development of concurrent soft-
ware. However, atomic blocks can still be used incorrectly,
and race conditions can still occur at the level of application
logic. In this paper, we present a intraprocedural static analy-
sis, formalized as a type system and proven sound, that helps
programmers use atomic blocks correctly. Usingaccess per-
missions, which describe how objects are aliased and mod-
ified, our system statically prevents race conditions and en-
forces typestate properties in concurrent programs. We have
implemented a prototype static analysis for the Java lan-
guage based on our system and have used it to verify several
realistic examples.

Categories and Subject Descriptors D.3.2 [PROGRAM-
MING LANGUAGES]: Concurrent, distributed, and paral-
lel languages; F.3.1 [LOGICS AND MEANINGS OF PRO-
GRAMS]: Mechanical Verification

General Terms Languages, Verification

Keywords Transactional memory, Typestate, Permissions

1. Introduction
It is now taken for granted in the field of computer science
that the age of parallelism is upon us, and with good reason;
with more and more of the transistors given to us by Moore’s
Law going into an ever-increasing number of on-chip cores,
we can no longer expect predictable increases in single-
threaded performance. With this in mind, many researchers
in the field of computer science have begun investigating
new techniques for the development of software that can
actually take advantage of more cores.
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Among the large number of recent proposals, transac-
tional memory (TM) seems to have gained the greatest
amount of traction. Transactional memory attempts to sim-
plify the construction of concurrent applications that make
use of shared memory. Most realizations of transactional
memory provide programmers with a simple concurrency
primitive, the atomic block. Code that is executed within an
atomic block will execute sequentially, and as if no other
threads were executing at the same time. The approach is
“transactional,” because atomic blocks are usually imple-
mented as memory transactions which abort and retry in the
event a thread witnesses an inconsistent view of memory.

However, as some of TM’s greatest proponents will tell
you, while atomic sections are a vast improvement over lock-
based synchronization, they are far from perfect (Grossman
2007). Atomic sections by themselves do not guarantee cor-
rect synchronization, even when mutual exclusion is the only
synchronization primitive needed, because they can still be
used incorrectly. Even if every access to thread-shared mem-
ory is performed inside of an atomic block, race conditions at
the level of program logic, or “high-level data races,” (Artho
et al. 2003) can still occur.

For the scope of this work, we consider how these race
conditions can lead to misuse of object protocols. Our goal
is to statically prevent races on the abstract state of an object,
as well as violations of an object’s concrete state invariants
due to concurrent access.

As motivation, consider a hypothetical network chat ap-
plication, used as a running example throughout this paper
and partially shown in Figures 1 and 2. In this application,
two threads, a GUI event thread and a network-monitoring
thread, each modify one shared object of the Connection
class. This class abstractly represents a connection between
a remote and local host. The GUI thread sends messages,
and opens and closes the connection in response to local user
events, while the network-monitoring thread closes the con-
nection in response to a remote user event.

In Figure 1 thetrySendMsgmethod, invoked in response
to a GUI event, checks to see if the connection is active, and
if so sends a message by calling thesendmethod of the Con-
nection class. Both theisConnected and send methods
of the Connection class are properly synchronized, reading



class Connection {

...

void disconnect() { /* see fig. 2 */ }

boolean isConnected() {

atomic: {

return (this.socket != null);

}

}

void send(String msg) {

atomic: {

this.socket.write(msg);

this.counter.increment();

}

}

...

}

class GUI {

...

boolean trySendMsg(String msg) {

if( this.myConnection.isConnected() ) {

this.myConnection.send(msg);

return true;

}

else {

return false;

}

}

...

}

Figure 1. An example where a race condition could occur.

and modifying thread-shared fields inside of atomic blocks.
However, a race condition exists on the abstract state of the
connection object. The GUI thread relies on the connec-
tion remaining in the connected state in between the call to
isConnected and the call tosend. If the network thread
were to close the connection before the GUI thread’s call
to send, this call would be invalid and would cause a null-
pointer exception.

The second example, shown in Figure 2, shows how mis-
use of atomic blocks can lead to violations of object invari-
ants, thus leading to improper implementation of object pro-
tocols. The Connection class also privately keeps a counter
to track the number of messages that have been sent during
the lifetime of a connection. At the time of class creation this
counter is initialized to zero, and each time a connection is
disconnected, this counter is reset using thereset method.
In fact, the Connection class has an invariant that its meth-
ods rely on: whenever a Connection object is not connected,
the socket field will be null and the message counter will be
reset. This helps to ensure that the message count will be
accurate. We will assume that thereset method is imple-

class Connection {

...

final Counter counter;

Connection {

this.socket = null;

this.counter = new Counter();

}

void disconnect() {

atomic: {

this.socket.close();

this.socket = null;

}

this.counter.reset();

}

...

}

Figure 2. An example where object invariants might be
violated.

mented in such a way that all access to its member variables
is done within atomic blocks.

Once again, trouble occurs even though shared memory
is accessed exclusively within atomic blocks. Concurrent
access to the connection object has the potential to cause
a violation of its invariants. Assume that thedisconnect
method is being executed by the network thread. If the GUI
thread were to call theconnect method and begin sending
messages using thesend method precisely at a point in time
where the network thread had exited the atomic block but
had not yet reset the counter, we would lose count of each of
those sent packets when the network thread eventually resets
the counter1.

In this paper, we describe a Java-like programming lan-
guage whose type system statically prevents misuse and
incorrect implementation of object protocols in concurrent
systems. Up to the invariants that are specified by the pro-
grammer, this type system prevents race conditions and guar-
antees that invariants are reestablished at the end of method
bodies, even in the face of concurrent access to an object
and its fields. Our system uses typestate (Strom and Yemini
1986) specifications as the language of invariants, and object
permissions (Boyland 2003) to approximate whether or not
an object can be thread-shared. Our work builds upon recent
work for verifying typestate of aliased objects (Bierhoff and
Aldrich 2007).

The contributions of this paper are as follows:

• We have developed a programming language that begins
to address the problem of improper atomic block usage.

1 While the race condition in this short illustrative examplemay seem
unrealistic, it is more likely to occur in a situation when the method is longer
and the programmer is motivated to make atomic blocks as short as possible
to maximize concurrency.



The type system of this language guarantees that there
are no race conditions on the abstract state of an object.
If a method call requires the receiver object to be in
some state, at run-time the object will be in that state.
Furthermore, the specified invariants of these abstract
states will be preserved, even in the face of concurrent
access.

• In this paper, we reinterpret access permissions, which
we previously used as an alias-control mechanism, as an
approximation of the thread-sharedness of a location in
memory. Our solution is an improvement over existing,
lock-based approaches (Jacobs et al. 2005; Rodriguez
et al. 2005) because it does not impose hierarchical re-
strictions on aliasing, and because our specifications are
more compositional.

• We have proved soundness for a core subset of this lan-
guage in the accompanying technical report (Beckman
and Aldrich 2008).

• To our knowledge this is the first work that statically
verifies the proper placement of atomic blocks in object-
oriented code.

• We have developed a prototype analysis for the Java
language based on this type system and have used it to
verify several realistic examples.

Existing work on data race detection (Boyapati et al.
2002; Pratikakis et al. 2006; Engler and Ashcraft 2003) does
a good job of ensuring that access to thread-shared memory
is protected by locks or other mutual exclusion primitives,
but it does not prevent a program’s threads from interleaving
in ways that destroy application invariants.

Preventing thread interleavings that destroy program in-
variants is an important goal, because invariants allow pro-
grammers to reason about the behavior of their programs.
Toward this goal, several earlier works (Jacobs et al. 2005;
Jones 1983; Owicki and Gries 1976; Vaziri et al. 2006) at-
tempt to statically prevent or prove impossible thread inter-
actions that might invalidate invariants. Compared to these
approaches, our work allows for a larger variety of thread-
sharing patterns, and additionally helps to ensure the proper
use of object protocols, an abstraction of object state that
forms an implicit but unchecked interface in many object-
oriented programs.

This paper proceeds as follows. In Section 2 we describe
our technique at an informal level, using our chat program as
a running example. By the end of this section, readers should
understand the intuition behind our approach. Section 3 de-
scribes the formal language in greater detail. Section 4 de-
scribes our prototype implementation, as well as its use in
verifying several real or realistic Java programs. In Section 5
we discuss the wealth of existing work in verification of con-
current software. In Section 6 we discuss how we would like
to improve our technique, and in Section 7 we conclude.

