Bayesian Detection of Router
Configuration Anomalies

Khalid El-Arini and Kevin Killourhy
August 26, 2005

Carnegie Mellon




Motivation

 On January 23, 2001, Microsoft’s websites
went down for nearly 23 hours.

e Why?




Motivation

 On January 23, 2001, Microsoft’s websites
went down for nearly 23 hours.

e Why?
— "We screwed up. [Tuesday] night at around
6:30 p.m. Pacific time we made a

configuration change to the routers on the
DNS network," spokesman Adam Sohn said

Wednesday evening.




Introduction

Problem and Approach

— Router misconfigurations can be costly, and existing
tools can only detect certain types.

— Under a Bayesian framework, router |
misconfigurations will appear as statistical anomalies.

Methodology

— Adapted three machine learning techniques for
configuration file anomaly detection

Results and Analysis
Discussion
Conclusion




Prior Work

 Feldmann and Rexford (2001) build a
pattern matching tool to find known
misconfigurations.

 Feamster and Balakrishnan (2005) build a
tool to compare BGP configurations to a
specification.

o Caldwell et al. (2003) define the problem,
and suggest a rule learner approach.




Prior Work

Feldmann and Rexford (2001) build a
pattern matching tool to find known
misconfigurations.

Feamster and Balakrishnan (2005) build a
tool to compare BGP configurations to a
specification.

Caldwell et al. (2003) define the problem,
and suggest a rule learner approach.

We aim to detect misconfigurations
without prior knowledge of their form.




Methodology

Obtain router configuration files
Parse files

Train and test three anomaly detection
algorithms:

— Nalve Bayes
— Joint Bayes
— Structured Bayes

Evaluate performance




Router Data

We obtained 24 (sanitized) configuration
files from CMU computing services

Cisco I10S format

Modified extensively over the years, and
thus diverged from common source

Misconfigurations expected




Parsing

* |OS files are highly unstructured
e List of commands, many with multiple attributes

|l ogging facility local5

| ogging 128.2.4.8

access-list 2 deny 10. 0. 0.0 0. 255. 255. 255
access-list 2 deny 127.0.0.0 0. 255. 255. 255
access-list 2 deny 172.16.0.0 0. 15. 255. 255
access-list 2 deny 192.168. 0.0 0.0. 255. 255
access-list 2 deny 169. 254. 0.0 0. 0. 255. 255
access-list 2 permt any

access-list 2 deny any

o Extract command name and list of arguments




Nalve Bayes

 We make some simplifying assumptions:

— Each line of configuration file is independent of every
other line

— For a given command, each attribute is independent of
every other attribute
 We want to estimate the probabillity of seeing a
specific instance of a command (i.e. a single line in
the configuration file)
line = [cmd, (attr,=a,, attr,=a,, ..., attry=a,)]
P(line | cmd)
= P(attr,=a,, attr,=a,, ..., attry=a, | cmd)
= P(attr,=a, | cmd) P(attr,=a, | cmd) ... P(attry,=a, | cmd)




Nalve Bayes

« How do we compute these probabilities?
— Estimate from router data
— For each command:
P(attr; = a, | cmd) = # of instances of a;
# Instances of cmd

 What is an anomaly?

— Probabillity significantly below its expected
value

— P(line | cmd) < a - E[P(line | cd)]
 Where a is an empirically determined multiplier




Joint Bayes

e Assumptions:

— Each line of configuration file is independent
of every other line

— No longer assume that attributes are
Independent of each other

 Now,
P(line | cmd)

= P(attr,=a,, attr,=a,, ..., attry=a, | cmd)




Joint Bayes

« How do we compute these probabilities?
— For each command:
P(line | cmd) = # of instances of (a, a,,...,ay)

# Instances of cmd

 What Is an anomaly?

— Consider two situations (where cmmd1 and
cmd2 are commands that take a single
argument):

 “cmd1 x,” appears once, “cmd1l x,” appears 23
times

e “‘cmd2 y,” appears once for1 = 1 =24




Joint Bayes

 cmdl x; and cmd?2 y, both have the same
probability of occurring (1/24)
— cmd1l x, seems anomalous, butcmd?2 y, does not
— How do we differentiate between these scenarios?

e Entropy Is a measure of how unpredictable a
distribution is

— In this case, cmdl has low entropy while cmd2 has
high entropy

— A threshold weighted by entropy will differentiate
between these cases

— line is anomalous if P(line | cmd) < a - [H(cmd)]?




Structured Bayes

e Assumptions:

— Each line of configuration file is independent of every
other line

— Groups of attributes are mutually dependent, while
others are independent
 We manually selected attributes which appear to
be mutually dependent (e.g. ip address and
subnet), and joined them as one attribute

 We then proceeded as in the Nalve Bayes case
to compute probabilities, but used the entropy-
based threshold from Joint Bayes




Evaluate Performance

e From literature, we identified three critical
types of misconfigurations:

— Lone commands
— Suppressed commands
— Dangling commands

« \We Dbullt tools to automatically find
Instances in CMU data

* We determine how many other commands
someone has to look through in order to
find each misconfiguration as an anomaly




Evaluate Performance

e Lone commands
1. ip ospf authentication null (pod-b-cyh)
2. exec-timeout O O (rtrbone)
3. version 12.2 (rtrbone)

e Suppressed commands
1. access-list 2 permit any
access-list 2 deny any (campus)
2. access-list 2 permit any
access-list 2 deny any (rtrbone)

 Dangling commands
1. ip access-group 198 (pod-c-cyh)
2. Ip access-group 133 (core255)




Evaluate Performance

e Each detector was trained and tested on all 24
CMU router files

— Training involves modeling probability distribution of
each command

— Testing involves classifying individual commands as
anomalies using these probabilities
 We compute the minimum value for a necessary
to classify each command as anomalous

* For each misconfiguration and each detector,
we determine how many commands have to be
classified as anomalous in order to detect it
(those with a lower minimum a value)




Results

‘ ﬁ‘;rgrrroam”ga detected Naive Bayes Joint Bayes Structured
Bayes
Lone 1 3661 2539 4498
Lone 2 2511 0 2608
Lone 3 2511 0 2608
Supp 1 3414 2539 1955
Supp 2 3414 2539 1955
Dang 1 5543 5591 5845
Dang 2 5065 4734 5700

Total: 11,125 commands




Results

Misconfigurations Detected by Naive Bayes
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Results

Misconfigurations Detected by Structured Bayes
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Analysis

« Joint Bayes Is able to detect lone
commands better than other two methods

e Structured Bayes has the interesting

qguality that it finds suppressed command
anomalies earlier than the other detectors

e Dangling commands are hardest to find




Discussion

« Joint Bayes is the only method able to detect
misconfigurations without a flood of other
commands also being detected (specifically the
type of anomaly Caldwell et al. mention in their
paper)

* Relaxing the independence assumption among
commands is likely to produce better results

— With local context, we can do a better job detecting
suppressed command anomalies

— With global context, we can better detect dangling
references




Conclusion

« With some success we were able to detect
misconfigurations as statistical anomalies




