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Abstract
The atomic block, a synchronization primitive provided to

programmers in transactional memory systems, has the po-

tential to greatly ease the development of concurrent soft-
ware. However, atomic blocks can still be used incorrectly,
and race conditions can still occur at the level of applarati
logic. In this paper, we present a intraprocedural statidyan

Among the large number of recent proposals, transac-
tional memory (TM) seems to have gained the greatest
amount of traction. Transactional memory attempts to sim-
plify the construction of concurrent applications that mak
use of shared memory. Most realizations of transactional
memory provide programmers with a simple concurrency
primitive, the atomic block. Code that is executed within an

sis, formalized as a type system and proven sound, that he|p§1tom|c block will execute sequentially, and as if no other

programmers use atomic blocks correctly. Usiegess per-

missions which describe how objects are aliased and mod-
ified, our system statically prevents race conditions and en
forces typestate properties in concurrent programs. We hav
implemented a prototype static analysis for the Java lan-

guage based on our system and have used it to verify severa¥

realistic examples.

Categories and Subject Descriptors D.3.2 [PROGRAM-
MING LANGUAGES$ Concurrent, distributed, and paral-
lel languages; F.3.1OGICS AND MEANINGS OF PRO-
GRAM$: Mechanical Verification

General Terms Languages, Verification

Keywords Transactional memory, Typestate, Permissions

1. Introduction

It is now taken for granted in the field of computer science
that the age of parallelism is upon us, and with good reason;
with more and more of the transistors given to us by Moore’s
Law going into an ever-increasing number of on-chip cores,
we can no longer expect predictable increases in single-

threaded performance. With this in mind, many researchers

in the field of computer science have begun investigating
new techniques for the development of software that can
actually take advantage of more cores.
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threads were executing at the same time. The approach is
“transactional,” because atomic blocks are usually imple-
mented as memory transactions which abort and retry in the
event a thread witnesses an inconsistent view of memory.
However, as some of TM’s greatest proponents will tell
ou, while atomic sections are a vastimprovement over lock-
based synchronization, they are far from perfect (Grossman
2007). Atomic sections by themselves do not guarantee cor-
rect synchronization, even when mutual exclusion is thg onl
synchronization primitive needed, because they can #ill b
used incorrectly. Even if every access to thread-shared-mem
ory is performed inside of an atomic block, race conditians a
the level of program logic, or “high-level data races,” (Aot
et al. 2003) can still occur.

For the scope of this work, we consider how these race
conditions can lead to misuse of object protocols. Our goal
is to statically prevent races on the abstract state of atgbj
as well as violations of an object’s concrete state invasian
due to concurrent access.

As motivation, consider a hypothetical network chat ap-
plication, used as a running example throughout this paper
and partially shown in Figures 1 and 2. In this application,
two threads, a GUI event thread and a network-monitoring
thread, each modify one shared object of the Connection
class. This class abstractly represents a connection batwe
a remote and local host. The GUI thread sends messages,
and opens and closes the connection in response to local user
events, while the network-monitoring thread closes the con
nection in response to a remote user event.

In Figure 1 thecrySendMsg method, invoked in response
to a GUI event, checks to see if the connection is active, and
if so sends a message by calling gead method of the Con-
nection class. Both thésConnected and send methods
of the Connection class are properly synchronized, reading



class Connection { class Connection {

void disconnect() { /* see fig. 2 */ } final Counter counter;

boolean isConnected() { Connection {
atomic: { this.socket = null;
return (this.socket != null); this.counter = new Counter();
} }
}
void disconnect() {
void send(String msg) { atomic: {
atomic: { this.socket.close();
this.socket.write(msg); this.socket = null;
this.counter.increment(); }
} this.counter.reset();
} }
} }
class GUI {

Figure 2. An example where object invariants might be
boolean trySendMsg(String msg) { violated.
if ( this.myConnection.isConnected() ) {

this.myC tion.send ; . . :
is.myConnection.send(msg) mented in such a way that all access to its member variables
return true;

} is done within atomic blocks.
else { Once again, trouble occurs even though shared memory
return false; is accessed exclusively within atomic blocks. Concurrent
} access to the connection object has the potential to cause
} a violation of its invariants. Assume that tdeésconnect
method is being executed by the network thread. If the GUI
} thread were to call theonnect method and begin sending
messages using tkend method precisely at a point in time
where the network thread had exited the atomic block but
had not yet reset the counter, we would lose count of each of
those sent packets when the network thread eventuallysreset
the counte.
In this paper, we describe a Java-like programming lan-
guage whose type system statically prevents misuse and

Figure 1. An example where a race condition could occur.

and modifying thread-shared fields inside of atomic blocks.
However, a race condition exists on the abstract state of the

connection object. The GUI thread relies on the connec- : ¢ imol tati f obiect brotocols i ¢
tion remaining in the connected state in between the call to Incorrect implementation ot object protocols in concutren

isConnected and the call tosend. If the network thread systems. Up to the invariants that are specified by the pro-

were to close the connection before the GUI thread's call 93MMer, thistype system preventsrace conditions and guar
to send. this call would be invalid and would cause a null- antees thatinvariants are reestablished at the end of thetho

pointer exception bodies, even in the face of concurrent access to an object

The second example, shown in Figure 2, shows how mis- and its fields. Our system uses typestate (Strom and Yemini
use of atomic blocks ca;1 lead to violations’ of object invari- 1986) specifications as the language of invariants, and:bbje

ants, thus leading to improper implementation of object pro permi_ssions (Boyland 2003) to approximate_whether or not
. NG 0 IMproperimp I Jectp an object can be thread-shared. Our work builds upon recent

tocols. The Connection class also privately keeps a counter e i X :
to track the number of messages that have been sent durin r()jrrl?(:r? rz\ét(a)r;f)ymg typestate of aliased objects (Bierhaita

the lifetime of a connection. At the time of class creatids th Th tributi f thi follows:
counter is initialized to zero, and each time a connection is € contributions ot this paper are as 1oflows.
disconnected, this counter is reset usingtheet method. ¢ \We have developed a programming language that begins
In fact, the Connection class has an invariant that its meth-  to address the problem of improper atomic block usage.
ods rely on: whenever a Connection object is not connected, R _ .
the socket field will be null and the message counter will be Whie the race condition in this short illustrative exampi@y seem

. . unrealistic, it is more likely to occur in a situation whee thmethod is longer
reset. This help_s to ensure that the message _Co_unt Will' beang the programmer is motivated to make atomic blocks as ab@ossible
accurate. We will assume that tlreset method is imple- to maximize concurrency.




The type system of this language guarantees that there2.

Overview

are no race conditions on the abstract state of an object.; 5 high level, our approach is as follows:

If a method call requires the receiver object to be in
some state, at run-time the object will be in that state.
Furthermore, the specified invariants of these abstract
states will be preserved, even in the face of concurrent
access.

In this paper, we reinterpret access permissions, which
we previously used as an alias-control mechanism, as an
approximation of the thread-sharedness of a location in e
memory. Our solution is an improvement over existing,
lock-based approaches (Jacobs et al. 2005; Rodriguez
et al. 2005) because it does not impose hierarchical re-
strictions on aliasing, and because our specifications are
more compositional.

We have proved soundness for a core subset of this lan-
guage in the accompanying technical report (Beckman e

We use typestate specifications on methods and classes
to say which abstract state an object must be in before
calling a method on it, and which concrete states an
object’s fields must be in at the end of a method call. (In
principle, other behavioral specifications would work as
well.)

Object references are annotated with access permissions
which describe how an object pointed to by a reference is
shared. Permissions were originally proposed as a means
for guaranteeing the non-interference of threads. In pre-
vious work, we used interfering permissions to control
aliasing. Now we reinterpret the same interfering permis-
sions to describe how threads share objects.

Finally, we track the state of objects as they flow through

and Aldrich 2008).