2. Overview
At a high level, our approach is as follows:

• We use typestate specifications on methods and classes
to say which abstract state an object must be in before
calling a method on it, and which concrete states an
object’s fields must be in at the end of a method call. (In
principle, other behavioral specifications would work as
well.)

• Object references are annotated with access permissions
which describe how an object pointed to by a reference is
shared. Permissions were originally proposed as a means
for guaranteeing the non-interference of threads. In pre-
vious work, we used interfering permissions to control
aliasing. Now we reinterpret the same interfering permis-
sions to describe how threads share objects.

• Finally, we track the state of objects as they flow through
method bodies, discarding knowledge about the state of
an object when the reference to that object indicates it
may be modified by other threadsand we cannot deter-
mine statically that we are within an atomic section.

In the next several sub-sections, we describe each part of
the process in greater detail.

2.1 Typestate Specifications

Our approach uses typestate (Strom and Yemini 1986) as the
language of behavioral specification. A specification tellsthe
system which application-specific logic must be upheld in
the face of concurrent access.

Typestate specifications allow programmers to develop
abstract protocols describing a method or class’ behavior.
The abstractions take the form of state-machines, an abstrac-
tion with which most programmers are familiar. As an exam-
ple, the developer of a file class might specify that a file can
be in either the open or closed states, and that data can only
be read from that file when it is in the open state. For a more
relevant example, consider the following specification of the
Connection class:

send()

disconnect()

CONNECTED IDLE

connect()

isConnected()
is true is false

isConnected()

This indicates that a connection can abstractly be idle or
connected. Calling theconnect method will take an object
from the idle state to the connected state, while the reverse
holds for thedisconnectmethod. The sending of messages
can only occur while the object is in the connected state,
but sending a message does not affect the object’s state.
Finally, we can dynamically test whether or not we are in
the connected state by callingisConnected.



Existing work has been done in statically verifying that an
object’s behavior will conform to its typestate specification
at run-time (DeLine and Fähndrich 2004). Our work, in par-
ticular, adapts the approach of Bierhoff and Aldrich (2007)
for use in concurrent settings. In the approach proposed by
Bierhoff and Aldrich, object states are tracked staticallyus-
ing linear logic predicates (Girard 1987) which treat object
state information as a resource that can be consumed and
transformed. Methods that transform the state of an object
will consume its old state, and return a new state, and the
type of the reference to that object will reflect its new state
in subsequent lines of code.

Usually state names are defined by an application, how-
ever, this paper mentions two special states, “?” and “default,”
which are known ahead of time. “?” represents a lack of
knowledge about the state of an object. “default,” on the
other hand, is the default state given to an object whose
class defines no abstract states.

2.2 Access Permissions

Access permissions (Bierhoff and Aldrich 2007) are a means
of associating object references with (a) the state of the ob-
ject referenced and (b) the ways in which that object can
be aliased. This is important because statically tracking the
state of an object in the face of unrestricted aliasing is unde-
cidable. In this section we will show how access permissions
can approximate information on whether or not an object is
thread-shared, and why this is a sound approximation.

The access permissions system that we use has five dif-
ferent permission types, each one describing whether or not
the object is aliased, whether the given reference can be used
to modify the object, and whether other references to the ob-
ject, if they exist, are allowed to modify the object. These
permissions are named as follows:

• unique permission to an object indicates that this refer-
ence is the sole reference to an object in the program.
This is the same as a linear reference in other type-
systems (Wadler 1990).

• full permissions are exclusive read/write references that
can coexist with any number of read-only references.

• immutable permissions are associated with references
that point to immutable objects. Any number of these
references can point to the same object, but no reference
may have modifying access.

• pure permissions are read-only permissions to objects
that may be modified through other references.

• share permissions are associated with references that can
read and write objects that can also be read and modified
by any number of other references in the system. This
is the least restrictive permission, and is effectively the
default in languages like Java.

The access permissions are arranged in a partial order and
can besplit in order to create other permissions to the same
object. This is necessary because when an object constructor
is called, a singleunique reference is returned, but we may
want to then create multiple references to distribute to differ-
ent parts of the program. These splitting rules are described
in Figure 3. In the formal language, it is the responsibilityof
the linear logic proof judgment to automatically determine
when and how permissions should be split into other per-
missions. If several expressions in a method require differ-
ent permissions to the same reference, the implementation
of this judgment must solve these constraints by splitting
the permission in an appropriate way. In our implementation
(Section 4), this is done with a constraint solver.

An example access permission is shown below:

unique(counter, RESET)

This permission tells us that thecounter field points to an
object that can only be reached via this field, and therefore
this reference has exclusive read/write access. Furthermore,
it is known at this point that the counter is in the “RESET”
abstract state.

k = share|pure|immutable

k(r, s) ⇛ k(r, s) ⊗ k(r, s)
S-SYM

k = full|share|pure|immutable

unique(r, s) ⇛ k(r, s)
S-UNIQUE

k = share|pure|immutable

full(r, s) ⇛ k(r, s)
S-FULL

immutable(r, s) ⇛ pure(r, s)
S-IMM

k = full|share

k(r, s) ⇛ k(r, s) ⊗ pure(r, s)
S-ASYM

Γ; ∆ ⊢ P ′ P ′
⇛ P

Γ; ∆ ⊢ P
SUBST

Figure 3. Permission splitting rules

2.2.1 Method Specifications

Now that we have seen access permissions, we can string
them together with linear logic connectives to create speci-
fications. The⊸ connective is used to specify method pre
and post-conditions. Predicates on the left-hand side form
the method pre-condition, and those on the right-hand side
form the post-condition. Predicates in the pre-condition are
consumed and cannot be reused unless explicitly returned by
the post-condition. Linear conjunction (⊗) is used when we
wish to say that multiple objects must be in specific states at



the same time, and linear disjunction (⊕) is used when one
of several state predicates may be true. We have annotated
the methods of the Connection class with behavioral anno-
tations in Figure 4. For example, theisConnected method
is described in the following manner: If the method is called
when the receiver is a shared object in an unknown state, af-
ter the method completes the receiver object will either be in
theCONNECTED state, signified by a return value of true,
or the receiver will be in theIDLE state, signified by a return
value of false. Other methods are annotated similarly.

2.2.2 State Invariants and Packing

The same access permissions can be used to annotate classes
with invariant predicates. In our system, an object’s invari-
ants are tied to the abstract states in which that object re-
sides. When designing a class, a programmer has the ability
to declare abstract states for a class. He can also decide that
certain predicates over the fields of an object must hold true
whenever the object is in one of those states. These predi-
cates are called state invariants. In Figure 5, we have anno-
tated theConnection class with state invariants, predicates
that should hold true when that connection is either open or
closed. Take, for example, the following invariant:

CONNECTED := unique(counter, COUNTING) ⊗
unique(socket, default)

It specifies that when a connection is in theCONNECTED
state, its counter field must be in theCOUNTING state and
its socket must be in thedefault state.

In order to allow methods to modify the fields of an
object and still modularly verify that these invariants hold,
we employ a packing/unpacking methodology (Barnett et al.
2004; DeLine and Fähndrich 2004).

Unpacking is a means of statically delineating the por-
tions of code during which object invariants are not expected
to hold. Normally, objects are “packed,” meaning that their
state invariants hold. However, in order to read or modify
the fields of an object inside of a method call, that object
must first be “unpacked,” which allows the invariants to be
temporarily broken.

