
Bayesian Detection of Router
Configuration Anomalies

Khalid El-Arini and Kevin Killourhy
August 26, 2005

Motivation

• On January 23, 2001, Microsoft’s websites
went down for nearly 23 hours.

• Why?

Motivation

• On January 23, 2001, Microsoft’s websites
went down for nearly 23 hours.

• Why?
– "We screwed up. [Tuesday] night at around

6:30 p.m. Pacific time we made a
configuration change to the routers on the
DNS network," spokesman Adam Sohn said
Wednesday evening.

Introduction

• Problem and Approach
– Router misconfigurations can be costly, and existing

tools can only detect certain types.
– Under a Bayesian framework, router

misconfigurations will appear as statistical anomalies.
• Methodology

– Adapted three machine learning techniques for
configuration file anomaly detection

• Results and Analysis
• Discussion
• Conclusion

Prior Work

• Feldmann and Rexford (2001) build a
pattern matching tool to find known
misconfigurations.

• Feamster and Balakrishnan (2005) build a
tool to compare BGP configurations to a
specification.

• Caldwell et al. (2003) define the problem,
and suggest a rule learner approach.

Prior Work

• Feldmann and Rexford (2001) build a
pattern matching tool to find known
misconfigurations.

• Feamster and Balakrishnan (2005) build a
tool to compare BGP configurations to a
specification.

• Caldwell et al. (2003) define the problem,
and suggest a rule learner approach.

• We aim to detect misconfigurations
without prior knowledge of their form.

Methodology

• Obtain router configuration files
• Parse files
• Train and test three anomaly detection

algorithms:
– Naïve Bayes
– Joint Bayes
– Structured Bayes

• Evaluate performance

Router Data

• We obtained 24 (sanitized) configuration
files from CMU computing services

• Cisco IOS format
• Modified extensively over the years, and

thus diverged from common source
• Misconfigurations expected

Parsing

• IOS files are highly unstructured
• List of commands, many with multiple attributes

logging facility local5
logging 128.2.4.8
access-list 2 deny 10.0.0.0 0.255.255.255
access-list 2 deny 127.0.0.0 0.255.255.255
access-list 2 deny 172.16.0.0 0.15.255.255
access-list 2 deny 192.168.0.0 0.0.255.255
access-list 2 deny 169.254.0.0 0.0.255.255
access-list 2 permit any
access-list 2 deny any

• Extract command name and list of arguments

Naïve Bayes
• We make some simplifying assumptions:

– Each line of configuration file is independent of every
other line

– For a given command, each attribute is independent of
every other attribute

• We want to estimate the probability of seeing a
specific instance of a command (i.e. a single line in
the configuration file)
line = [cmd, (attr1=a1, attr2=a2, …, attrN=aN)]
P(line | cmd)

= P(attr1=a1, attr2=a2, …, attrN=aN | cmd)
= P(attr1=a1 | cmd) P(attr2=a2 | cmd) … P(attrN=aN | cmd)

Naïve Bayes

• How do we compute these probabilities?
– Estimate from router data
– For each command:

P(attri = ai | cmd) = # of instances of ai

instances of cmd
• What is an anomaly?

– Probability significantly below its expected
value

– P(line | cmd) < a · E[P(line | cmd)]
• Where a is an empirically determined multiplier

Joint Bayes

• Assumptions:
– Each line of configuration file is independent

of every other line
– No longer assume that attributes are

independent of each other

• Now,
P(line | cmd)

= P(attr1=a1, attr2=a2, …, attrN=aN | cmd)

Joint Bayes

• How do we compute these probabilities?
– For each command:

P(line | cmd) = # of instances of (a1 a2,…,aN)
instances of cmd

• What is an anomaly?
– Consider two situations (where cmd1 and

cmd2 are commands that take a single
argument):

• “cmd1 x1” appears once, “cmd1 x2” appears 23
times

• “cmd2 yi” appears once for 1 = i = 24

Joint Bayes

• cmd1 x1 and cmd2 y1 both have the same
probability of occurring (1/24)
– cmd1 x1 seems anomalous, but cmd2 y1 does not
– How do we differentiate between these scenarios?

• Entropy is a measure of how unpredictable a
distribution is
– In this case, cmd1 has low entropy while cmd2 has

high entropy
– A threshold weighted by entropy will differentiate

between these cases
– line is anomalous if P(line | cmd) < a · [H(cmd)]-1

Structured Bayes

• Assumptions:
– Each line of configuration file is independent of every

other line
– Groups of attributes are mutually dependent, while

others are independent

• We manually selected attributes which appear to
be mutually dependent (e.g. ip address and
subnet), and joined them as one attribute

• We then proceeded as in the Naïve Bayes case
to compute probabilities, but used the entropy-
based threshold from Joint Bayes

Evaluate Performance

• From literature, we identified three critical
types of misconfigurations:
– Lone commands
– Suppressed commands
– Dangling commands

• We built tools to automatically find
instances in CMU data

• We determine how many other commands
someone has to look through in order to
find each misconfiguration as an anomaly

Evaluate Performance

• Lone commands
1. ip ospf authentication null (pod-b-cyh)
2. exec-timeout 0 0 (rtrbone)
3. version 12.2 (rtrbone)

• Suppressed commands
1. access-list 2 permit any

access-list 2 deny any (campus)
2. access-list 2 permit any

access-list 2 deny any (rtrbone)

• Dangling commands
1. ip access-group 198 (pod-c-cyh)
2. ip access-group 133 (core255)

Evaluate Performance

• Each detector was trained and tested on all 24
CMU router files
– Training involves modeling probability distribution of

each command
– Testing involves classifying individual commands as

anomalies using these probabilities

• We compute the minimum value for a necessary
to classify each command as anomalous

• For each misconfiguration and each detector,
we determine how many commands have to be
classified as anomalous in order to detect it
(those with a lower minimum a value)

Results

4734

5591

2539

2539

0

0

2539

Joint Bayes

5700

5845

1955

1955

2608

2608

4498

Structured
Bayes

5065Dang 2

5543Dang 1

3414Supp 2

3414Supp 1

2511Lone 3

2511Lone 2

3661Lone 1

Naïve Bayes# commands detected
with anomaly

Total: 11,125 commands

Results

Results

Results

Analysis

• Joint Bayes is able to detect lone
commands better than other two methods

• Structured Bayes has the interesting
quality that it finds suppressed command
anomalies earlier than the other detectors

• Dangling commands are hardest to find

Discussion

• Joint Bayes is the only method able to detect
misconfigurations without a flood of other
commands also being detected (specifically the
type of anomaly Caldwell et al. mention in their
paper)

• Relaxing the independence assumption among
commands is likely to produce better results
– With local context, we can do a better job detecting

suppressed command anomalies
– With global context, we can better detect dangling

references

Conclusion

• With some success we were able to detect
misconfigurations as statistical anomalies

