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Abstract

In scientific research, it is often difficult to express information needs as simple keyword queries. We present
a more natural way of searching for relevant scientific literature. Rather than a string of keywords, we define a
query as a small set of papers deemed relevant to the research task at hand. By optimizing an objective function
based on a fine-grained notion of influence between documents, our approach efficiently selects a set of highly
relevant articles. Moreover, as scientists trust some authors more than others, results are personalized to individual
preferences. In a user study, researchers found the papers recommended by our method to be more useful,
trustworthy and diverse than those selected by popular alternatives, such as Google Scholar and a state-of-the-art
topic modeling approach.
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1 Introduction
For generations, scientists have built upon the published work of their predecessors and contemporaries in order to
make new discoveries. However, as the number of publications has grown, it has become increasingly difficult for
scientists to find relevant prior work for their particular research. In fact, as early as 1755, the French philosopher
Denis Diderot presciently forewarned that there would come a day when “it will be almost as convenient to search
for some bit of truth concealed in nature as it will be to find it hidden away in an immense multitude of bound
volumes,” [14]. Today, we can quantify this “immense multitude” to include tens of millions of articles published
in tens of thousands of journals and conferences [44].

Currently, researchers primarily rely on keyword search of online indices such as Google Scholar and PubMed
to help them combat this overload of information. While these tools are indispensable, there are many instances
where a researcher’s information need cannot be easily specified as a simple string of keywords. Often, such a
keyword query is either overly broad, returning many articles that are at best loosely related to the researcher’s
specific need, or too narrow, potentially returning no articles at all. In these occasions, it may be more natural
for the scientist to specify his query as a small set of papers rather than as a set of words. In particular, having
already read some articles that are related to the specific task at hand, the scientist can ask, “given that these papers
represent my immediate research focus, what else should I read?”.

Here, we present an algorithm for discovering relevant scientific literature by responding to queries of this
form. More formally, given a small set of papers Q that we refer to as the query set, we seek to return a set
A of additional papers that are related to the concept defined by the query. Intuitively, a paper that cites all of
the articles in Q is likely to represent related research. Likewise, a paper that is cited by every article in Q might
contain relevant background information. However, it is restrictive to require the papers in A to have a direct
citation to or from every article in the query set, as such papers are not guaranteed to exist. Instead, we wish to
select a set A that maximizes a more general notion of influence to and from the papers in Q.

2 Modeling Scientific Influence
To define a notion of influence in scientific literature, we observe that the content of a publication is an amalgam
of several sources, combining cited prior work with the authors’ novel insights and background experience. For a
given collection of articles, ideas travel from cited papers to citing papers, and from earlier to subsequent papers
by the same author (Figure 1A). Our notion of influence should capture this transfer of ideas, modeling both the
extent to which ideas travel between documents, as well as their topical matter. To achieve such fine-grained detail,
we define influence with respect to the individual concepts found in a document collection, which could be, e.g.,
technical terms or informative phrases.1 For example, we might say that the ideas transferred from one paper to
another involve the concepts “energy” or “nitric oxide.”

For each concept c in our vocabulary of concepts C, we define a directed, acyclic graph Gc, where the nodes
represent papers that contain c and the edges represent citations and common authorship. Figures 1B and 1C show
two such graphs for a subset of articles from the Proceedings of the National Academy of Sciences (PNAS), for
the concepts “plant” and “stress.” While a path between two nodes in such a graph may indicate influence with
respect to a particular concept, mere existence of a path does little to express the degree to which this influence
occurs. To capture the degree of influence, we define a weight θ(c)x→y for each edge (x, y) in graph Gc, representing
the probability of direct influence from paper x to paper y with respect to concept c. We can then use these edge
weights to define a probabilistic, concept-specific notion of influence between any two papers in the document
collection.
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Figure 1: (A) A graph of articles from the Proceedings of the National Academy of Sciences (PNAS). Nodes represent papers,
solid edges represent citations (x → y if y cites x) and dotted edges represent common authorship (x → y if x is older than y
and x, y share an author). More details on the data sets used in this paper can be found in the appendix. (B,C) Subgraphs of (A),
limited to papers containing the concepts “plant” and “stress,” respectively (other papers are grayed out). Thick dashed lines
indicate paths of influence between papers 5550 and 11770. (D) Example illustrating how Equation 1 penalizes redundancy.
The first two papers selected exhibit a high influence with respect to “plant,” and thus subsequently adding such papers to
A causes little increase in Equation 1 (solid lines), especially when compared to the sum of individual influences (dashed
lines). The influence with respect to “stress” remains low, thus never triggering such a redundancy penalty.