Packing itself is a concept, and the act of either packing
or unpacking can be done explicitly by the programmer or
can be left implicit. The formal system we present in Sec-
tion 3 takes the former approach. The examples presented
throughout this paper, on the other hand, are written in a
Java-like language without pack and unpack expression. Fig-
ures 7 and 8, which walk through a verification example, il-
lustrate where packing and unpacking implicitly occur. Sim-
ilarly, our implementation (Section 4) does not require ex-
plicit annotations and instead infers them. It is importantto
note that an object must be unpacked before its fields can be
written to or read from. Similarly, before a method returns,
the receiver object must be packed, and within the method
body the receiver must be packed before method calls. The

class Connection {

boolean isConnected() :

share(this, ?) ⊸

(result == true⊗ share(this, CONNECTED)) ⊕
(result == false⊗ share(this, IDLE))

{

atomic: {

return (this.socket != null);

}

}

void connect(String addr) :

immutable(addr, default) ⊗ share(this, IDLE) ⊸

share(this, CONNECTED)
{

atomic: {

this.socket = new Socket(addr);

this.counter.startCounting();

}

}

void send(String msg) :

immutable(msg, default) ⊗ share(this, CONNECTED) ⊸

share(this, CONNECTED)
{

atomic: {

this.socket.write(msg);

this.counter.increment();

}

}

void disconnect() :

share(this, CONNECTED) ⊸ share(this, IDLE)
{

atomic: {

this.socket.close();

this.socket = null;

}

this.counter.reset();

}

// ... continued

}

Figure 4. Method specifications and implementations for
the Connection class. The class definition is continued in
Figure 5.

latter is a requirement that ensures the receiver will be con-
sistent in case of re-entrant calls.

At the point of unpacking, we are allowed to assume
the information about the fields of the unpacked object
that is implied by the state invariant of the object that
is being unpacked. For example, at the beginning of the
send method of the Connection class, seen in Figure 4, we
know that the receiver object (this) is CONNECTED. Af-



class Connection {

// ... from above

states IDLE, CONNECTED;

IDLE := unique(counter, RESET) ⊗
socket == null

CONNECTED := unique(counter, COUNTING) ⊗
unique(socket, default)

private final Counter counter;

private Socket socket;

Connection() :

1 ⊸ unique(this, IDLE)
{

this.socket = null;

this.counter = new Counter();

}

}

Figure 5. State, invariant and constructor specifications for
the Connection class, where1 means, “requires no permis-
sion.”

ter the receiver is unpacked, we know that thecounter

field is in the COUNTING state, but the receiver is no
longer known to be in theCONNECTED state since the
invariants for that state may not hold. Our formal system
tracks this information using a separate access permission,
unpacked(share, CONNECTED), which tells us what state
the receiver was in before unpacking. When an object is
packed, either to the same state or to a different state, it is
at the point of packing that we are required to prove the
invariant of that state.

2.2.3 Access Permissions as Thread-Sharing

In order to determine when the state of an object could po-
tentially be changed by another thread, we need to know
which objects are shared across threads. In our system, we
use access permissions as an approximation of this informa-
tion. If a reference is annotated with a permission that indi-
cates the referred object can be reached via other references,
we assume that those references are held by other threads,
and all consequences that this might imply.

This is a sound, if potentially imprecise, approximation
because in order for a new thread to be spawned, a new
thread object must be created, with the relevant object refer-
ences passed to that thread’s constructor. Alternatively,as in
our formalization (see Section 3), if threads can be spawned
by calling a method on an object, objects that must be used
by both spawning thread and the spawnee must be passed to
this method. In our system, the only means by which refer-
ence to an object can be passed to a method or constructor
and still be held by the caller is by splitting that permission to

one of the potentially-shared permissions. We now reexam-
ine our access permissions in the context of thread sharing:

• unique permissions are permissions to objects that only
one thread has access to at a given time. These objects can
be passed from one thread to another in a linear manner.

• full permissions are permissions to objects that only one
thread can modify, but many threads can read. The thread
with full permission can rely on the fact that no other
threads can change the state of the object.

• immutable permissions are permissions to objects that
will only ever be read. All threads can rely on this object
never changing state.

• pure permissions are reading permissions to objects that
another thread could potentially modify. Unless inside an
atomic block, a thread with apure permission must as-
sume that the object’s state could change at any moment.

• share permissions are modifying permissions to objects
that could potentially be modified by a number of other
threads. Again, unless inside an atomic block, we must
assume that the object’s state could change at any mo-
ment.

Given access permissions in this light, our analysis works by
discarding state information for each reference that passes
through code that may not be executing atomically and
whose permission indicates the referred object might be
modified by another thread. For objects referenced by local
variables, our analysis discards state information for refer-
ences ofpure andshare permission. For objects referenced
by object fields, there are additional concerns.

Unpacking an object may give us access to the fields of
that object, and those fields often may have permissions that
we have said cannot be modified by other threads. But if
the object that is being unpacked haspure or share permis-
sions, then multiple threads could read these “safe” objects
by traversing through the thread-shared reference. There-
fore, in order to reestablish the condition that allunique and
full fields of an object could not be modified concurrently
by another thread, we require that the unpacking of apure,
share, or full object be done within a transaction. Now, re-
gardless of whether a variable is a field or local variable, our
analysis only needs to forget state information if the permis-
sion on the variable ispure or share.

The soundness of this technique boils down to this intu-
ition. If a method has access to a unique (or full) permission,
one of the following two cases must be true:

• The object referred to is only accessible through local
variables in the current thread’s stack, and therefore could
not be accessed by any other threads.

• The object is referred to by a field of another object. Since
thread-shared objects cannot be unpacked outside of an
atomic block, if the referring object is thread-shared we



must already be inside of one. This situation is shown
pictorially in Figure 6.

Threads

Shared Object

Unique
Objects

Figure 6. Unique and full fields within a thread-shared ob-
ject have necessarily been unpacked within a transaction.
The single thread inside is free to modify at will.

Finally, we require that all static member variables are
read or written to inside of atomic blocks. Our formal sys-
tem (Section 3) has no notion of static member variables and
therefore does not enforce this requirement. Our implemen-
tation, on the other hand, does.

In summary, the following additions are required to make
access permissions function as a sound approximation of
thread-sharing:

• We immediately forget state information about refer-
ences whose access permission indicates that the re-
ferred object could be modified by other threads (pure
andshare).

• We require thatshare, pure, andfull references are only
unpacked inside of atomic blocks. This ensures that we
have exclusive access to the fields of that object. This
is required forfull permissions only because our system
uses weak transactional semantics, and is done for the
benefit of the other,pure, references to the same object.

• All static fields must be read from and written to inside
of atomic blocks.

One of the nice aspects of this methodology is that there
is no additional annotation burden over and above the per-
mission annotations. If you are already using them to track
typestate in a single-threaded application, no additionalan-
notations, with the exception of atomic blocks, are necessary
if you decide to make that application concurrent.

2.3 Tracking Transactions

In order to track whether or not a given line of code must
be executing within an atomic block, we use a simple type
and effect system recently formalized (Moore and Grossman
2008). Atomic blocks are dynamically scoped. At run-time,
a statement within a method body could very well be execut-
ing within a transaction, even if the method itself never ex-

plicitly opened an atomic block. This is because any methods
called within an atomic block will execute within the same
transaction. This also means that if we use a modular analy-
sis, it may be impossible to tell if a method body is inside of
an atomic block.

This intuition corresponds to three effect values in our
system: Expressions type-checked with thewt effect are
known to definitely be executing within a transaction. State-
ments inside of an atomic block are type-checked in this
manner. Expressions type-checked with theot effect are
known to be executing outside of a transaction. Because of
the dynamic nature of an atomic block only the single, top-
level expression is type-checked with this effect. You might
also imagine type-checking themain method of a Java pro-
gram in this way. Finally, theemp effect indicates that the
type-system cannot be sure one way or the other. Method
bodies are type-checked with this effect since they could po-
tentially be called within an atomic block. The tracking of
transactions is treated more formally in Section 3.

2.4 Examples Revisited

Now that we have seen typestate specifications, access per-
missions and we can statically track whether or not code is
executing inside of a transaction, we can revisit our original
examples and see where these examples would fail to check.
In Figure 7 we have taken the originaltrySendMsg method
from Figure 1 and annotated it with the typestate and permis-
sion information that is known statically at each line of the
method, as well as the “in-transaction” effect that the lineis
currently being checked under. The transaction effect is al-
waysemp in this example, since no atomic blocks are ever
entered. It may also be helpful to refer to Figure 4 which
shows the method specifications.

