Bayesian Detection of Router Configuration Anomalies

Khalid El-Arini and Kevin Killourhy August 26, 2005

Motivation

- On January 23, 2001, Microsoft's websites went down for nearly 23 hours.
- Why?

Motivation

- On January 23, 2001, Microsoft's websites went down for nearly 23 hours.
- Why?
 - "We screwed up. [Tuesday] night at around 6:30 p.m. Pacific time we made a configuration change to the routers on the DNS network," spokesman Adam Sohn said Wednesday evening.

Introduction

- Problem and Approach
 - Router misconfigurations can be costly, and existing tools can only detect certain types.
 - Under a Bayesian framework, router misconfigurations will appear as statistical anomalies.
- Methodology
 - Adapted three machine learning techniques for configuration file anomaly detection
- Results and Analysis
- Discussion
- Conclusion

Prior Work

- Feldmann and Rexford (2001) build a pattern matching tool to find known misconfigurations.
- Feamster and Balakrishnan (2005) build a tool to compare BGP configurations to a specification.
- Caldwell et al. (2003) define the problem, and suggest a rule learner approach.

Prior Work

- Feldmann and Rexford (2001) build a pattern matching tool to find known misconfigurations.
- Feamster and Balakrishnan (2005) build a tool to compare BGP configurations to a specification.
- Caldwell et al. (2003) define the problem, and suggest a rule learner approach.
- We aim to detect misconfigurations without prior knowledge of their form.

Methodology

- Obtain router configuration files
- Parse files
- Train and test three anomaly detection algorithms:
 - Naïve Bayes
 - Joint Bayes
 - Structured Bayes
- Evaluate performance

Router Data

- We obtained 24 (sanitized) configuration files from CMU computing services
- Cisco IOS format
- Modified extensively over the years, and thus diverged from common source
- Misconfigurations expected

Parsing

- IOS files are highly unstructured
- List of commands, many with multiple attributes

```
logging facility local5
logging 128.2.4.8
access-list 2 deny 10.0.0.0 0.255.255.255
access-list 2 deny 127.0.0.0 0.255.255.255
access-list 2 deny 172.16.0.0 0.15.255.255
access-list 2 deny 192.168.0.0 0.0.255.255
access-list 2 deny 169.254.0.0 0.0.255.255
access-list 2 permit any
access-list 2 deny any
```

Extract command name and list of arguments

Naïve Bayes

- We make some simplifying assumptions:
 - Each line of configuration file is independent of every other line
 - For a given command, each attribute is independent of every other attribute
- We want to estimate the probability of seeing a specific instance of a command (i.e. a single line in the configuration file)

line = [cmd, (attr₁=a₁, attr₂=a₂, ..., attr_N=a_N)]

P(line | cmd)

- = $P(attr_1=a_1, attr_2=a_2, ..., attr_N=a_N | cmd)$
- = $P(attr_1=a_1 | cmd) P(attr_2=a_2 | cmd) \dots P(attr_N=a_N | cmd)$

Naïve Bayes

- How do we compute these probabilities?
 - Estimate from router data
 - For each command:

 $P(attr_i = a_i | cmd) = # of instances of a_i$ # instances of cmd

- What is an anomaly?
 - Probability significantly below its expected value
 - $-P(line | cmd) < a \cdot E[P(line | cmd)]$
 - Where a is an empirically determined multiplier

Joint Bayes

- Assumptions:
 - Each line of configuration file is independent of every other line
 - No longer assume that attributes are independent of each other
- Now,

P(line | cmd)

= $P(attr_1=a_1, attr_2=a_2, ..., attr_N=a_N | cmd)$

Joint Bayes

- How do we compute these probabilities?

 For each command:
 P(line | cmd) = # of instances of (a₁ a₂,...,a_N)
 # instances of cmd
- What is an anomaly?
 - Consider two situations (where cmd1 and cmd2 are commands that take a single argument):
 - "cmd1 x₁" appears once, "cmd1 x₂" appears 23 times
 - "cmd2 y_i" appears once for 1 = i = 24

Joint Bayes

- cmd1 x₁ and cmd2 y₁ both have the same probability of occurring (1/24)
 - cmd1 x₁ seems anomalous, but cmd2 y₁ does not
 - How do we differentiate between these scenarios?
- Entropy is a measure of how unpredictable a distribution is
 - In this case, cmd1 has low entropy while cmd2 has high entropy
 - A threshold weighted by entropy will differentiate between these cases
 - line is anomalous if P(line | cmd) < $a \cdot [H(cmd)]^{-1}$

Structured Bayes

- Assumptions:
 - Each line of configuration file is independent of every other line
 - Groups of attributes are mutually dependent, while others are independent
- We manually selected attributes which appear to be mutually dependent (e.g. ip address and subnet), and joined them as one attribute
- We then proceeded as in the Naïve Bayes case to compute probabilities, but used the entropybased threshold from Joint Bayes

Evaluate Performance

- From literature, we identified three critical types of misconfigurations:
 - Lone commands
 - Suppressed commands
 - Dangling commands
- We built tools to automatically find instances in CMU data
- We determine how many other commands someone has to look through in order to find each misconfiguration as an anomaly

Evaluate Performance

Lone commands

- 1. ip ospf authentication null (pod-b-cyh)
- 2. exec-timeout 0 0 (rtrbone)
- 3. version 12.2 (rtrbone)

Suppressed commands

- access-list 2 permit any access-list 2 deny any (campus)
- access-list 2 permit any access-list 2 deny any (rtrbone)
- Dangling commands
 - 1. ip access-group 198 (pod-c-cyh)
 - 2. ip access-group 133 (core255)

Evaluate Performance

- Each detector was trained and tested on all 24 CMU router files
 - Training involves modeling probability distribution of each command
 - Testing involves classifying individual commands as anomalies using these probabilities
- We compute the minimum value for a necessary to classify each command as anomalous
- For each misconfiguration and each detector, we determine how many commands have to be classified as anomalous in order to detect it (those with a lower minimum a value)

Results

# commands detected with anomaly	Naïve Bayes	Joint Bayes	Structured Bayes
Lone 1	3661	2539	4498
Lone 2	2511	0	2608
Lone 3	2511	0	2608
Supp 1	3414	2539	1955
Supp 2	3414	2539	1955
Dang 1	5543	5591	5845
Dang 2	5065	4734	5700

Total: 11,125 commands

Results

Results

Results

Analysis

- Joint Bayes is able to detect lone commands better than other two methods
- Structured Bayes has the interesting quality that it finds suppressed command anomalies earlier than the other detectors
- Dangling commands are hardest to find

Discussion

- Joint Bayes is the only method able to detect misconfigurations without a flood of other commands also being detected (specifically the type of anomaly Caldwell et al. mention in their paper)
- Relaxing the independence assumption among commands is likely to produce better results
 - With local context, we can do a better job detecting suppressed command anomalies
 - With global context, we can better detect dangling references

Conclusion

• With some success we were able to detect misconfigurations as statistical anomalies