2.1 Defining edge weights

Figure 2 shows an example from the PNAS data set illustrating how we define the weight θ(c)x→y on each edge.
Here, article 9467 cites two articles containing the concept “oxygen,” {424, 13344}, indicated by the solid black
edges. The dotted black edges indicate that two other articles, {1829, 7657}, contain the concept “oxygen” and
share authors with 9467. (The dotted gray edge indicates that there is a third article sharing authors with 9467 that
does not contain “oxygen.”) We assume that every occurrence of the concept “oxygen” in 9467 is either a novel
idea or is directly inspired by one of these sources. Thus, we view the weight θ(c)x→y as the probability a random
instance of concept c in paper y was directly inspired by paper x.

The bar graph over the nodes in Figure 2 illustrates the proportion of the content of each paper consisting of
the “oxygen” concept. For instance, the height of the first bar on the left is n(oxygen)424 /N424, where n(c)x is the
frequency of concept c in document x, and Nx =

∑
c∈C n

(c)
x is the total length of document x. Additionally, the

bars over 1829 and 7657 are shortened to one third of their original height (indicated in light gray), representing
the intuition that an explicit citation is a more informative relationship than common authorship. The authors of
9467 have three prior publications in this example, and thus by dividing by three, the effective total contribution
of these papers is that of a single paper. Finally, we represent the novelty distribution for a particular paper y as
the average distribution over concepts for all papers published in the same year as y. In this case, the novelty
contribution for “oxygen” is dominated by the four papers. (We note that there are no actual novelty nodes in the
graph, as the associated distribution is only used for normalization.)

Here, θ(oxygen)x→9467 is proportional to the height of the corresponding bar in the plot. More generally, if a paper y
cites papers {r1, . . . , rk}, and the authors have previously written papers {b1, . . . , bl}, then the edge weights are

1For our experiments, we use a simple tf-idf heuristic to extract informative words which we use as concepts, as described in the appendix.
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Figure 2: An example from the PNAS data set, illustrating the edge weight computation for a node in Goxygen. Solid black
edges indicate citations, while dotted black edges indicate common authorship. The dotted gray edge refers to a paper sharing an
author with 9467, but not containing the concept “oxygen.” Edge weights are assigned proportional to the bar chart, indicating
the prevalence of “oxygen” in each parent node. The bars over 1829 and 7657 are shortened to one third of their original height
(indicated in light gray), such that the contribution due to common authorship is equivalent to that of a single paper. The novelty
node is only used to normalize the edge weights, and in this case is dominated in influence by the other articles.

defined as follows:

θ(c)ri→y =
1

Z

n
(c)
ri

Nri
,

θ
(c)
bi→y =

1

Z

n
(c)
bi

l ·Nbi
,

with normalization constant,

Z =

k∑
j=1

n
(c)
rj

Nrj
+

1

l

l∑
j=1

n
(c)
bj

Nbj
+ novel (c)y ,

where novel (c)y is the average proportion of concept c across all papers published in the same year as y.

2.2 Calculating influence
Given a concept-specific weight for each edge in the citation graph, representing the direct influence between two
neighboring nodes, we can now define the influence between any two papers in our collection. In particular, if we
say that each edge x→ y in Gc is active with some probability θ(c)x→y , we arrive at the following definition:

Definition 1. The influence between papers u and v with respect to concept c, Influencec(u ↔ v), is the proba-
bility there exists a directed path in Gc from one paper to the other, consisting only of active edges.