¢ To our knowledge this is the first work that statically
verifies the proper placement of atomic blocks in object-
oriented code.

method bodies, discarding knowledge about the state of
an object when the reference to that object indicates it
may be modified by other threadsid we cannot deter-
mine statically that we are within an atomic section.

* We have developed a prototype analysis for the Java  |n the next several sub-sections, we describe each part of
language based on this type system and have used it tqpe process in greater detail.

verify several realistic examples.
2.1 Typestate Specifications

Existing work on data race detection (Boyapati et al. Our approach uses typestate (Strom and Yemini 1986) as the
2002; Pratikakis et al. 2006; Engler and Ashcraft 2003) does language of behavioral specification. A specification thks
a good job of ensuring that access to thread-shared memorsystem which application-specific logic must be upheld in
is protected by locks or other mutual exclusion primitives, the face of concurrent access.
but it does not prevent a program’s threads from interlegvin Typestate specifications allow programmers to develop
in ways that destroy application invariants. abstract protocols describing a method or class’ behavior.

Preventing thread interleavings that destroy program in- The abstractions take the form of state-machines, an abstra
variants is an important goal, because invariants allow pro tion with which most programmers are familiar. As an exam-
grammers to reason about the behavior of their programs.ple, the developer of a file class might specify that a file can
Toward this goal, several earlier works (Jacobs et al. 2005; be in either the open or closed states, and that data can only
Jones 1983; Owicki and Gries 1976; Vaziri et al. 2006) at- be read from that file when it is in the open state. For a more
tempt to statically prevent or prove impossible threadrinte relevant example, consider the following specificatiorhef t
actions that might invalidate invariants. Compared toe¢hes Connection class:
approaches, our work allows for a larger variety of thread-

sharing patterns, and additionally helps to ensure thegorop disconnect()

isConnected()

use of object protocols, an abstraction of object state that is true = 'S?s%g?fgtedo
forms an implicit but unchecked interface in many object- %ONNECT@ C IDLE
oriented programs.

This paper proceeds as follows. In Section 2 we describe send() connect()

our technique at an informal level, using our chat program as

a running example. By the end of this section, readers should  This indicates that a connection can abstractly be idle or
understand the intuition behind our approach. Section 3 de-connected. Calling theonnect method will take an object
scribes the formal language in greater detail. Section 4 de-from the idle state to the connected state, while the reverse
scribes our prototype implementation, as well as its use in holds for thedisconnect method. The sending of messages
verifying several real or realistic Java programs. In Sech can only occur while the object is in the connected state,
we discuss the wealth of existing work in verification of con- but sending a message does not affect the object’s state.
current software. In Section 6 we discuss how we would like Finally, we can dynamically test whether or not we are in
to improve our technique, and in Section 7 we conclude. the connected state by callingConnected.



Existing work has been done in statically verifyingthatan The access permissions are arranged in a partial order and
object’s behavior will conform to its typestate specifioati can besplit in order to create other permissions to the same
at run-time (DeLine and Fahndrich 2004). Our work, in par- object. This is hecessary because when an object constructo
ticular, adapts the approach of Bierhoff and Aldrich (2007) is called, a singlainique reference is returned, but we may
for use in concurrent settings. In the approach proposed bywant to then create multiple references to distribute tedif
Bierhoff and Aldrich, object states are tracked statically ent parts of the program. These splitting rules are destribe
ing linear logic predicates (Girard 1987) which treat objec in Figure 3. In the formal language, it is the responsibiity
state information as a resource that can be consumed andhe linear logic proof judgment to automatically determine
transformed. Methods that transform the state of an objectwhen and how permissions should be split into other per-
will consume its old state, and return a new state, and themissions. If several expressions in a method require differ
type of the reference to that object will reflect its new state ent permissions to the same reference, the implementation

in subsequent lines of code. of this judgment must solve these constraints by splitting
Usually state names are defined by an application, how- the permission in an appropriate way. In our implementation

ever, this paper mentions two special stat&sahd “default,” (Section 4), this is done with a constraint solver.

which are known ahead of time?™ represents a lack of An example access permission is shown below:

knowledge about the state of an objeatefault,” on the

other hand, is the default state given to an object whose
class defines no abstract states. This permission tells us that th@unter field points to an

object that can only be reached via this field, and therefore
this reference has exclusive read/write access. Furtirermo
2.2  Access Permissions it is known at this point that the counter is in the “RESET”

Access permissions (Bierhoff and Aldrich 2007) are a means abstract state.

of associating object references with (a) the state of the ob
ject referenced and (b) the ways in which that object can
be aliased. This is important because statically trackieg t
state of an object in the face of unrestricted aliasing issund

unique(counter, RESET)

k = share|pure|immutable
k(r,s) = k(r,s) @ k(r, s)

k = full|share|pure|[immutable

cidable. In this section we will show how access permissions - S-UNIQUE
can approximate information on whether or not an object is unique(r, s) = k(r, s)
thread-shared, and why this is a sound approximation. I — sh . tabl
The access permissions system that we use has five dif- = share|pure|immutable -FULL
ferent permission types, each one describing whether or not full(r, s) = k(r, s)
the object is aliased, whether the given reference can ek use
to modify the object, and whether other references to the ob- - S-IMM
ject, if they exist, are allowed to modify the object. These immutable(r, s) = pure(r, s)
permissions are named as follows: & — full
= full|share S.ASYM
® unique permission to an object indicates that this refer- k(r,5) = k(r, s) ® pure(r, 5)
ence _is the sole referenc_e to an object in_ the program. IAFP P =P
This is the same as a linear reference in other type- T"A-P SUBST
systems (Wadler 1990). ’
e full permissions are exclusive read/write references that
can coexist with any number of read-only references. Figure 3. Permission splitting rules

e immutable permissions are associated with references
that point to immutable objects. Any number of these 5 5 1 Method Specifications

references can point to the same object, but no reference o )
may have modifying access. Now that we have seen access permissions, we can string

o o ] them together with linear logic connectives to create speci
* pure permissions are read-only permissions to 0bjects fications. The— connective is used to specify method pre
that may be modified through other references. and post-conditions. Predicates on the left-hand side form
¢ share permissions are associated with references that canthe method pre-condition, and those on the right-hand side
read and write objects that can also be read and modifiedform the post-condition. Predicates in the pre-conditian a
by any number of other references in the system. This consumed and cannot be reused unless explicitly returned by
is the least restrictive permission, and is effectively the the post-condition. Linear conjunctiom] is used when we
default in languages like Java. wish to say that multiple objects must be in specific states at



the same time, and linear disjunction)(is used when one  class Connection {

of several state predicates may be true. We have annotated boolean isConnected()

the methods of the Connection class with behavioral anno- ~ share(this,?) —

tations in Figure 4. For example, theConnected method (result == true @ share(this, CONNECTED)) @
is described in the following manner: If the method is called (result == false ® share(this, IDLE))

when the receiver is a shared object in an unknown state, af-
ter the method completes the receiver object will eithenbe i

the CONNECTED state, signified by a return value of true,

or the receiver will be in théDLE state, signified by a return }
value of false. Other methods are annotated similarly.

atomic: {
return (this.socket != null);

] ) void connect(String addr) :
2.2.2 State Invariants and Packing immutable(addr, default) ® share(this, IDLE) —
The same access permissions can be used to annotate classes share(this, CONNECTED)
with invariant predicates. In our system, an object’s ipvar
ants are tied to the abstract states in which that object re-
sides. When designing a class, a programmer has the ability
to declare abstract states for a class. He can also decide tha }
certain predicates over the fields of an object must hold true 4
whenever the object is in one of those states. These predi-
cates are called state invariants. In Figure 5, we have anno- void send(String msg) :

atomic: {
this.socket = new Socket(addr);
this.counter.startCounting();

tated theConnection class with state invariants, predicates immutable(msg, default) ® share(this, CONNECTED) —o
that should hold true when that connection is either open or share(this, CONNECTED)
closed. Take, for example, the following invariant: {
atomic: {
CONNECTED := unique(counter, COUNTING) ® this.socket.write(msg) ;
unique(socket, default) this.counter.increment();
}
It specifies that when a connection is in tG@NNECTED b

state, its counter field must be in tAOUNTING state and
its socket must be in thdefault state.