At the beginning of the method, we have aunique per-
mission to the receiver, and this receiver is in thedefault
state, as no states were defined for the GUI class. In order to
access fields of the receiver, the receiver is immediately un-
packed, introducing anunpacked predicate. Theunpacked
predicate is technical device that is used to ensure that a.)
objects are packed before method calls and method returns,
and that b.) a given object cannot be unpacked twice before
it is packed, which could have the effect of duplicating per-
missions. Here, unpacking also gives us ashare permission
to themyConnection field, which is in some unknown state
(“?”). This is enough to satisfy the pre-condition for the dy-
namic state testisConnected, which consumes the original
permission to the field, and returns a predicate indicating that
if the return value is true we will know that the connection is
open, and the reverse if the return value is false. It is at this
point that the analysis discards all known state information
aboutpure and share permissions. Intuitively, this process
simulates the possible interleavings of other threads execut-
ing at this point in the program. When the analysis arrives
at the true branch of the conditional, it knows that the re-
sult of the method call must have been true, and therefore



boolean trySendMsg(String msg) {

emp : unique(this, default)

emp : unpacked(unique, default), share(myConnection, ?)

if( this.myConnection.isConnected() )

emp : unpacked(unique, default),

(result==true ⊗ share(myConnection, CONNECTED))

⊕ (result==false ⊗ share(myConnection, IDLE)))

emp : unpacked(unique, default),

(result==true ⊗ share(myConnection, ?))

⊕ (result==false ⊗ share(myConnection, ?)))

{

emp : unpacked(unique, default), share(myConnection, ?)

Error! Precondition not met.
this.myConnection.send(msg);

emp : unique(this, default)

return true;

}

else {

emp : unpacked(unique, default), share(myConnection, ?)

emp : unique(this, default)

return false;

}

}

Figure 7. Verification of thetrySendMsg method of the
GUI class from Figure 1. Immediately after the conditional
expression, two versions of the context are shown in order to
illustrate the effect of ‘forgetting.’

can reduce the predicate describingmyConnection. Unfor-
tunately, because we discarded knowledge of the abstract
state of themyConnection field, the pre-condition of the
send method cannot be fulfilled, and an error is signaled.
Before each method return the receiver is packed to the post-
condition.

The object invariant example from Figure 2 proceeds
in a similar manner. In Figure 8 we successfully verify a
version of thedisconnect method that we have corrected
by pulling the call toreset into the atomic block. Initially
we begin with the method pre-condition, which we unpack
inside the atomic block. Unpacking gives us the knowledge
that we have aunique permission to both thesocket and
thecounter fields of the receiver, and that thecounter is
in theCOUNTING state.

One may wonder why we are not forced to forget that
the receiver is in the connected state in between the pre-
condition and the entry into the atomic block. The rules
of our system allow state information for all permissions
to flow from pre-conditions into the first expression of a
method body, and from the last expression of a method body
out to the post-condition. If this first expression is insidean

void disconnect() {

emp : share(this, CONNECTED)

atomic: {

wt : unpacked(share, CONNECTED),

unique(socket, default),

unique(counter, COUNTING)

this.socket.close();

this.socket = null;

wt : unpacked(share, CONNECTED), (socket==null),

unique(counter, COUNTING)

this.counter.reset();

wt : unpacked(share, CONNECTED), (socket==null),

unique(counter, RESET)

wt : share(this, IDLE)

}

}

Figure 8. Verification of the corrected disconnect

method.

atomic block, then no state information is discarded for any
permission type. This works because, at the calling context
for a method, if we were able to establish the pre-condition
for a share or pure reference, this implies that either it was
established inside of an atomic block, or split from a stronger
permission (unique, full or immutable) that did not need to
be inside of an atomic block anyway. This feature allows
methods to be used in a larger number of permission con-
texts. This point is discussed in more detail when the P-
METH rule is discussed in Section 3.

Inside the atomic block, we check under thewt effect,
and therefore are not required to forget the state ofshare
or pure permissions. Thesocket field is assigned null, and
this fact is recorded in our resource context. Then thereset

method is called on thecounter field. While we have not
given the full specification for this method, the specification
can be paraphrased as, “given a unique pointer to a counter
that isCOUNTING, the method will return a unique pointer
to a counter that isRESET.” Finally we have enough facts to
pack the receiver to theIDLE state, which satisfies the post-
condition.

Both Figure 7 and Figure 8 elide certain details. In order
to ensure that re-entrant method calls see objects in consis-
tent states, we are required to pack before method calls when
object re-entrancy is possible. Also, some permissions were
shortened or ignored (e.g., the immutable permission to the
msg parameter intrySendMsg) for space reasons.

In the introduction we say that race conditions are pre-
vented up to the program behavior that is specified, and now
hopefully it is clear why. Only those method behaviors and
class invariants that can be expressed in terms of typestate,



and that are actually annotated by the programmer will be
guaranteed in the face of concurrency.

3. Language
We have formalized our analysis as a core, Java-like lan-
guage. We chose a language-based approach so that our
proof could model threads and their non-determinism at run-
time. In this section we will present this formal language.
The syntax of this language is given in Figure 9.

program PG ::= 〈CL, e〉

class decls. CL ::= class C { F I N M}

field decls. F ::= f : T

methods M ::= T m(T x) : MS = e
terms t ::= x | o

| true | false | t1 or t2
| t1 and t2 | not t

expressions e ::= t | t.f | f := t
| new C(t) | to.m(t)
| if(t, e1, e2)
| let x = e1 in e2

| spawn (to.m(t)) | atomic e
| unpack(k, S) in e
| pack to(S) in e

values v ::= o | true | false
references r ::= x | o | o.f

types T ::= C | bool
permissions p ::= k(r, S) | unpacked(k, S)

states S ::= s | ?
facts q ::= t = true | t = false

predicates P ::= p | q | P1 ⊗ P2 | P1 ⊕ P2

| 1 | 0 | ⊤
method specs MS ::= P ⊸ E

expr types E ::= ∃x : T.P
state inv. N ::= s = P

initial state I ::= initially 〈s〉
k ::= full | pure | share

| immutable | unique

atomic E ::= wt | ot | emp

valid contexts Γ ::= · | Γ, x : T | Γ, q
linear contexts ∆ ::= · | ∆, P

classes C fields f variables x, y, z
objects o methods m states s

Figure 9. Language and Permission syntax.

Our formal language builds heavily upon two existing
systems in the literature. We will point out the major dif-
ferences. Our system of access permissions reuses many of
the pieces developed by Bierhoff and Aldrich (2007), but
leave out some of the more advanced features, like state di-
mensions and sub-typing in order to focus on concurrency.
Our implementation does inherit these features. Our formal-
ization is influenced by Boyland (2003) and Zhao’s (2007)
work on fractional permissions but we give fractions a dif-

ferent semantics (full, pure, andshare are not part of their
work).

Much of the formalism regarding transactional memory,
threads and their operational semantics was adapted from
Moore and Grossman (2008). In particular we use their
Weak language, a language that provides weak atomicity
and does not explicitly model transaction roll-back, as a
starting point.

Expressions are type-checked using the following judg-
ment: Γ; ∆; E ⊢C e : ∃x : T.P . The rules defining the
judgment are the first twelve rules in Figure 11. This judg-
ment says, “given a list of variable types that can be used
many times,Γ, and a list of consumable predicates that can
be used only once,∆, and an effect describing whether or
not we are known statically to be within an atomic block,
E , the expressione being executed within receiver classC
has typeT and produces a new permissionP .” This permis-
sion may contain existentially bound variables. Note that for
clarity of presentation the receiver class annotation is left off
unless it is needed in a typing rule.

The existential type of an expression is somewhat unusual
and therefore deserves further mention. The reason a per-
mission can contain existentially bound variables is because,
while normally a permission is associated with a reference,
there are times when our system tracks the permissions of an
object to which no reference points. For instance, after the
first subexpression of a let binding is evaluated, the result(if
of a class type) is an object, and before it is bound to a vari-
able, the available permission to this object must be tracked.
Similarly, after a field has been reassigned, the permission
to the object to which it previously referred still exists and
can be reassigned to another reference. In rule P-ASSIGN,
one can see this process occurring in the resulting permis-
sion[fi/x]P , where the field to which object is assigned,fi,
is being substituted in for the bound variablex. Thus, giv-
ing expressions existential types allows us to keep consis-
tent object permissions and the references that point to those
objects.

The last six rules, beginning with P-METH, describe gen-
eral well-formedness rules, rather than the expression typing
judgment.