While intuitive, the exact computation of this probability is intractable, as the problem of computing connect-
edness in a random graph belongs to the #P-complete class of computational problems [46, 38], for which there
are no known polynomial-time solutions. We can overcome this computational hurdle via approximation, by em-
ploying one of two methods: 1) a simple Monte Carlo sampling procedure with theoretical guarantees; and, 2)
a deterministic, linear-time dynamic programming heuristic, based on the assumption that the paths between two
nodes are independent of each other.
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2.2.1 Sampling

The simplest procedure for estimating the influence between two nodes is to generate samples directly based on
the definition of influence. Each sample is generated as follows:

For each concept c:
1. Mark each edge x→ y in Gc as active with probability θ(c)x→y .
2. For all pairs of nodes (u, v), record whether a path exists between them using only active edges.
After generating B samples, the probability that a node u influences a node v with respect to concept c is

simply estimated as the proportion of the B samples for concept c in which an active path from u to v exists. A
natural question to ask is, how many samples do we need for a reasonable estimate of influence? A short proof
using Hoeffding’s Inequality shows us that the number of samples we need grows only logarithmically with the
number of articles in the document collection.

Theorem 1. In order to estimate m influence values such that, with probability η, each of the m estimates is no
more than δ away from its true value, a sufficient number of samples B is 2

δ2 log(2m/δ).

Proof. We wish to estimatem influence probabilities, p1, p2, . . . , pm, using p̂1, p̂2, . . . , p̂m, where p̂j = 1
B

∑B
i=1X

(i)
j ,

and each X(i)
j is a random variable that is either 0 or 1, representing whether the jth pair of nodes is connected via

an active path in sample i. Note that by our definition of influence, E[p̂j ] =
1
B

∑B
i=1E[X

(i)
j ] = pj .

We let εj = |p̂j − pj |, the absolute difference between influence value pj and its estimate using the sampling
methodology from above. Given some δ, we want P (ε1 ≥ δ ∨ ε2 ≥ δ ∨ . . . ∨ εm ≥ δ) to be small.

P

 m∨
j=1

(εj ≥ δ)

 ≤
m∑
j=1

P (εj ≥ δ)

=

m∑
j=1

P (|p̂j − pj | ≥ δ)

=

m∑
j=1

P

(∣∣∣∣∣ 1B
B∑
i=1

X
(i)
j −

1

B

B∑
i=1

E
[
X

(i)
j

]∣∣∣∣∣ ≥ δ
)

=

m∑
j=1

P

(∣∣∣∣∣ 1B
B∑
i=1

X
(i)
j − E

[
X

(i)
j

]∣∣∣∣∣ ≥ δ
)

=

m∑
j=1

P

(∣∣∣∣∣
B∑
i=1

X
(i)
j −B · E

[
X

(i)
j

]∣∣∣∣∣ ≥ Bδ
)

≤
m∑
j=1

2 exp

(
−2B2δ2

4B

)

= 2m exp

(
−Bδ2

2

)
,

where the first inequality is due to the union bound, and the second inequality is due to Hoeffding.
Thus, the probability that any of our m estimates is more than δ away from its true value given B samples is
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less than or equal to 2m exp(−Bδ2/2). For this probability to be less than or equal to η, we need:

2m exp

(
−Bδ2

2

)
≤ η,

exp

(
−Bδ2

2

)
≤ η

2m
,

−Bδ2 ≤ 2 log
( η

2m

)
,

B ≥ −2
δ2

log
( η

2m

)
=

2

δ2
log

(
2m

η

)
.

As the number of influence values to estimate is quadratic in the number of articles, the number of samples we
need is logarithmic in the total number of articles. While this is a heartening result, we find that for large document
collections, generating enough samples can still be a time-consuming process.

2.2.2 Independence heuristic

As an alternative to sampling, we describe an efficient dynamic programming heuristic based on the assumption
that the paths between two nodes inGc are independent of each other. For instance, in Figure 1B, the two influence
paths between 5550 and 11770 with respect to the concept “plant” are completely independent of each other. Thus,
the probability of at least one active path existing between the two nodes in this situation can be computed exactly:

Influenceplant(5550→ 11770)

= 1− P (there is no influence between 5550 and 11770)
= 1− P (there is no direct influence from 5550) ·

P (there is no influence through 1839)

= 1− (1− θ(plant)5550→11770)(1− θ
(plant)
5550→1839θ

(plant)
1839→11770).

The second equality follows from the independence of the two paths. On the other hand, looking at Figure 1C, we
find the paths between the two nodes in Gstress are not independent, making such a calculation more problematic.