In order to allow methods to modify the fields of an
object and still modularly verify that these invariantsdhol

void disconnect() :
share(this, CONNECTED) —o share(this, IDLE)

we employ a packing/unpacking methodology (Barnett et al. at:zi: Sicket close();

2004; DeLine and Fahndrich 2004). this.socket = null;
Unpacking is a means of statically delineating the por- }

tions of code during which object invariants are not expea:cte this.counter.reset();

to hold. Normally, objects are “packed,” meaning that their  }

state invariants hold. However, in order to read or modify

the fields of an object inside of a method call, that object 7/ --- continued
must first be “unpacked,” which allows the invariants to be ¥

temporarily broken.

Packing itself is a concept, and the act of either packing — — - -
or unpacking can be done explicitly by the programmer or Figure 4. Mgthod specifications and_lm_plementatlpns fo_r
can be left implicit. The formal system we present in Sec- th_e Connection class. The class definition is continued in
tion 3 takes the former approach. The examples presented9ure 5.
throughout this paper, on the other hand, are written in a
Java-like language without pack and unpack expression. Fig
ures 7 and 8, which walk through a verification example, il- latter is a requirement that ensures the receiver will be con
lustrate where packing and unpacking implicitly occur. Sim  sistent in case of re-entrant calls.
ilarly, our implementation (Section 4) does not require ex- At the point of unpacking, we are allowed to assume
plicit annotations and instead infers them. It is important  the information about the fields of the unpacked object
note that an object must be unpacked before its fields can bethat is implied by the state invariant of the object that
written to or read from. Similarly, before a method returns, is being unpacked. For example, at the beginning of the
the receiver object must be packed, and within the method send method of the Connection class, seen in Figure 4, we
body the receiver must be packed before method calls. Theknow that the receiver objectf{is) is CONNECTED. Af-




class Connection { one of the potentially-shared permissions. We now reexam-

// ... from above ine our access permissions in the context of thread sharing:
states IDLE, CONNECTED; ® unique permissions are permissions to objects that only
one thread has access to at a given time. These objects can
IDLE := unique(counter, RESET) ® be passed from one thread to another in a linear manner.
socket == null .. . .
CONNECTED := unique(counter, COUNTING) ® e full permissions are permissions to objects that only one

thread can modify, but many threads can read. The thread

unique(socket, default) i i
with full permission can rely on the fact that no other

private final Counter counter; threads can change the state of the object.
private Socket socket;  immutable permissions are permissions to objects that
) will only ever be read. All threads can rely on this object

Connection() : .
| —o unique(this, IDLE) never changing state.

{ e pure permissions are reading permissions to objects that
this.socket = null; another thread could potentially modify. Unless inside an
this.counter = new Counter(); atomic block, a thread with pure permission must as-

) by sume that the object’s state could change at any moment.

¢ share permissions are modifying permissions to objects
that could potentially be modified by a number of other
threads. Again, unless inside an atomic block, we must
assume that the object’s state could change at any mo-
ment.

Figure 5. State, invariant and constructor specifications for
the Connection class, whetemeans, “requires no permis-
sion.”

Given access permissions in this light, our analysis woyks b

discarding state information for each reference that passe
through code that may not be executing atomically and
whose permission indicates the referred object might be
modified by another thread. For objects referenced by local

ter the receiver is unpacked, we know that tw@unter
field is in the COUNTING state, but the receiver is no
longer known to be in th& ONNECTED state since the
invariants for that state may not hold. Our formal system

tracks this information using a separate access permission,ariaples, our analysis discards state information foerref
unpacked(share, CONNECTED), which tells us what state  gnces ofpure andshare permission. For objects referenced
the receiver was in before unpacking. When an object_ IS by object fields, there are additional concerns.
packed, e_lther to thg same state or to a d_|fferent state, it is Unpacking an object may give us access to the fields of
at the point of packing that we are required to prove the yhat ghject, and those fields often may have permissions that
invariant of that state. we have said cannot be modified by other threads. But if
o . the object that is being unpacked hase or share permis-
2.2.3 Access Permissions as Thread-Sharing sions, then multiple threads could read these “safe” object
In order to determine when the state of an object could po- by traversing through the thread-shared reference. There-
tentially be changed by another thread, we need to know fore, in order to reestablish the condition thatualique and
which objects are shared across threads. In our system, weull fields of an object could not be modified concurrently
use access permissions as an approximation of this informa-by another thread, we require that the unpacking pii,
tion. If a reference is annotated with a permission that-indi share, or full object be done within a transaction. Now, re-
cates the referred object can be reached via other reference gardless of whether a variable is a field or local variable, ou
we assume that those references are held by other threadsinalysis only needs to forget state information if the permi
and all consequences that this might imply. sion on the variable igure or share.

This is a sound, if potentially imprecise, approximation The soundness of this technique boils down to this intu-
because in order for a new thread to be spawned, a newition. If a method has access to a unique (or full) permission
thread object must be created, with the relevant object-refe one of the following two cases must be true:
ences passed to that thread’s constructor. Alternatiaslin
our formalization (see Section 3), if threads can be spawned
by calling a method on an object, objects that must be used
by both spawning thread and the spawnee must be passed to
this method. In our system, the only means by which refer- e The objectis referred to by a field of another object. Since
ence to an object can be passed to a method or constructor thread-shared objects cannot be unpacked outside of an
and still be held by the caller is by splitting that permissio atomic block, if the referring object is thread-shared we

e The object referred to is only accessible through local
variablesin the currentthread'’s stack, and thereforeccoul
not be accessed by any other threads.



must already be inside of one. This situation is shown plicitly opened an atomic block. This is because any methods
pictorially in Figure 6. called within an atomic block will execute within the same
transaction. This also means that if we use a modular analy-
sis, it may be impossible to tell if a method body is inside of
Threads an atomic block.

This intuition corresponds to three effect values in our
system: Expressions type-checked with the effect are
known to definitely be executing within a transaction. State
ments inside of an atomic block are type-checked in this
manner. Expressions type-checked with theeffect are
Unique known to be executing outside of a transaction. Because of
Objects the dynamic nature of an atomic block only the single, top-
level expression is type-checked with this effect. You nhigh
also imagine type-checking tlin method of a Java pro-
gram in this way. Finally, themp effect indicates that the
type-system cannot be sure one way or the other. Method
bodies are type-checked with this effect since they could po
‘tentially be called within an atomic block. The tracking of
transactions is treated more formally in Section 3.

Shared Objec

Figure 6. Unique and full fields within a thread-shared ob-
ject have necessarily been unpacked within a transaction
The single thread inside is free to modify at will.

Finally, we require that all static member variables are 2.4 Examples Revisited
read or written to inside of atomic blocks. Our formal sys-
tem (Section 3) has no notion of static member variables and
therefore does not enforce this requirement. Our implemen-
tation, on the other hand, does.

In summary, the following additions are required to make
access permissions function as a sound approximation of
thread-sharing:

Now that we have seen typestate specifications, access per-

missions and we can statically track whether or not code is

executing inside of a transaction, we can revisit our oagin

examples and see where these examples would fail to check.