We use a decidable fragment of linear logic, the multi-
plicative additive fragment (MALL), as our language of be-
havioral specification (Lincoln and Scedrov 1994). Through-
out the typing rules, we will use the standard linear logic
proof judgment,Γ; ∆ ⊢ P , extensively. This judgment can
be read as, “in the context of some typing information and a
list of consumable resources, the predicateP can be proven
true.” The syntax for the permissions themselves are also
given in Figure 9.

The declarative nature of the linear logic judgment can
make for typing rules that appear to come up with permis-
sions from almost no information. See, for example, the
Γ; ∆ ⊢E P premise of the P-TERM rule. Similarly, several



typing rules divide the linear context in a seemingly arbitrary
manner, written as(∆, ∆′). In reality, the linear logic judg-
ment works more like a constraint solver. In a typing deriva-
tion, different rules restrict the permissions or the context
in various ways, and it is the job of the implementation to
find a rearrangement of permissions that satisfies all of these
constraints. The same judgment is also allowed to split per-
mission types (Figure 3), and can therefore legally try even
more possible rearrangements.

The most important new additions to the type system are
the judgments shown in Figure 10. Rather than dispatch di-
rectly to the linear logic proof-judgment, the typing rules
first dispatch to the “atomic-aware” version of this judgment,
Γ; ∆ ⊢E P , which is distinguished by theE subscript. It is
the job of this judgment to ensure that predicates that must
be proven do not depend on permissions ofshare or pure
type being in a known abstract state, unless it is known stat-
ically to be within an atomic block. In order to maintain this
invariant, it is occasionally necessary to actively “forget” the
state of an object pointed to by ashare or pure permission.
The forget judgment, whose action is also predicated upon
E , accomplishes this deliberate loss of information. For ex-
ample, in the typing rule for a method call, P-CALL (Fig-
ure 11), we sometimes must forget state information for po-
tentially thread-shared permissions in the post-condition of
a method’s contract. It is acceptable for a method’s post-
condition to includeshare andpure permissions since that
method could be called within an atomic block, but if that is
not the case, these permissions must not be relied upon.

The typing rules themselves are given in Figure 11. Here
we discuss each rule in turn.

• P-ATOMIC: The rule for typing atomic blocks types the
sub-expression under thewt effect, since it is trivially
known that this expression must be inside an atomic
block. Because the atomic block itself may or may not
be used inside of another atomic block (nesting atomic
blocks is legal) we must use theforgetE judgment on the
resulting permission.

• P-LET: In order to prove that a let expression is well-
typed, we rely one1 being well-typed. Like the standard
let rule, we then typee2 assumingx hase1’s type. The
somewhat unusual premiseΓ; ∆′, P ⊢E P ′ does not ac-
tively forget state information, which is done in other
rules, rather it reestablishes for the purposes of the sound-
ness proof that we do not know anything we should not
about the state ofpure andshare permissions.

• P-CALL : This rule describes method calls. We retain the
original restriction of Bierhoff and Aldrich’s system that
the receiver object must be in a packed state by noting
that we could always pack to some intermediate state
in the event of recursive calls. Since the post-condition
could potentially contain state information about shared
objects, we again use theforgetE judgment. The notation

forgetwt(P ) = P

E 6= wt forget(P ) = P ′

forgetE(P ) = P ′

k = immutable|unique|full

forget(k(r, S)) = k(r, S)

k = pure|share

forget(k(r, S)) = k(r, ?)

forget(P1) = P ′
1 forget(P2) = P ′

2 op = ⊗|⊕

forget(P1 op P2) = P ′
1 op P ′

2

P = q|1|0|⊤

forget(P ) = P

Γ;∆ ⊢ P

Γ;∆ ⊢wt P

E = ot|emp Γ;∆ ⊢ P
(k(r, S) ∈ ∆) ⊃ (S =?) wherek = pure|share

Γ;∆ ⊢E P

k(r, s) /∈ ·

k(r, s) /∈ P k(r, s) /∈ ∆

k(r, s) /∈ ∆, P

k(r, s) /∈ k′(r′, ?)

(k 6= k′|r 6= r′)

k(r, ?) /∈ k′(r′, S)

(k 6= k′|r 6= r′|s 6= s′)

k(r, s) /∈ k′(r′, s′)

k(r, s) /∈ P1 k(r, s) /∈ P2 op = ⊗|⊕

k(r, s) /∈ P1 op P2

P = q|1|0|⊤

k(r, s) /∈ P

Figure 10. Forgetting and atomic-aware linear judgment

[t/x]P signifies capture-avoiding substitution and is used
throughout. It means, “replacex with t in P , alpha-
converting if necessary.”

• P-SPAWN: In our language thread spawns are very sim-
ilar to method calls. We require that threads be spawned
at the outermost program expression, enforced by requir-
ing theot effect. This restriction can be relaxed by using
one of the more permissive languages proposed by Moore
and Grossman (2008). In some ways this rule is the most
interesting because it formalizes our notion of aliased ob-
jects as an approximation of thread-shared objects. This
rule returns no permissions to the calling context (sig-
nified by the1 permission). Unlike synchronous method
calls that can temporarily “borrow” an unshared writing
permission and then return it to the calling context, this
restriction requires the calling context to either give up
its own writing permission permanently, or use permis-
sion splitting rules to create two shared permissions, one
for the caller and one for the new thread.

• P-UNPACK-WT: The unpack expression is broken into
two rules. As discussed in Section 2, our system requires
thatshare, pure andfull permissions be unpacked within
an atomic block. Therefore, if the unpack expression is
type-checked under thewt effect,k is allowed to be a per-
mission of any type. This is in contrast to the P-UNPACK

rule which requiresk = immutable|unique. First off, in



Γ;∆; wt ⊢ e : ∃x : T.P
forgetE(P ) = P ′

Γ;∆; E ⊢ atomic (e) : ∃x : T.P ′
P-ATOMIC

Γ;∆; E ⊢ e1;∃x : T.P
Γ;∆′, P ⊢E P ′ (Γ, x : T ); P ′; E ⊢ e2 : E

Γ; (∆, ∆′); E ⊢ let x = e1 in e2 : E
P-LET

Γ ⊢ to : Co Γ ⊢ t : T Γ; ∆ ⊢E [to/this][t/x]P

mtype(m, Co) = ∀x : T .P ⊸ ∃result : T.Pr unpacked(k′, S′) /∈ ∆
forget

E
(Pr) = P ′

r

Γ;∆; E ⊢ to.m(t) : ∃result : T.[to/this][t/x]P ′
r

P-CALL

Γ ⊢ to : Co Γ ⊢ t : T Γ;∆ ⊢ot [to/this][t/x]P

mtype(m, Co) = ∀x : T .P ⊸ E unpacked(k′, S′) /∈ ∆

Γ;∆; ot ⊢ spawn (to.m(t)) : ∃_ : bool.1
P-SPAWN

Γ;∆ ⊢C
wt k(this, S) unpacked(k′, S′) /∈ (∆, ∆′)

Γ; (∆′, invC(S, k), unpacked(k, S));wt ⊢C e : E

Γ; (∆, ∆′);wt ⊢C unpack(k, S) in e : E
P-UNPACK-WT

E 6= wt k = immutable|unique

Γ;∆ ⊢C

E k(this, S) unpacked(k′, S′) /∈ (∆, ∆′)
Γ; (∆′, invC(S, k), unpacked(k, S)); E ⊢C e : E

Γ; (∆, ∆′); E ⊢C unpack(k, S) in e : E
P-UNPACK

Γ;∆ ⊢E invC(S, k) ⊗ unpacked(k, S′)
Γ; (∆′, k(this, S′′)); E ;⊢C e : E forget

E
(k(this, S)) = k(this, S′′)

readonly(k) impliesS′ = S no fields in∆′

Γ; (∆, ∆′); E ⊢C pack to S in e : E
P-PACK

Γ;∆; E ⊢ t : ∃x : Ti.P Γ;∆′ ⊢C

E [fi/x′]P ′ ⊗ p

localFields(C) = f : T p = unpacked(k, s) writes(k)