Based on this intuition, if we rashly assume that the paths between two nodes will always be independent of
each other in Gc, for all c, we arrive at a simple, efficient heuristic for computing the influence between all pairs
of nodes (Algorithm 1). By traversing the graph in topological order, we know that when we arrive at a node we
will have already computed all the influence going to its parents. Using these influences and our independence
assumption, we can then immediately compute the influence to the node itself. We note that this algorithm requires
the graphs to be acyclic.2

While the independence assumption upon which this heuristic is based certainly is not true in general, we find
that, nevertheless, the values we compute are close to what we would expect from sampling (cf. Figure 3). Thus,
despite not being amenable to theoretical guarantees, we find this heuristic works well in practice.

2Based on simple chronology, one would expect a citation graph to be acyclic; after all, a researcher cannot cite a paper if it does not yet
exist. However, this is not quite the case in practice (e.g., colleagues writing papers simultaneously may cite each other). Details on how we
address this problem can be found in the appendix.
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Algorithm 1 Dynamic Programming Heuristic for Influence
N : number of documents
C: vocabulary of concepts
// Initialize to empty 3D array
// influenceEstimate[c][x][y] will contain influence
// from x to y with respect to concept c.
influenceEstimate← array[|C|][N ][N ]
for all c ∈ C do

for all nodes y in Gc do
// Initialize to identity
influenceEstimate[c][y][y]← 1

topoOrder ← topological order of nodes in Gc
for y ∈ topoOrder do

// influenceEstimate[c][][x] already calculated
// for all x ∈ parents(y)
if parents(y) = ∅ then

continue
influenceFromParents← array[|parents(y)|]
for all x ∈ parents(y) do

// Influence to the parent multiplied by
// the edge weight
influenceFromParents[x]←

influenceEstimate[c][][x] · θ(c)x→y

// Product is element-wise
influenceEstimate[c][][y]←

1−
∏
x∈parents(y)(1− influenceFromParents[x])

2.3 Selecting papers
As motivated in Section 1, given a query set of papers Q, we wish to select a small set of related papers A that
exhibit a high degree of influence to or from the query set. Moreover, the set of papers we select should be both
relevant and diverse.

2.3.1 Relevance

The influence between the query set Q and the result set A should be focused on the concepts that are important
or prevalent in both sets of documents. First, to ensure that the selected documents pertain to the concepts most
prevalent in the query set, we define a weight γ(c)q proportional to the frequency of concept c in query document q.

Likewise, from the perspective of the result set, a document d might contain a single occurrence of the concept
“plant,” and that single occurrence might be heavily influenced by one of the query documents q. However, as d
only tangentially mentions “plant,” we do not wish this strong influence to incentivize its inclusion in the result set.
Thus, we define a probability β(c)

d indicating the importance of concept c in document d. Specifically, we define
this as the probability a concept c is observed in a finite number ` of independent samples (with replacement) from
the document’s word distribution: β(c)

d = 1 − (1 − γ(c)d )`. (Here, ` is a parameter of our model that we set to 20
in our experiments.)

Figure 4 provides an illustrative example of these weights.
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Figure 3: This figure shows a comparison on the PNAS data set between the influence values computed via sam-
pling (B = 6530) and those computed using the independence heuristic. For all concepts and all pairs of articles
with meaningful influence between them (i.e., not trivially zero, as is the case when the nodes are not connected in
the graph), we compute the influence using both methods, and record the absolute deviation (|sampling−heuristic|)
and relative error (|sampling − heuristic|/sampling). The worst case and mean values of these measures for each
concept are plotted above. For this setting of B, the estimates computed via sampling are likely (> 95%) to be
within 0.075 of their true values.

2.3.2 Diversity

Diversity is important in this setting as it is difficult to predict the exact information need of a researcher, and thus
providing a wide variety of papers increases the likelihood of query satisfaction. As such, we define the influence
between a single query paper q ∈ Q and a set of documents A in a manner that penalizes redundancy in the
result set, thereby promoting diversity. Specifically, if we define this set influence, Influencec(q ↔ A), as the
probability influence exists between q and at least one document in A, we create a disincentive for A to contain
multiple papers with similar influence patterns to and from q; such a redundant set A would exhibit less influence