In Figure 7 we have taken the originatySendMsg method

from Figure 1 and annotated it with the typestate and permis-

sion information that is known statically at each line of the

e We immediately forget state information about refer- method, as well as the “in-transaction” effect that the Ise
ences whose access permission indicates that the recurrently being checked under. The transaction effect-is al
ferred object could be modified by other threadsré waysemp in this example, since no atomic blocks are ever
andshare). entered. It may also be helpful to refer to Figure 4 which

e We require thashare, pure, andfull references are only ~ Shows the method specifications. .
unpacked inside of atomic blocks. This ensures that we At the beginning of the method, we haveuaique per-
have exclusive access to the fields of that object. This Mission to the receiver, and this receiver is in thault
is required forfull permissions only because our system State, as no states were _deflned forth_e GL_JI _class. In order to
uses weak transactional semantics, and is done for thedccess fields of the receiver, the receiver is immediately un

benefit of the othepure, references to the same object. ~ Packed, introducing annpacked predicate. Theinpacked
predicate is technical device that is used to ensure that a.)

objects are packed before method calls and method returns,
and that b.) a given object cannot be unpacked twice before
One of the nice aspects of this methodology is that there it is packed, which could have the effect of duplicating per-
is no additional annotation burden over and above the per-missions. Here, unpacking also gives ushare permission
mission annotations. If you are already using them to track to themyConnection field, which is in some unknown state

o All static fields must be read from and written to inside
of atomic blocks.

typestate in a single-threaded application, no additianal “?"). This is enough to satisfy the pre-condition for the dy-
notations, with the exception of atomic blocks, are neagssa namic state testsConnected, which consumes the original
if you decide to make that application concurrent. permission to the field, and returns a predicate indicatiag t

) ] if the return value is true we will know that the connectioniis
2.3 Tracking Transactions open, and the reverse if the return value is false. It is at thi

In order to track whether or not a given line of code must point that the analysis discards all known state infornmatio
be executing within an atomic block, we use a simple type aboutpure andshare permissions. Intuitively, this process
and effect system recently formalized (Moore and Grossman simulates the possible interleavings of other threadsudxec
2008). Atomic blocks are dynamically scoped. At run-time, ing at this point in the program. When the analysis arrives
a statement within a method body could very well be execut- at the true branch of the conditional, it knows that the re-
ing within a transaction, even if the method itself never ex- sult of the method call must have been true, and therefore



boolean trySendMsg(String msg) { void disconnect() {

emp : unique(this, default) ‘ ‘emp : share(this, CONNECTED) ‘
emp : unpacked(unique, default), share(myConnection, ?) ‘ atomic: {
if ( this.myConnection.isConnected() ) ‘ wt : unpacked(share, CONNECTED), ‘
‘emp : unpacked(unique, default), ‘ unique(socket, default), ‘
(result==true ® share(myConnection, CONNECTED)) ‘ unique(counter, COUNTING) ‘
@ (result==false ® share(myConnection, IDLE))) ‘ this.socket.close();

this.socket = null;

‘ emp : unpacked(unique, default), ‘ ‘ wt : unpacked(share, CONNECTED), (socket==null),

‘ unique(counter, COUNTING) ‘

this.counter.reset();

(result==true ® share(myConnection,?)) ‘

® (result==false ® share(myConnection,?))) ‘

{ ‘ wt : unpacked(share, CONNECTED), (socket==null),
emp : unpacked(unique, default), share(myConnection, ?) ‘ ‘ nique( ver, RESET) ‘
unique(counter,

‘ wt : share(this, IDLE) ‘

Error! Precondition not met]
this.myConnection.send (msg) ;

emp : unique(this, default) ‘

}
return true;
}
else { Fi 8. Verificati f th ted di
emp : unpacked(unique, default), share(myConnection, ?) ‘ \gure ©. Verification 0 € corrected disconnect
method.
emp : unique(this, default) ‘
t false; . . . . .
} return faise atomic block, then no state information is discarded for any
3 permission type. This works because, at the calling context

for a method, if we were able to establish the pre-condition

Figure 7. Verification of thetrySendMsg method of the for ashare or pure reference, .this implies th_at either it was
GUI class from Figure 1. Immediately after the conditional established inside of an atomic block, or splitfrom a steng

expression, two versions of the context are shown in order to PEMISSion énique, full orimmutable) that did not need to
illustrate the effect of ‘forgetting.” be inside of an atomic block anyway. This feature allows

methods to be used in a larger number of permission con-

texts. This point is discussed in more detail when the P-
can reduce the predicate describifyfonnection. Unfor- METH rule is discussed in Section 3.
tunately, because we discarded knowledge of the abstract Inside the atomic block, we check under the effect,
state of themyConnection field, the pre-condition of the  and therefore are not required to forget the statehafe
send method cannot be fulfilled, and an error is signaled. or pure permissions. Theocket field is assigned null, and
Before each method return the receiver is packed to the post+this fact is recorded in our resource context. Thenémset
condition. method is called on theounter field. While we have not

The object invariant example from Figure 2 proceeds given the full specification for this method, the specifioati

in a similar manner. In Figure 8 we successfully verify a can be paraphrased as, “given a unique pointer to a counter
version of thedisconnect method that we have corrected thatisCOUNTING, the method will return a unique pointer
by pulling the call toreset into the atomic block. Initially to a counter that iRESET.” Finally we have enough facts to
we begin with the method pre-condition, which we unpack pack the receiver to thd®LE state, which satisfies the post-
inside the atomic block. Unpacking gives us the knowledge condition.

that we have ainique permission to both theocket and Both Figure 7 and Figure 8 elide certain details. In order
the counter fields of the receiver, and that theunter is to ensure that re-entrant method calls see objects in consis
in the COUNTING state. tent states, we are required to pack before method calls when

One may wonder why we are not forced to forget that object re-entrancy is possible. Also, some permissiong wer
the receiver is in the connected state in between the pre-shortened or ignored (e.g., the immutable permission to the
condition and the entry into the atomic block. The rules msg parameter itrySendMsg) for space reasons.
of our system allow state information for all permissions In the introduction we say that race conditions are pre-
to flow from pre-conditions into the first expression of a vented up to the program behavior that is specified, and now
method body, and from the last expression of a method bodyhopefully it is clear why. Only those method behaviors and
out to the post-condition. If this first expression is insae class invariants that can be expressed in terms of typestate



and that are actually annotated by the programmer will be ferent semanticsfill, pure, andshare are not part of their
guaranteed in the face of concurrency. work).
Much of the formalism regarding transactional memory,
3. Language threads and their operational semantics was adapted from
Moore and Grossman (2008). In particular we use their

We have formalized our analysis as a core, Java-like Ian—Weak lanauage. a lanauage that provides weak atomicit
guage. We chose a language-based approach so that our guage, guag b Y

proof could model threads and their non-determinism at run- and _does _not explicitly model transaction roll-back, as a
. ; : . . starting point.
time. In this section we will present this formal language.

The syntax of this language is given in Figure 9.

Expressions are type-checked using the following judg-
ment:T; A;E F¢ e : 3z : T.P. The rules defining the
judgment are the first twelve rules in Figure 11. This judg-

program PG := (CLe) ment says, “given a list of variable types that can be used
classdecls. CL = classC{F IN M} many times][’, and a list of consumable predicates that can
fielddecls. F =:= f:T be used only once), and an effect describing whether or
methods M == Tm(Txz): MS=e not we are known statically to be within an atomic block,
terms t n= =z]o £, the expressiom being executed within receiver clags
| true|false |t or i has typel’ and produces a new permissifi This permis-
. | tiandts|nott sion may contain existentially bound variables. Note tbat f
expressions e == t[tf|fi=t clarity of presentation the receiver class annotationfiofé
I Iilz?tc;(t)g io'm(t) unless it is needed in a typing rule.
| let w 1: 621 in e The existential type of an expression s somewhat unusual
| spawn (to.m(F)) | atomic e and _therefore des_erve_s furt_her mention. '_rhe reason a per-
| unpack(k,S) ine mission can contain existentially bound variables is beeau
| pack to(S)ine while normally a permission is associated with a reference,
values v = o|true]|false there are times when our system tracks the permissions of an
references r = x|o]o.f object to which no reference points. For instance, after the
types T u= C|bool first subexpression of a let binding is evaluated, the régult
permissions  p = k(r,S) | unpacked(k,S) of a class type) is an object, and before it is bound to a vari-
states 5 n= s |7 able, the available permission to this object must be trhcke
facts ¢ u= t=true|t=false Similarly, after a field has been reassigned, the permission
predicates P plg| PAQP| PP