Γ; (∆, ∆′); E ⊢C fi := t : ∃x′ : Ti.P
′ ⊗ [fi/x]P ⊗ p

P-ASSIGN

Γ ⊢ t : T init(C) = 〈∃f : T .P, s〉 Γ;∆ ⊢E [t/f ]P

Γ;∆; E ⊢ new C(t) : ∃x : C.unique(x, s)
P-NEW

Γ ⊢ t : T Γ;∆ ⊢E P

Γ;∆; E ⊢ t : ∃x : T.[x/t]P
P-TERM

(Γ, t = true);∆; E ⊢ ∃x : T.P1

Γ ⊢ t : bool (Γ, t = false);∆; E ⊢ ∃x : T.P2

Γ;∆; E ⊢ if(t, e1, e2) : ∃x : T.P1 ⊕ P2

P-IF
localFields(C) = f : T Γ;∆ ⊢E P

Γ;∆; E ⊢C fi : ∃x : Ti[x/fi]P
P-FIELD

(x : T , this : C); P ; emp ⊢C e : E′

(x : T , this : C); P ;wt ⊢C e : ∃result : Tr.Pr ⊗⊤ E = ∃result : Tr.Pr

E = forgetemp(E
′)

Tr m(Tx) : P ⊸ E = e ok in C
P-METH

CL ok ·; ·; ot ⊢ e : E

〈CL, e〉 : E
P-PROG

F ok in C . . . M ok in C

class C { F I N M} ok
P-CLASS

fi unique Ti ∈ CL ∪ {bool}

f : T ok in C
P-FDECL

class C{. . . s = P . . .} ∈ CL

initially〈s〉 ok in C
P-CTR

si unique r ∈ Pi ⊃ r ∈ F ∈ C
r(k, S) ∈ Pi where k = share|pure ⊃ S =?

s = P ok in C
P-SINV

Figure 11. Typing Rules. Helper judgments (localFields, init, mtype, inv, andwrites) defined in Figure 12.

order to unpack an object we must prove that the receiver
object is in the state that we claim. This is done using the
linear proof judgment,Γ; ∆ ⊢wt k(this, S). Since we di-
vided the linear context into two, this will also prevent the
sub-expression from relying on this fact, as the invariant

for stateS may not hold. Then, the sub-expression can be
typed with information about the object’s fields implied
by the state invariant,invC(S, k). This judgment, shown
in Figure 12, has two roles. It will look up that state in-
variant predicate for stateS from the class definition, and



it will also “down-grade” writing permissions if neces-
sary. Down-grading is necessary when a read-only per-
mission (immutable or pure) is being unpacked. During
this process, we temporarily change writing permissions
on that object’s fields to read-only permissions. This is
performed by thedg predicate, also seen in Figure 12.
The sub-expression is also givenunpacked(k, S), which
signifies that the receiver is temporarily unpacked.

• P-UNPACK: This rule is similar to P-UNPACK-WT, but
occurs when not inside a transaction. We are limited to
unpackingunique andimmutable permissions.

• P-PACK: In order to pack, we treat the linear context as if
it has been split in two. With the first part,∆, we must be
able to prove all of the invariants of the stateS of class
C to which the programmer wants to pack. These invari-
ant permissions are retrieved with theinvC function. In
our small calculus, only the object receiver of a method
call can be packed and unpacked, so there is no need to
specify which object is to be packed. We must also be
able to show that the receiver has already been unpacked
by producing theunpacked predicate. Then, we combine
the remainder of the linear context,∆′, and the informa-
tion thatthis has been packed to stateS′′ to prove that
the subexpressione has typeE. S′′ is S passed through
the forget function. If k, the permission with which the
reference was unpacked, is a read-only permission, then
the state from which the object was unpackedS′ must
matchS: A read-only permission should not be used to
change the abstract state of an object. Finally, the require-
ment that there are no fields in∆′ ensures that fields can
only be read when their object is unpacked.

• P-ASSIGN: When we assign a value to a field, the only
sort of effect allowed in the calculus, we must first prove
that the value has some permission and that it is the same
type as theith field of classC to which we are assigning.
The next premise says that we can prove the field cur-
rently has some permission and that the receiver is un-
packed. The unpacked permission must be a modifying
permission. The resulting permission of the entire expres-
sion is the permission to the field’s old value, suitable for
assignment to another field, as well as permission to the
field’s new value and the unpack predicate.

• P-NEW: In order to instantiate a new object, we must
be able to prove the state invariant for the initial state of
that object. This is done by looking up the state invariant
P for the initial state, and proving it when treating the
permissions to the constructor arguments as fields of the
object. These permissions are consumed, and the result is
a unique permission to the object in the initial state.

• P-TERM: Individual terms are given a permission and a
type by type-checking the term, proving some permission
P from the linear context and then pulling the term itself

out of the permission, resulting in an existentially bound
one.

• P-IF: The conditional expression binds a boolean term
in both the branch expressions. Each branch is type-
checked with the knowledge that the term is either true or
false. The resulting permission for the entire expression
is a disjunction, since the permission from either branch
could be produced.

• P-FIELD: A field read proves some permissionP which
contains permissions forfi and existentially binds it so
that it can be assigned to another reference.

• P-METH: Method bodies are actually type-checked twice.
Because we do not know statically whether or not a
method will be executing within a transaction, we type-
check method once with theemp effect, which estab-
lishes that the method is legal outside of a transaction.
Then the method is type-checked a second time with the
wt effect in order to verify that it meets its specification.
This behavior is essential to typing examples such as the
trySendMsg method in Figure 1, where state informa-
tion aboutshare or pure references is used in subsequent
lines of code. It is the responsibility of the P-CALL rule,
to not allow these sorts of methods to be called, nor their
post-conditions to be relied upon, outside of transactions.
Note also that the post-condition that is actually proved
is Pr ⊗ ⊤. The linear logic we use does not allow for
unused linear resources. Therefore, if there are extra per-
missions created during the course of the method body,
those permissions can legally be ignored by using them
to prove⊤.

• P-PROG: A program type-checks if all of its classes are
well-formed and the single, top-level expression type-
checks outside of a transaction.

• P-CLASS: A class declaration is well-formed if its parts
are well-formed.

• P-FDECL: The well-formedness rule for field declara-
tions is somewhat informal, as are the remaining well-
formedness rules. This rule states that a field declaration
is well-formed if its name is unique inside the current
class, and if it type is either a boolean or one of the de-
clared class types.

• P-CTR: A declaration of the initial state is well-formed if
the state it mentions is actually one defined in the current
class.

• P-SINV: A state invariant declaration is well-formed if
three conditions hold. The state name must be unique
within the current class. Any references mentioned in ac-
cess permissions insideP must be fields of the current
class. Finally, invariants describingshare andpure per-
missions to fields cannot mention specific state informa-
tion.



class C {. . . s = P . . .} ∈ CL

invC(s) = P

invC(s) = P dg(P, k) = P ′

invC(s, k) = P ′ invC(?, k) = 1

dg(P1, k) = P ′
1 dg(P2, k) = P ′

2 op = ⊗|⊕

dg(P1 op P2, k) = P ′
1 op P ′

2

dg′(k, k′) = k′′

dg(k(r, S), k′) = k′′(r, S)

k′ 6= pure|immutable

dg′(k, k′) = k

k = unique|full|immutable k′ = pure|immutable

dg′(k, k′) = immutable

k = share|pure k′ = pure|immutable

dg′(k, k′) = pure

class C{. . . F . . .} ∈ CL

localFields(C) = F

class C{. . . M . . .} ∈ CL Tr m(T x) : P ⊸ ∃result : Tr.P
′ ∈ M

mtype(m, C) = ∀x : T .P ⊸ ∃result : Tr.P
′

class C{. . . initially〈s〉 . . .} invC(s) = P

init(C) = 〈∃f : T .P, s〉

writes(unique) writes(full) writes(share) readonly(pure) readonly(immutable)

Figure 12. Helper judgments. Note that thedg′ function is a helper function fordg that operates directly on permission kinds.

Dynamic semantics for our language are given in the ac-
companying technical report (Beckman and Aldrich 2008).
These rules are extremely similar to those of theWeak lan-
guage (Moore and Grossman 2008). They differ primarily in
that there are additional technical requirements for the fir-
ing of rules, necessary for our proof of soundness. While the
formal operational semantics of this language must actively
maintain information regarding the states and permissionsof
each object, the language itself does not actually change the
run-time behavior of a Java-like language with weak atomic-
ity, and requires none of our typing information to be present
at run-time.