7



p
la
n
t

re
sista

n
ce

query paper

candidate paper

Figure 4: The top cloud represents a query paper (5550), the bottom word cloud represents a paper to be selected (11770)
and the lines between them represent individual influences of varying strength. In each word cloud, the size of a word is
proportional to its frequency in the corresponding article. γ is illustrated by the shaded ellipses in the top word cloud, showing
a higher incentive to pick articles about “plant” or “resistance” than about “stress.” However, despite its prevalence in the query
document, “plant” is only tangentially present in article 11770, and thus β ensures a low degree of influence. This can be
contrasted with “resistance,” which is prevalent in both documents and displays a high degree of influence.

than one composed of a broader set of documents. Formally,

Influencec(q ↔ A) =

1−
∏
d∈A

(
1− Influencec(q ↔ d)β

(c)
d

)
. (1)

We note the use of the probability β(c)
d here to safeguard against selecting documents that are only tangentially

related to the important concepts in the query papers.
Figure 1D shows an example illustrating how the marginal gain in set influence with respect to the concept

“plant” diminishes as more papers are added to the result set A. In particular, beyond a certain level of influence,
the gain observed in Equation 1 from adding additional documents to the result set is smaller than would be
expected if we were naı̈vely summing the individual influences. We do not see the same redundancy penalty with
respect to “stress,” as the result set is not sufficiently influenced with respect to this concept.
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2.3.3 Optimization

Given this definition of set influence, we can now define an objective function that, when maximized, returns a
diverse set of papers highly relevant to the query:

FQ(A) =
∑
q∈Q

∑
c∈C

γ(c)q Influencec(q ↔ A). (2)

While, in general, solving such a combinatorial optimization problem is intractable, Equation 2 exhibits an
intuitive diminishing returns property known as submodularity, allowing for efficient near-optimal solutions.

Definition 2 (Submodularity). A set function F is submodular if, ∀A ⊆ B ⊆ V,∀s ∈ V\B, F (A∪{s})−F (A) ≥
F (B ∪ {s})− F (B).

Intuitively, this means that the utility of adding a particular paper to a result set decreases as the result set gets
larger.

Theorem 2. Equation 2 is submodular and monotonic.

Proof. Let B ⊆ V and s ∈ V \ B.

Influencec(q ↔ B ∪ {s})− Influencec(q ↔ B)

= 1−
∏

d∈B∪{s}

(1− Influencec(q ↔ d)β
(c)
d )−

(
1−

∏
d∈B

(1− Influencec(q ↔ d)β
(c)
d )

)

=
∏
d∈B

(1− Influencec(q ↔ d)β
(c)
d )−

∏
d∈B∪{s}

(1− Influencec(q ↔ d)β
(c)
d )

=
∏
d∈B

(1− Influencec(q ↔ d)β
(c)
d )

(
1− (1− Influencec(q ↔ s)β(c)

s )
)

=
∏
d∈B

(1− Influencec(q ↔ d)β
(c)
d )

(
Influencec(q ↔ s)β(c)

s

)
.

Because Influencec(q ↔ d) and β(c)
d are defined as probabilities, and thus lie in the range [0, 1], we know that this

quantity is non-negative, making Equation 2 monotonic. Moreover, for any A ⊆ B, we have that,∏
d∈B

(1− Influencec(q ↔ d)β
(c)
d ) ≤

∏
d∈A

(1− Influencec(q ↔ d)β
(c)
d ).

Hence, ∏
d∈B

(1− Influencec(q ↔ d)β
(c)
d )

(
Influencec(q ↔ s)β(c)

s

)
≤
∏
d∈A

(1− Influencec(q ↔ d)β
(c)
d )

(
Influencec(q ↔ s)β(c)

s

)
=
∏
d∈A

(1− Influencec(q ↔ d)β
(c)
d )−

∏
d∈A∪{s}

(1− Influencec(q ↔ d)β
(c)
d )

= Influencec(q ↔ A∪ {s})− Influencec(q ↔ A).

Thus, Influencec(q ↔ A) is submodular. Since submodularity is closed under non-negative linear combinations,
and our weights γ(c)q ≥ 0 , it directly follows that our objective function in Equation 2 is submodular.
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Figure 5: Example illustrating trust calculation for an immunologist asking, “How much do I trust Carl Nathan with respect
to the concept ‘nitrogen’?” Thick dashed lines indicate influence from Dr. Nathan to individual elements of B, and pie chart
represents relative prevalence of the word “nitrogen” in the two papers in B.