1/0|T

to the object to which it previously referred still existsdan
can be reassigned to another reference. In rulesB+an,

method specs MS P—-F . L - .
exprtypes E = 3z:T.P one can see this process occurring in 'Fhe resultl_ng permis-
stateinv. N = s—=P sion[f;/x] P, where the field to which object is assignégd,
initial state I == initially (s) is being substituted in for the bound variableThus, giv-
k == full| pure | share ing expressions existential types allows us to keep consis-
| immutable | unique tent object permissions and the references that point &etho
atomic & = wt|ot|emp objects.
validcontexts  I' == - [T,2:7 | Iq The last six rules, beginning with P-#tH, describe gen-
linear contexts A u= - | AP eral well-formedness rules, rather than the expressidndyp
) . judgment.
classes ' fields f variables z,y,z We use a decidable fragment of linear logic, the multi-
objects o methods m states s

Figure 9. Language and Permission syntax.

plicative additive fragment (MALL), as our language of be-
havioral specification (Lincoln and Scedrov 1994). Through
out the typing rules, we will use the standard linear logic
proof judgment['; A - P, extensively. This judgment can

Our formal language builds heavily upon two existing pe read as, “in the context of some typing information and a

systems in the literature. We will point out the major dif- |ist of consumable resources, the predicatean be proven
ferences. Our system of access permissions reuses many afue.” The syntax for the permissions themselves are also
the pieces developed by Bierhoff and Aldrich (2007), but given in Figure 9.

leave out some of the more advanced features, like state di- The declarative nature of the linear |ogic judgment can
mensions and sub-typing in order to focus on concurrency. make for typing rules that appear to come up with permis-
Our implementation does inherit these features. Our formal sjons from almost no information. See, for example, the

ization is influenced by Boyland (2003) and Zhao's (2007) T; A +. P premise of the P-ERM rule. Similarly, several
work on fractional permissions but we give fractions a dif-



typing rules divide the linear contextin a seemingly agrigr
manner, written asA, A’). In reality, the linear logic judg-
ment works more like a constraint solver. In a typing deriva-
tion, different rules restrict the permissions or the cente
in various ways, and it is the job of the implementation to
find a rearrangement of permissions that satisfies all oéthes
constraints. The same judgment is also allowed to split per-
mission types (Figure 3), and can therefore legally try even
more possible rearrangements.

The most important new additions to the type system are
the judgments shown in Figure 10. Rather than dispatch di-
rectly to the linear logic proof-judgment, the typing rules
first dispatch to the “atomic-aware” version of this judgmen
I'; A F¢ P, which is distinguished by th& subscript. It is
the job of this judgment to ensure that predicates that must
be proven do not depend on permissionstafre or pure
type being in a known abstract state, unless it is known stat-
ically to be within an atomic block. In order to maintain this
invariant, it is occasionally necessary to actively “farghe
state of an object pointed to byshare or pure permission.
The forget judgment, whose action is also predicated upon
£, accomplishes this deliberate loss of information. For ex-
ample, in the typing rule for a method call, PxQ (Fig-
ure 11), we sometimes must forget state information for po-
tentially thread-shared permissions in the post-conulitib
a method’s contract. It is acceptable for a method’s post-
condition to includeshare and pure permissions since that
method could be called within an atomic block, but if that is
not the case, these permissions must not be relied upon.

The typing rules themselves are given in Figure 11. Here
we discuss each rule in turn.

e P-Atomic: The rule for typing atomic blocks types the
sub-expression under thet effect, since it is trivially
known that this expression must be inside an atomic
block. Because the atomic block itself may or may not
be used inside of another atomic block (nesting atomic
blocks is legal) we must use therget judgment on the
resulting permission.

e P-LET: In order to prove that a let expression is well-
typed, we rely ore; being well-typed. Like the standard
let rule, we then types assumingr hase;’s type. The
somewhat unusual premise A’, P ¢ P’ does not ac-
tively forget state information, which is done in other
rules, rather it reestablishes for the purposes of the sound
ness proof that we do not know anything we should not
about the state gfure andshare permissions.

e P-CaLL: This rule describes method calls. We retain the
original restriction of Bierhoff and Aldrich’s system that
the receiver object must be in a packed state by noting
that we could always pack to some intermediate state
in the event of recursive calls. Since the post-condition
could potentially contain state information about shared
objects, we again use tii@get, judgment. The notation

E #£wt forget(P) =P’
forget(P) = P’

forget,.(P) = P

k = immutable|unique|full
forget(k(r, S)) = k(r, S)

k = pure|share
forget(k(r,S)) = k(r,?)

forget(P1) = P{ forget(P,) = P; op= ®|®
forget(P1 op P») = P| op P,

P=q1l0]T TI;AFRP
forget(P) =P T;Abw P

E=otlemp IAFP
(k(r,S) € A) D (S =7?) wherek = pure|share
;AR P

k(r,s) ¢ P k(r,s) ¢ A
k(r,s) ¢ A, P

(k #K|r#1'|s #5)

k(r,s) ¢ -
(k # Kl # 1)

k(r,s) ¢ K'(r',?) k(r,?) ¢ K'(+',S)  k(r,s) ¢ K'(r',s")

k(r,s) ¢ Pr k(r,s) ¢ P>
k(r,s) ¢ P1 op P2

op=0Q|® P =q|1|0|T
k(r,s) ¢ P

Figure 10. Forgetting and atomic-aware linear judgment

[t/z] P signifies capture-avoiding substitution and is used
throughout. It means, “replace with ¢ in P, alpha-
converting if necessary.”

e P-SPAWN: In our language thread spawns are very sim-
ilar to method calls. We require that threads be spawned
at the outermost program expression, enforced by requir-
ing theot effect. This restriction can be relaxed by using
one of the more permissive languages proposed by Moore
and Grossman (2008). In some ways this rule is the most
interesting because it formalizes our notion of aliased ob-
jects as an approximation of thread-shared objects. This
rule returns no permissions to the calling context (sig-
nified by thel permission). Unlike synchronous method
calls that can temporarily “borrow” an unshared writing
permission and then return it to the calling context, this
restriction requires the calling context to either give up
its own writing permission permanently, or use permis-
sion splitting rules to create two shared permissions, one
for the caller and one for the new thread.

e P-UNPACK-WT: The unpack expression is broken into

two rules. As discussed in Section 2, our system requires
thatshare, pure andfull permissions be unpacked within
an atomic block. Therefore, if the unpack expression is
type-checked under thet effect,k is allowed to be a per-
mission of any type. This is in contrast to the RHACK

rule which require& = immutable|unique. First off, in



I;A;wtke:3x: TP A EReq; 3 : TP

forgetg (P) = P’ A Pg PP (T,z:T); Pk ex: E
P-ATOMIC P-LET
;A€ F atomic () : 3z : TP’ [ (AA);EFletx =erines : E

Fkt,:Co THE:T T5Akg [to/thig|[t/z]P
mtype(m, Co) = Vx : T.P —o Jresult: T.P, unpacked(k’,S") ¢ A
forgetg (Pr) = P

— — P-CaLL
;A E & to.m(%) : Jresult: T.[t, /this][t/z] P
Thto:Co THE:T T;AbFe [to/thig[t/z]|P
mtype(m,Co) =Vz : T.P — E unpacked(k’,S") ¢ A
P-SPAWN

I; A; ot + spawn (to.m(%)) : 3_: bool.1

;ARG k(this, S)  unpacked(k', S") ¢ (A, A)
I'; (A, inve(S, k), unpacked(k, S));wt ¢ e : E