In the technical report, we prove that this core language
is sound. Informally soundness means the following:

1. Well-typed thread pools either consist exclusively of
evaluated threads, or can take an evaluation step. There
are two sub-cases for individual threads:

(a) No single thread in the thread pool is executing inside
of an atomic region, and therefore any arbitrary thread
in the thread pool must be able to take a step.

(b) Exactly one thread in the thread pool is executing
inside of an atomic region, and therefore that thread
must be able to take a step.

2. Any thread pool that is well-typed and can take an evalu-
ation step must step to a well-typed thread pool. The bur-
den of proof for this fact is delegated to individual threads
which must in turn step to a well-typed expression.

The most important part of maintaining a well-typed thread
pool is maintaining a well-typed heap and per-thread stacks.
This well-typedness restricts how many threads can know
the definite state of objects in the system. For instance, in a
well-typed thread pool, at most one thread can have definite
knowledge about the state of ashare or pure object at any
given time. Since we must reestablish well-typedness after
each step, we know that this invariant holds.

Because well-typed threads can always step, it is never
the case that the running system arrives at a evaluation step
where an object should be in one state but instead is in
another.

4. Implementation and Examples
We have begun investigating the applicability of our ap-
proach by annotating several real and realistic programs and
verifying them with a prototype checker. In this section we
briefly describe the checker as well as the examples that we
have verified thus far.

4.1 Prototype Checker

We have extended a static typestate checker (Bierhoff and
Aldrich 2008) to check the rules described in this paper in
Java language programs. This checker is a modular, branch-
sensitive data-flow analysis that uses specialized Java anno-
tations as behavioral and access specifications. For example,
thedisconnect method of the Connection class from Fig-
ure 2 is annotated with the following specification:

@Share(requires="CONNECTED", ensures="IDLE")



This indicates the method requires ashare permission to
the receiver which must be in the connected state, and will
return that same permission but with the receiver in the idle
state. Similar annotations exist for state invariants. Because
of our desire to use existing, Java-based tools, we use Java’s
labeled statement with the label value “atomic” to delineate
atomic blocks, as follows:

atomic: { /* code that will

execute atomically */ }

This legal Java code allows us to get around our inabil-
ity to annotate arbitrary blocks using Java’s annotation facil-
ity. We have modified AtomJava (Hindman and Grossman
2006), a tool which provides atomicity via source-to-source
translation, to use labeled statements as atomic blocks so that
our examples can be run.

While the formal language presented in this paper re-
quires the programmer to explicitly pack and unpack the
receiver, our checker does not. Before method calls and
method returns, the checker automatically attempts to pack
the receiver to some reasonable state. If one state does not
permit permission constraints to be satisfied, other statesare
tried until a good one can be found or no more states are
available. Unpacking is also done automatically before field
reads and writes.

Our checker does allow some of the more advanced fea-
tures of the Bierhoff and Aldrich (2007) system that were not
discussed in this work. For instance, it supports fractional
permissions which allow multipleshare permissions to be
joined together to reconstruct aunique one. It also allows a
developer to create more complex state hierarchies.

As this time our checker does not recognize full linear
logic specifications, and accepts only a limited sub-set, al-
though enough to specify all of the examples in this paper.
Finally, reading from or writing to static fields requires being
within an atomic block, since in general, even if a static field
is the only field to point to a particular object many threads
can access it simultaneously.

4.2 Verified Examples

In addition to a corrected version of the running example
from Figures 4 and 5, we have used our implementation to
verify several other examples2.

JGroups Application In this example, we annotated the
JChannel class of the JGroups open source library and veri-
fied that a demo application was using it correctly. JGroups3

is an open-source library for use by developers of multi-
cast network applications. The JChannel class is a thread-
safe channel abstraction that allows a host to connect and
send messages to a group of other hosts. This particular class
seemed to be a good candidate for specification because its

2 Full source for all of the examples in this paper can be found at: www.cs.
cmu.edu/~nbeckman/research/atomicver/.
3www.jgroups.org

original developers provided a finite state machine (FSM)
based specification in the source-code comments:

The FSM for a channel is roughly as follows: a channel is
created (unconnected). The channel is connected to a group
(connected). Messages can now be sent and received. The
channel is disconnected from the group (unconnected). The
channel could now be connected to a different group again.
The channel is closed (closed).

Therefore formally specifying and statically checking
that this class is used in accordance with its informal speci-
fication seemed appropriate. After specifying this class, we
ran our analysis on the CausalDemo class. This demo, pro-
vided with JGroups, creates multiple threads, one of which
is responsible for closing the channel. This client was suc-
cessfully verified.

Reservation Manager Reservation Manager is a multi-
threaded application of our own design. It is meant to be
similar in architecture to a vacation reservation system. In
it, various threads acting on behalf of clients attempt to re-
serve bus or plane tickets. This application requires client
threads to atomically check for seat availability and make a
reservation. This application has some interesting objectin-
variants. For example, once an bus itinerary has been issued
to a passenger, he can upgrade to a plane flight, as long as
the demand for bus tickets is high enough. Once an itinerary
has been issued, it must at all times represent either a valid
bus or plane trip. At the same time, a daemon thread will oc-
casionally send a (simulated) email describing an itinerary
to each itinerary holder, therefore it is important that any
upgrades happen atomically. We have successfully verified
this entire application.

Request Processor Request Processor is another multi-
threaded application of our own design, partially shown in
Figure 13. This program is meant to be similar in spirit to a
server application where processes are received and farmed
off to other threads for handling. Upon initialization, theRe-
questProcessor creates a request pipe object which acts as
an intermediary between the request processor, which re-
ceives the requests, and the request handlers which handle
them. This program is notable because each side of the pro-
ducer/consumer architecture has a different permission to
the shared object. The RequestProcessor has afull permis-
sion while the handlers themselves have onlypure permis-
sions.

In the future we hope to improve the quality of our
checker, and verify larger and more realistic examples. Our
experiences with these smaller examples, however, lead us
to believe that this is a feasible goal.

5. Related Work
5.1 Verifying Behavior of Concurrent Programs.

The work that most closely resembles our own was devel-
oped as part of the Spec# Project. Jacobs et al. (2005) have



class RequestProcessor {

states IDLE, RUNNING;

IDLE := full(requestPipe, closed)
RUNNING := full(requestPipe, opened)

RequestPipe requestPipe = new RequestPipe();

void start() :

unique(this, IDLE) ⊸ unique(this, RUNNING)
{

this.requestPipe.open();

// Handler(rp) : pure(rp, ?) ⊸ 1
(new Thread(new

Handler(this.requestPipe))).start();

(new Thread(new

Handler(this.requestPipe))).start();

return;

}

void send(String str) :

unique(this, RUNNING) ⊗ immutable(str, default) ⊸

unique(this, RUNNING)
{

this.requestPipe.send(str);

return;

}

void stop() :

unique(this, RUNNING) ⊸ unique(this, IDLE)
{

this.requestPipe.close();

return;

}

}

Figure 13. RequestProcessor, an example of a server-like
program where class invariants depend on thread-shared ob-
jects.

also created a system that will preserve object invariants
even in the face of concurrency. Moreover, our system uses
a very similar unpacking methodology which comes from
a shared heritage in research methodology (Barnett et al.
2004). Nonetheless, we believe our work to be different in
several important ways. First, they use ownership as their un-
derlying means of alias-control, which imposes some hierar-
chical restrictions on the architecture of an application.On
the other hand, their system allows more expressive specifi-
cations, as behaviors can be specified in first-order predicate
logic, rather than typestate. While we believe our approach
would neatly accommodate more expressive specifications
which we plan to investigate as part of future work, typestate
provides a simple abstraction of object state and of effectson
that object. This system does have a proof of soundness but
provides neither formal typing rules nor a formal semantics.

Their system also is restrictive in the types of objects
that can be mentioned in object invariants. Once an object
becomes thread-shared, a process which must be signified
by the “share” annotation, it can no longer be mentioned in
another object’s invariant. Therefore, examples like the one
shown in Figure 13 where the invariant of the RequestPro-
cessor class depends on the thread-shared RequestPipe ob-
ject, cannot be verified.

Finally, our system uses atomic blocks while the Ja-
cobs approach is based on locks. While this may seem like
a minor detail, it actually provides our system with nice
benefits. In their approach, in order to determine whether
it is the responsibility of the client or provider to en-
sure proper synchronization, there is a notion ofclient-
side lockingversusprovider-side locking. Methods using
client-side locking can provide more information-laden
post-conditions, while provider-side locking methods can-
not. Because atomic blocks are a composable primitive, it is
sufficient in our system to create one method with a full post-
condition. This method can then be type-checked correctly
in atomic and non-atomic contexts.