Although maximizing submodular functions is NP-hard [26], by discovering this property in our problem,
we can take advantage of several efficient approximation algorithms with theoretical guarantees. For example, the
classic result of Nemhauser et al. [32] shows that by simply applying a greedy algorithm to maximize our objective
function, we can obtain a (1 − 1

e ) approximation of the optimal value. Thus, a simple greedy optimization can
provide us with a near-optimal solution. However, since our set of articles is very large, a naı̈ve greedy approach
can be too costly. Therefore, we use CELF [29], which provides the same approximation guarantees, but uses lazy
evaluations, often leading to dramatic speedups.

3 Trust and Personalization
Considering our running example of PNAS articles (Figure 1A), we can set our query set to beQ = {4468, 5688},
the parents of “Nitric Oxide in Plant Immunity” (5550). Optimizing Equation 2 for this query produces a result set
of articles ranging in topics from plant biology to immunology (cf. Table 2). While these articles may be relevant
to the query, a major shortcoming is that every researcher who submits this query will receive an identical result set.
For any given topic, different researchers trust different authors and publications, and the objective in Equation 2
provides no means to express these preferences. While a long line of prior work exists on summarizing the impact
of an author or publication with a single number [2], often based on citation statistics [20, 25] or eigenvector
methods [27, 36, 12, 39], here we wish to capture a more detailed picture of the relationship between a researcher
and the authors he cites.

In order to properly model such an individual notion of trust in the setting of scholarly research, we consider
two motivating scenarios:

1. Different authors command different levels of respect from their research communities, e.g., a Nobel laureate
versus a first-year graduate student, as an extreme case.

2. Even among distinguished scientists, a particular researcher’s interests may be aligned more closely with
some than others. Thus, beyond simply differentiating novices from experts, a notion of trust should also
capture differences in research interests. For example, asking computer scientists to name whom they most
associate with the concept “network” may yield Judea Pearl (Bayesian networks), Jon Kleinberg (social
networks), Geoff Hinton (neural networks) or Van Jacobson (computer networks), depending on who is
answering. All are distinguished researchers, but each is associated with a distinct subfield of computer
science.

At the heart of both scenarios is a personal question that is often answered differently by different researchers:
How much do I trust this author with respect to this concept?
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By answering this question, a researcher would enable us to formally incorporate his trust preferences into our
objective function, allowing us to select papers tailored specifically to his tastes. However, as researchers will not
be able to provide an answer for every combination of authors and concepts, we must elicit their trust preferences
in a less onerous manner. In order to do so, we assume that trust is transitive. For example, if Alice trusts an
article, and that article is heavily influenced by Bob with respect to the concept “network,” then Alice is likely
to also trust Bob with respect to “network.” Thus, at a fundamental level, a researcher need only specify a set
of trusted papers B, from which we can infer answers to the above question. As a shortcut, a researcher may
choose to define B indirectly by specifying a list of trusted journals and conferences, or subsets thereof (e.g., a
particular conference track or article classification). B could also be specified as the papers cited by one or more
trusted authors, representing a look at one’s research through the eyes of another scientist, potentially in another
field. Thus, a plucky physicist could ask, “What would Steven Chu recommend I read?”, and obtain a set of papers
related to his query, yet tailored to the research interests and trust preferences of the Nobel laureate.

With this intuition in mind, we define τ (c)a|B, the probability a researcher trusts author a with respect to concept
c, given trusted articles B. (The “|B” notation in this section indicates personalizing with respect to trusted set B.)
Figure 5 illustrates how we compute τ (c)a|B for a particular example from PNAS, where the concept c is “nitrogen,”
the author a is Carl Nathan, MD, and the researcher has specified two immunology papers as his trusted set,
B = {10161, 9318}. For each paper b ∈ B, we compute how much the author a influenced b with respect to
concept c. As our influence is now expressed from an author to an article, we treat all of an author’s papers as a
single unit.

Definition 3. The influence from author a to article b with respect to concept c, AuthorInfluencec(a→ b), is the
probability there exists a directed path in Gc from any article written by a to article b consisting only of active
edges, where each edge is (independently) active with probability θ(c)x→y .