I'; (A, A'); wt - unpack(k, S) ine: E

P-UNPACK-WT

E #wt k = immutable|unique
;A FE K(this,S) unpacked(k’,S') ¢ (A, A)
I'; (A',inve(S, k), unpacked(k, S)); EFC e E

I; (A, A); € +C unpack(k, S) ine : E
;A kg inve (S, k) ® unpacked(k, S”)

T; (A, k(this, S"));E;FC e : B forgetg (k(this, S)) = k(this, S")
readonly(k) impliesS’ =S no fields inA’

P-UNPACK

— . P-Pack
I (A,A");EFY pack to Sine: E
A ERE: 3z TP T A FE [fi/2' )P ®@p
localFields(C) = f: T p = unpacked(k,s) writes(k)
- o - - P-ASSIGN
Ly (AAY)ERY fi=t:32 TP Q[fi/z]P®p
IHT:T init(C)=(3f:T.P,s) T[;Atel[t/f|P PHt:T T;AbleP
- ; P-NEw P-TERM
I;A; € Fnew C() : 3z : C.unique(z, s) DA E Rt 3 Tz /t]P
(I, t =true); A;EF Iz : TPy
Pkt:bool (I',t=false);A;EFJz:T.Ps localFields(C) = f: T T;Abke P bR
- -HELD
;A EF if(ter,e0): Tz : T.PL & P P-IF ;A9 fi: 3a: Tifx/ ;)P
(z: T, this: C); P;emp - e: F'
(z:T,this : C); P;wt FC e :dresult: T..P, ® T E = Jresult: T,..P,
E = forget,,,(E')
— . P-METH
T-m(Tx): P—o E=ecokinC
CLok - otke:E T oki M oki s unique T; € CL U {bool
S R P-ProG Fokin C'_" M_Obn c P-CLASS / " - ; { ) P-FDECL
(CL,e): E class C{ FI N M} ok f:TokinC
siunique r€ P, oreFeC
classC{...s=P...} ¢CL r(k,S) € P where k = share|pure 5 5 =7
- P-Crr E— P-SINvV
initially(s) ok in C s=PokinC

Figure 11. Typing Rules. Helper judgmentk€alFields, init, mtype, inv, andwrites) defined in Figure 12.

order to unpack an object we must prove that the receiver  for stateS may not hold. Then, the sub-expression can be
object is in the state that we claim. This is done using the  typed with information about the object’s fields implied
linear proof judgment’; A k. k(this, S). Since we di- by the state invariantpv (S, k). This judgment, shown
vided the linear context into two, this will also prevent the in Figure 12, has two roles. It will look up that state in-
sub-expression from relying on this fact, as the invariant ~ variant predicate for statg from the class definition, and



it will also “down-grade” writing permissions if neces-
sary. Down-grading is necessary when a read-only per-
mission (mmutable or pure) is being unpacked. During N
this process, we temporarily change writing permissions
on that object’s fields to read-only permissions. This is
performed by thelg predicate, also seen in Figure 12.
The sub-expression is also givenpacked(k, S), which
signifies that the receiver is temporarily unpacked.

P-UNPACK: This rule is similar to P-biPACK-WT, but N
occurs when not inside a transaction. We are limited to
unpackingunique andimmutable permissions.

P-Pck: In order to pack, we treat the linear contextas if
it has been split in two. With the first park, we must be
able to prove all of the invariants of the stefieof class

C to which the programmer wants to pack. These invari-
ant permissions are retrieved with thw function. In

our small calculus, only the object receiver of a method
call can be packed and unpacked, so there is no need to
specify which object is to be packed. We must also be
able to show that the receiver has already been unpacked
by producing theinpacked predicate. Then, we combine
the remainder of the linear context/, and the informa-

tion thatthis has been packed to stat€ to prove that

the subexpressionhas typeFE. S” is S passed through

the forget function. If k, the permission with which the
reference was unpacked, is a read-only permission, then
the state from which the object was unpack&€dmust
matchsS: A read-only permission should not be used to
change the abstract state of an object. Finally, the require
ment that there are no fields &' ensures that fields can
only be read when their object is unpacked.

P-AssiGN When we assign a value to a field, the only
sort of effect allowed in the calculus, we must first prove
that the value has some permission and that it is the same
type as théth field of classC' to which we are assigning.
The next premise says that we can prove the field cur-
rently has some permission and that the receiver is un- e
packed. The unpacked permission must be a modifying
permission. The resulting permission of the entire expres-
sion is the permission to the field's old value, suitable for
assignment to another field, as well as permission to the
field’s new value and the unpack predicate.

P-NEw: In order to instantiate a new object, we must e
be able to prove the state invariant for the initial state of
that object. This is done by looking up the state invariant
P for the initial state, and proving it when treating the
permissions to the constructor arguments as fields of the
object. These permissions are consumed, and the result is
a unique permission to the object in the initial state.

P-TerM: Individual terms are given a permission and a
type by type-checking the term, proving some permission
P from the linear context and then pulling the term itself

out of the permission, resulting in an existentially bound
one.

P-IF: The conditional expression binds a boolean term
in both the branch expressions. Each branch is type-
checked with the knowledge that the term is either true or
false. The resulting permission for the entire expression
is a disjunction, since the permission from either branch
could be produced.

P-HELD: A field read proves some permissidhwhich
contains permissions faof; and existentially binds it so
that it can be assigned to another reference.

P-MEeTH: Method bodies are actually type-checked twice.
Because we do not know statically whether or not a
method will be executing within a transaction, we type-
check method once with themp effect, which estab-
lishes that the method is legal outside of a transaction.
Then the method is type-checked a second time with the
wt effect in order to verify that it meets its specification.
This behavior is essential to typing examples such as the
trySendMsg method in Figure 1, where state informa-
tion aboutshare or pure references is used in subsequent
lines of code. It is the responsibility of the PAQ_ rule,

to not allow these sorts of methods to be called, nor their
post-conditions to be relied upon, outside of transactions
Note also that the post-condition that is actually proved
is P. ® T. The linear logic we use does not allow for
unused linear resources. Therefore, if there are extra per-
missions created during the course of the method body,
those permissions can legally be ignored by using them
to proveT.

P-ProG: A program type-checks if all of its classes are
well-formed and the single, top-level expression type-
checks outside of a transaction.

P-CLAss: A class declaration is well-formed if its parts
are well-formed.

P-FDecL: The well-formedness rule for field declara-
tions is somewhat informal, as are the remaining well-
formedness rules. This rule states that a field declaration
is well-formed if its name is unique inside the current
class, and if it type is either a boolean or one of the de-
clared class types.

P-CrR: A declaration of the initial state is well-formed if
the state it mentions is actually one defined in the current
class.

P-SINV: A state invariant declaration is well-formed if
three conditions hold. The state hame must be unique
within the current class. Any references mentioned in ac-
cess permissions insideé must be fields of the current
class. Finally, invariants describirfjare and pure per-
missions to fields cannot mention specific state informa-
tion.



classC{...s=P...} € CL invg(s)=P dg(Pk)=P
inve(s) = P inve(s, k) = P’ inva(?,k) =1
dg(Pr,k) = P] dg(Ps,k) =P, op=0a|® dg'(k, k') = k"
dg(Pl opPQak):P]f OPPQ/ dg(k(’l’,S),k/):k”(’l’,S)

k' # purelimmutable k& = uniquelfulllimmutable %’ = pure|immutable
dg'(k, k') =k dg'(k, k') = immutable

k = share|pure k' = pure[immutable classC{...F...} € CL
dg'(k, k') = pure localFields(C) = F

classC{...M...} e CL T.m(Tz):P — Jresult: T,.P' € M
mtype(m,C) =Vz : T.P — Jresult: T,.. P’

class C{...initially(s)...} invo(s)=P
init(C) = (3f : T.P, s)

writes(unique)  writes(full) writes(share) readonly(pure) readonly(immutable)

Figure 12. Helper judgments. Note that thig’ function is a helper function faig that operates directly on permission kinds.