Some related work has also been done within the con-
text of the JML project (Rodriguez et al. 2005). This work
is mainly focused on introducing new specifications useful
for those who would like to verify lock-based, concurrent
object-oriented programs. Some of the specifications can be
automatically verified, however due to the fact that this ver-
ification is done with a model-checker, verification failed to
terminate on about half of their examples.

There are a number of popular logics for concurrency,
which can be used to prove important properties of con-
current programs. These logics include the logic of Owicki
and Gries (1976), Concurrent Separation Logic (O’Hearn
2007), and Rely-Guarantee Logic (Jones 1983). All three
allow you to specify invariants over thread-shared, mutable
data in simple imperative languages. Owicki-Gries and Con-
current Separation Logic are similar, differing in the expres-
sive power of the logics they each use. In these systems, one
associates both a lock and an invariant with a piece of thread-
shared data. Upon entering a critical section, the invariants
over thread-shared data are revealed. These invariants canbe
used to prove other propositions, but must be reestablished
before the end of the critical section. This characteristicis
quite similar to unpacking of state invariants in our system
which, for references offull, share, andpure permission,
must be performed inside of an atomic block. Concurrent
Separation Logic furthermore allows one to reason modu-
larly about heap memory that cannot be thread-shared, and
does so in a manner that is similar to ourunique permission.
Overall it lacks the flexibility of our permissions, which al-
low a larger variety of thread-sharing patterns.

In the Rely-Guarantee approach, a thread must specify
invariants which describe how it will not interfere with par-
ticular conditions required by other threads. Simultaneously



a thread must specify the non-interference conditions that
it requires of other threads. When a program is correct, the
rely and guarantee specifications of each thread weave to-
gether to form a global proof of correctness. However, the
Rely-Guarantee approach suffers because system specifica-
tions must be written in a global manner. A thread states not
only its pre and post conditions, but also which invariants of
other threads it promises to not invalidate. These invariants
could have nothing to do with the memory that it modifies.
All three logics are pen and paper-based techniques and are
not, as described in these works, automated analyses.

Calvin-R (Freund and Qadeer 2003) is an automation of
the Rely-Guarantee concept, where the rely and guarantee
predicate for every thread is a conjunction ofaccess pred-
icates, describing which locks must be held when access-
ing shared variables. Calvin-R uses this information, along
with the Lipton (1975) theory of reduction, to prove method
behavioral specifications. Calvin-R must assume that every
method could be called concurrently, and therefore variables
must always be accessed in accordance with their access
predicate. Whereas in our system, aunique permission to
the receiver of a method call says that the object cannot
be thread-shared for the duration of that call, and therefore
fields do not require protected access. Also, this work does
not mention the effect that aliasing might have on the valid-
ity of access predicates, but presumably something must be
done to ensure soundness.

In recent work, Vaziri et al. (2006) have proposed a sys-
tem to help programmers preserve the consistency of objects
with a feature calledatomic sets.In this approach, program-
mers specify that certain fields of an object are related, and
must be modified atomically. An interprocedural static anal-
ysis then infers code locations where synchronization is re-
quired. While a promising approach, it does not allow veri-
fication of functional properties of code, such as the correct
usage of object protocols.

Finally, Harris and Jones (2006) introduce a mechanism
for STM Haskell that ensures a data invariants will not be vi-
olated during a given execution of a program. However, this
is a dynamic technique that cannot guarantee conformance
for all executions.

5.2 Race Detection.

There has been much work in the automated prevention of
data races.

Dynamic race detectors (Savage et al. 1997; Yu et al.
2005) check for unordered reads and writes to the same lo-
cation in memory at execution time by instrumenting pro-
gram code. Model-checking approaches have also been ex-
plored (Henzinger et al. 2004; Stoller 2000). These work by
abstractly exploring possible thread interleavings in order to
find ones in which there is no ordering on a read and write
to the same memory location. There have also been a num-
ber of static analyses and type systems for data race preven-
tion (Boyapati et al. 2002; Greenhouse and Scherlis 2002;

Grossman 2003; Pratikakis et al. 2006; Engler and Ashcraft
2003) as well, each making trade-offs in the number of false-
positives and the complexity of annotations required.

The fundamental difference between each of these race
detection approaches and our approach is the presence or
absence of behavioral specifications. None of the other ap-
proaches require behavioral specifications, and thereforecan
check only an implicit specification; that the program should
contain no data races. In our system, typestate specifications,
which describe the intended program behavior, allows us to
prevent more semantically meaningful race conditions.

Atomicity checkers (Flanagan and Qadeer 2003; Sas-
turkar et al. 2005; Hicks et al. 2006) help programmers
achieve atomicity using locks, but can only ensure the atom-
icity that the programmer deems necessary. Given a specifi-
cation of a piece of code that must execute as if atomic and
specifications relating locks to the memory that they protect,
an atomicity checker will tell the programmer whether or not
locks are used correctly, according to the theory of reduc-
tion (Lipton 1975). Once again, because atomicity checkers
do not require behavioral specifications, they do not tell the
program which sections of code must execute atomically in
order to ensure program correctness.

6. Future Work
We are currently pursuing a number of future courses of re-
search. While our work is an attempt to advance the work of
Bierhoff and Aldrich (2007) to the world of concurrent soft-
ware, we first wanted to study the problems of concurrency
in relative isolation. Therefore, we have not included many
of the more advanced features of that system into the work
presented here. These features, like fractional permissions
and support for sub-typing and inheritance, would make our
system even more expressive, and we plan to reintroduce
them into our system. We believe these features are orthog-
onal and can be added without difficulty.

Additionally, we are attempting to determine what sorts
of access permissions might be more useful in a thread-
shared context. At the moment, permissions that are thread-
shared, and permissions that are merely aliased locally are
not distinguishable, and we would like to tease them apart.
For instance, we would like to have a thread-local version of
theshare permission that would not require synchronization.

We have also begun developing an implementation of
software transactional memory that uses these same permis-
sion annotations as a means of improving run-time perfor-
mance by eliminating unnecessary synchronization and log-
ging. While the implementation is complete, we have only
performed preliminary experiments and have not yet estab-
lished the efficacy of our technique.

Finally, we would like to see a greater usage of TM for
the purposes of static verification. Currently, most existing
flow analyses and verification tools are unsound in the face
of concurrency, and those that are not impose a great an-



notation burden on the programmer, in addition to any bur-
den imposed by the single-threaded version of the analy-
sis. In this work we were able to prove our concurrent lan-
guage sound, thanks in part to the clean dynamic seman-
tics of atomic blocks. If we were to extend Dan Grossman’s
Garbage Collection/STM analogy (2007), we would say the
following: In the same way garbage collection allows proofs
of program properties that would be difficult or impossible in
a language with explicit memory allocation and reclamation,
transactional memory will allow proofs of program proper-
ties for multi-threaded languages, when doing the same with
lock-based synchronization would be difficult or impossible.
The performance of TM implementations continues to im-
prove (Adl-Tabatabai et al. 2006), and we believe this will
also help to encourage the adaptation of static analyses for
use in concurrent programs.

7. Conclusion
In this paper we described an intraprocedural static analy-
sis, formalized as a type system, that can help to ensure the
proper usage of atomic blocks. The atomic block, provided
by transactional memory implementations, is a simple con-
currency primitive, when compared with locks, but can still
be used incorrectly. Our type system ensures that, up to the
method and object behavioral specifications, race conditions
will not occur and object invariants will be preserved. We
believe this is the first work to attempt to statically ensure
the correct usage of transactional memory in object-oriented
languages. This language uses access permissions, a means
of denoting the manner in which objects may be aliased,
as an approximation for whether or not objects are thread-
shared, which in turn helps determine whether or not code
must be inside of an atomic block. We use typestate as our
language of specification, and track transactions using a sim-
ple type-and-effect system. We have proved this language
sound in our accompanying technical report (Beckman and
Aldrich 2008). Finally, we have created a prototype static
analysis for the Java programming language based on the
system described in this paper. We have used it to verify sev-
eral realistic concurrent programs.
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