Dynamic semantics for our language are given in the ac- The most important part of maintaining a well-typed thread
companying technical report (Beckman and Aldrich 2008). pool is maintaining a well-typed heap and per-thread stacks
These rules are extremely similar to those of Weak lan- This well-typedness restricts how many threads can know
guage (Moore and Grossman 2008). They differ primarily in the definite state of objects in the system. For instance, in a
that there are additional technical requirements for the fir well-typed thread pool, at most one thread can have definite
ing of rules, necessary for our proof of soundness. While the knowledge about the state ofshare or pure object at any
formal operational semantics of this language must agtivel given time. Since we must reestablish well-typedness after
maintain information regarding the states and permisgiféns each step, we know that this invariant holds.
each object, the language itself does not actually charge th  Because well-typed threads can always step, it is never
run-time behavior of a Java-like language with weak atomic- the case that the running system arrives at a evaluation step
ity, and requires none of our typing information to be présen where an object should be in one state but instead is in

at run-time. another.
In the technical report, we prove that this core language
is sound. Informally soundness means the following: 4. Implementation and Examples

We have begun investigating the applicability of our ap-
proach by annotating several real and realistic prograrms an
verifying them with a prototype checker. In this section we

evaluated threads, or can 'Fake an evaluation step. Thereoriefly describe the checker as well as the examples that we
are two sub-cases for individual threads: have verified thus far

1. Well-typed thread pools either consist exclusively of

(a) No single thread in the thread pool is executing inside
of an atomic region, and therefore any arbitrary thread 4-1 Prototype Checker
in the thread pool must be able to take a step. We have extended a static typestate checker (Bierhoff and

(b) Exactly one thread in the thread pool is executing Aldrich 2008) to check the rgles descriped in this paper in
inside of an atomic region, and therefore that thread Java language programs. This checker is a modular, branch-
must be able to take a step. sensitive data-flow analysis that uses specialized Java ann

tations as behavioral and access specifications. For erampl

thedisconnect method of the Connection class from Fig-
ure 2 is annotated with the following specification:

2. Any thread pool that is well-typed and can take an evalu-
ation step must step to a well-typed thread pool. The bur-
den of proof for this fact is delegated to individual threads
which must in turn step to a well-typed expression. @Share (requires="CONNECTED", ensures="IDLE")



This indicates the method requirestare permission to
the receiver which must be in the connected state, and will
return that same permission but with the receiver in the idle
state. Similar annotations exist for state invariants.aBise
of our desire to use existing, Java-based tools, we usesJava’
labeled statement with the label value “atomic” to delieeat
atomic blocks, as follows:

atomic: { /* code that will
execute atomically */ }

This legal Java code allows us to get around our inabil-
ity to annotate arbitrary blocks using Java’s annotatiaii-fa

original developers provided a finite state machine (FSM)
based specification in the source-code comments:

The FSM for a channel is roughly as follows: a channel is
created (unconnected). The channel is connected to a group
(connected). Messages can now be sent and received. The
channel is disconnected from the group (unconnected). The
channel could now be connected to a different group again.
The channelis closed (closed).

Therefore formally specifying and statically checking
that this class is used in accordance with its informal speci
fication seemed appropriate. After specifying this class, w
ran our analysis on the CausalDemo class. This demo, pro-

ity. We have modified AtomJava (Hindman and Grossman vided with JGroups, creates multiple threads, one of which

2006), a tool which provides atomicity via source-to-seurc
translation, to use labeled statements as atomic blockeso t
our examples can be run.

While the formal language presented in this paper re-
quires the programmer to explicitly pack and unpack the
receiver, our checker does not. Before method calls and
method returns, the checker automatically attempts to pack

the receiver to some reasonable state. If one state does noiI

permit permission constraints to be satisfied, other states
tried until a good one can be found or no more states are
available. Unpacking is also done automatically beforefiel
reads and writes.

Our checker does allow some of the more advanced fea-
tures of the Bierhoff and Aldrich (2007) system that were not
discussed in this work. For instance, it supports fractiona
permissions which allow multiplehare permissions to be
joined together to reconstructuiaique one. It also allows a
developer to create more complex state hierarchies.

As this time our checker does not recognize full linear
logic specifications, and accepts only a limited sub-set, al
though enough to specify all of the examples in this paper.
Finally, reading from or writing to static fields requiresmp
within an atomic block, since in general, even if a statiaffiel
is the only field to point to a particular object many threads
can access it simultaneously.

4.2 \ferified Examples

In addition to a corrected version of the running example
from Figures 4 and 5, we have used our implementation to
verify several other examplés

JGroups Application In this example, we annotated the

JChannel class of the JGroups open source library and veri-

fied that a demo application was using it correctly. JGréups
is an open-source library for use by developers of multi-
cast network applications. The JChannel class is a threa

is responsible for closing the channel. This client was suc-
cessfully verified.

Reservation Manager Reservation Manager is a multi-
threaded application of our own design. It is meant to be
similar in architecture to a vacation reservation system. |

it, various threads acting on behalf of clients attempt to re
erve bus or plane tickets. This application requires tlien
threads to atomically check for seat availability and make a
reservation. This application has some interesting oliject
variants. For example, once an bus itinerary has been issued
to a passenger, he can upgrade to a plane flight, as long as
the demand for bus tickets is high enough. Once an itinerary
has been issued, it must at all times represent either a valid
bus or plane trip. At the same time, a daemon thread will oc-
casionally send a (simulated) email describing an itinerar
to each itinerary holder, therefore it is important that any
upgrades happen atomically. We have successfully verified
this entire application.

Request Processor Request Processor is another multi-
threaded application of our own design, partially shown in
Figure 13. This program is meant to be similar in spirit to a
server application where processes are received and farmed
off to other threads for handling. Upon initialization, tRe-
guestProcessor creates a request pipe object which acts as
an intermediary between the request processor, which re-
ceives the requests, and the request handlers which handle
them. This program is notable because each side of the pro-
ducer/consumer architecture has a different permission to
the shared object. The RequestProcessor Hall permis-
sion while the handlers themselves have gnlye permis-
sions.

In the future we hope to improve the quality of our
checker, and verify larger and more realistic examples. Our

d_experiences with these smaller examples, however, lead us

safe channel abstraction that allows a host to connect anoIO believe that this is a feasible goal.

send messages to a group of other hosts. This particular clas

seemed to be a good candidate for specification because it?-

2Full source for all of the examples in this paper can be foundsar . cs .
cmu. edu/~“nbeckman/research/atomicver/.

3www.jgroups.org

Related Work
5.1 Verifying Behavior of Concurrent Programs.

The work that most closely resembles our own was devel-
oped as part of the SpédProject. Jacobs et al. (2005) have



class RequestProcessor {

}

states IDLE, RUNNING;

IDLE := full(requestPipe, closed)
RUNNING := full(requestPipe, opened)

RequestPipe requestPipe = new RequestPipe();

void start() :
unique(this, IDLE) —o unique(this, RUNNING)
{
this.requestPipe.open();
// Handler(zp) : pure(rp,?) —1
(new Thread(new
Handler (this.requestPipe))) .start();
(new Thread(new
Handler (this.requestPipe))).start();
return;

}

void send(String str) :

unique(this, RUNNING) ® immutable(str, default) —

unique(this, RUNNING)
{
this.requestPipe.send(str);
return;

}

void stop() :

unique(this, RUNNING) —o unique(this, IDLE)
{

this.requestPipe.close();

return;

}

Their system also is restrictive in the types of objects
that can be mentioned in object invariants. Once an object
becomes thread-shared, a process which must be signified
by the “share” annotation, it can no longer be mentioned in
another object’s invariant. Therefore, examples like the o
shown in Figure 13 where the invariant of the RequestPro-
cessor class depends on the thread-shared RequestPipe ob-
ject, cannot be verified.

Finally, our system uses atomic blocks while the Ja-
cobs approach is based on locks. While this may seem like
a minor detail, it actually provides our system with nice
benefits. In their approach, in order to determine whether
it is the responsibility of the client or provider to en-
sure proper synchronization, there is a notionctiént-
side lockingversusprovider-side locking Methods using
client-side locking can provide more information-laden
post-conditions, while provider-side locking methods-can
not. Because atomic blocks are a composable primitive, it is
sufficientin our system to create one method with a full post-
condition. This method can then be type-checked correctly
in atomic and non-atomic contexts.

Some related work has also been done within the con-
text of the JML project (Rodriguez et al. 2005). This work
is mainly focused on introducing new specifications useful
for those who would like to verify lock-based, concurrent
object-oriented programs. Some of the specifications can be
automatically verified, however due to the fact that this ver
ification is done with a model-checker, verification failed t
terminate on about half of their examples.

There are a number of popular logics for concurrency,
which can be used to prove important properties of con-
current programs. These logics include the logic of Owicki
and Gries (1976), Concurrent Separation Logic (O’Hearn
2007), and Rely-Guarantee Logic (Jones 1983). All three

Figure 13. RequestProcessor, an example of a server-like allow you to specify invariants over thread-shared, m@tabl
program where class invariants depend on thread-shared obdata in simple imperative languages. Owicki-Gries and Con-
jects.

current Separation Logic are similar, differing in the eegar
sive power of the logics they each use. In these systems, one
associates both a lock and an invariant with a piece of taread

also created a system that will preserve object invariants shared data. Upon entering a critical section, the invésian
even in the face of concurrency. Moreover, our system usesover thread-shared data are revealed. These invariantecan
a very similar unpacking methodology which comes from ysed to prove other propositions, but must be reestablished
a shared heritage in research methodology (Barnett et al.pefore the end of the critical section. This characteristic
2004). Nonetheless, we believe our work to be different in quite similar to unpacking of state invariants in our system
several importantways. First, they use ownership astineiru - which, for references ofull, share, and pure permission,
derlying means of alias-control, which imposes some hierar must be performed inside of an atomic block. Concurrent

chical restrictions on the architecture of an application.

Separation Logic furthermore allows one to reason modu-

the other hand, their system allows more expressive specifi-|arly about heap memory that cannot be thread-shared, and
cations, as behaviors can be specified in first-order prelica  does so in a manner that is similar to euique permission.

logic, rather than typestate. While we believe our approach Qverall it lacks the flexibility of our permissions, which al
would neatly accommodate more expressive specificationsjow a larger variety of thread-sharing patterns.

which we plan to investigate as part of future work, typestat
provides a simple abstraction of object state and of effatts

In the Rely-Guarantee approach, a thread must specify
invariants which describe how it will not interfere with par

that object. This system does have a proof of soundness butjcular conditions required by other threads. Simultarsgpu

provides neither formal typing rules nor a formal semantics



a thread must specify the non-interference conditions that Grossman 2003; Pratikakis et al. 2006; Engler and Ashcraft
it requires of other threads. When a program is correct, the 2003) as well, each making trade-offs in the number of false-
rely and guarantee specifications of each thread weave to-positives and the complexity of annotations required.
gether to form a global proof of correctness. However, the  The fundamental difference between each of these race
Rely-Guarantee approach suffers because system specificadetection approaches and our approach is the presence or
tions must be written in a global manner. A thread states not absence of behavioral specifications. None of the other ap-
only its pre and post conditions, but also which invariarfits 0 proaches require behavioral specifications, and theretore
other threads it promises to not invalidate. These invésian check only an implicit specification; that the program skloul
could have nothing to do with the memory that it modifies. contain no data races. In our system, typestate specificatio
All three logics are pen and paper-based techniques and aravhich describe the intended program behavior, allows us to
not, as described in these works, automated analyses. prevent more semantically meaningful race conditions.
Calvin-R (Freund and Qadeer 2003) is an automation of ~ Atomicity checkers (Flanagan and Qadeer 2003; Sas-
the Rely-Guarantee concept, where the rely and guarantedurkar et al. 2005; Hicks et al. 2006) help programmers
predicate for every thread is a conjunctionamicess pred-  achieve atomicity using locks, but can only ensure the atom-
icates describing which locks must be held when access- icity that the programmer deems necessary. Given a specifi-
ing shared variables. Calvin-R uses this information, @lon cation of a piece of code that must execute as if atomic and
with the Lipton (1975) theory of reduction, to prove method specifications relating locks to the memory that they pitotec
behavioral specifications. Calvin-R must assume that everyan atomicity checker will tell the programmer whether or not
method could be called concurrently, and therefore vagmbl locks are used correctly, according to the theory of reduc-
must always be accessed in accordance with their accession (Lipton 1975). Once again, because atomicity checkers
predicate. Whereas in our systemuque permission to do not require behavioral specifications, they do not tell th
the receiver of a method call says that the object cannot program which sections of code must execute atomically in
be thread-shared for the duration of that call, and theeefor order to ensure program correctness.
fields do not require protected access. Also, this work does
not mention the effect that aliasing might have on the valid- 6. Future Work

ity of access predicates, but presumably something must be
done to ensure soundness. We are currently pursuing a number of future courses of re-

In recent work, Vaziri et al. (2006) have proposed a sys- search. While our work is an attempt to advance the work of
tem to help programmers preserve the consistency of objectsBierhoff and Aldrich (2007) to the world of concurrent soft-
with a feature calle@tomic setsln this approach, program- ~ ware, we first wanted to study the problems of concurrency
mers specify that certain fields of an object are related, andin relative isolation. Therefore, we have not included many
must be modified atomically. An interprocedural static anal ©Of the more advanced features of that system into the work
ysis then infers code locations where synchronization-is re presented here. These features, like fractional pernmissio
quired. While a promising approach, it does not allow veri- and support for sub-typing and inheritance, would make our
fication of functional properties of code, such as the carrec System even more expressive, and we plan to reintroduce

usage of object protocols. them into our system. We believe these features are orthog-
Finally, Harris and Jones (2006) introduce a mechanism onal and can be added without difficulty.
for STM Haskell that ensures a data invariants will not be vi- ~ Additionally, we are attempting to determine what sorts

olated during a given execution of a program. However, this Of access permissions might be more useful in a thread-
is a dynamic technique that cannot guarantee conformanceshared context. At the moment, permissions that are thread-

for all executions. shared, and permissions that are merely aliased locally are
. not distinguishable, and we would like to tease them apart.
5.2 Race Detection. For instance, we would like to have a thread-local version of
There has been much work in the automated prevention oftheshare permission that would not require synchronization.
data races. We have also begun developing an implementation of

Dynamic race detectors (Savage et al. 1997; Yu et al. software transactional memory that uses these same permis-
2005) check for unordered reads and writes to the same lo-sion annotations as a means of improving run-time perfor-
cation in memory at execution time by instrumenting pro- mance by eliminating unnecessary synchronization and log-
gram code. Model-checking approaches have also been exging. While the implementation is complete, we have only
plored (Henzinger et al. 2004; Stoller 2000). These work by performed preliminary experiments and have not yet estab-
abstractly exploring possible thread interleavings ireotd lished the efficacy of our technique.
find ones in which there is no ordering on a read and write  Finally, we would like to see a greater usage of TM for
to the same memory location. There have also been a numthe purposes of static verification. Currently, most ergsti
ber of static analyses and type systems for data race prevenflow analyses and verification tools are unsound in the face
tion (Boyapati et al. 2002; Greenhouse and Scherlis 2002; of concurrency, and those that are not impose a great an-
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