As before, we employ sampling or dynamic programming to efficiently estimate this otherwise intractable
computation (cf. Algorithm 2).

In our example, we first look at how much Dr. Nathan’s papers influence 10161 with respect to “nitrogen,”
and again from Dr. Nathan’s papers to 9318. We now weigh these two influences by the prevalence of the word
“nitrogen” in each paper b (as indicated by the pie chart in Figure 5), and define τ (c)a|B to be the weighted sum of the
two.

More generally, we have:

τ
(c)
a|B =


1

N
(c)
B

∑
b∈B n

(c)
b AuthorInfluencec(a→ b), if N (c)

B > 0

τ
(c)
a|V , otherwise,

where N (c)
B is the total number of occurrences of concept c in the set B, n(c)b is the frequency of concept c in

paper b, and V is the set of all papers in the corpus. Here, the influence to each b ∈ B is weighted by the relative
prevalence of concept c with respect to B, n(c)b /N

(c)
B . We note that if a researcher’s trusted set B contains no

occurrences of a particular concept, we assign the trust value to τ (c)a|V , as if all the papers in the corpus were trusted
equally.

In order to incorporate trust into paper selection, we assume an author will trust a paper if and only if he trusts
at least one of its authors. This intuition can be formalized by defining a modified notion of set influence, where
the researcher’s preferences towards the authors are directly taken into account:

Influencec(q ↔ A|B) = 1−
∏
d∈A

(
1− Influencec(q ↔ d)β

(c)
d T

(c)
d|B

)
,

where T (c)
d|B = 1−

∏
a∈authors(d)(1− τ

(c)
a|B).
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Algorithm 2 Dynamic Programming Heuristic for Author Influence
N : number of documents
C: vocabulary of concepts
// Initialize to empty 3D array
// authorInfluence[c][a][y] will contain influence from author a to paper y w.r.t. concept c.
authorInfluence← array[|C|][numAuthors][N ]
for all c ∈ C do

for all authors a do
// Every author influences his or her own papers
authorInfluence[c][a][papers(a)]← 1

topoOrder ← topological order of nodes in Gc
for y ∈ topoOrder do

// authorInfluence[c][][x] already calculated for all x ∈ parents(y)
if parents(y) = ∅ then

continue
influenceFromParents← array[|parents(y)|]
for all x ∈ parents(y) do

// Influence to the parent multiplied by the edge weight
influenceFromParents[x]← authorInfluence[c][][x] · θ(c)x→y

// Product is element-wise
authorInfluence[c][][y]← 1−

∏
x∈parents(y)(1− influenceFromParents[x])

// Retain authors’ self-influence
authorInfluence[c][authors(y)][y]← 1

We can now define our personalized objective function as:

FQ|B(A) =
∑
q∈Q

∑
c∈C

γ(c)q Influencec(q ↔ A|B). (3)

Maximizing FQ|B(A) subject to |A| ≤ k, for some budget of k papers, leads to a personalized set of papers
tailored to someone who trusts B. This function shares the same theoretical properties as Equation 2 and can be
optimized efficiently in the same manner.

Theorem 3. Equation 3 is submodular and monotonic.

Proof. We use the exact same argument that we did for proving Equation 2 is submodular and monotonic, using
the added fact that the document trust weight T (c)

d|B is a probability in the range [0, 1].

Figure 6 shows our PNAS example from before, with the same query set Q = {4468, 5688}, but now incor-
porating the trust preferences of two hypothetical researchers: a plant biologist (A) and an immunologist (B). The
figure highlights how differences in trust preferences can manifest themselves in article selection. In Figure 7,
we provide another example, this time from computer science. Here, we take the famous Faloutsos, Faloutsos
and Faloutsos paper, “On power-law relationships of the Internet topology” [19], and select related literature for it
using the trust preferences of each author. Specifically, the visualization in the figure shows that by assuming that
Michalis Faloutsos trusts SIGCOMM papers, Petros Faloutsos trusts SIGGRAPH papers, and Christos Faloutsos
trusts KDD papers, we can select related work tailored to each author’s perspective. While some relevant papers
are common to all three points of view, other selected papers are particular to just one. For example, in Christos’
data mining-focused result set, we find a few papers related to the evolution of social networks (e.g., “Microscopic
evolution of social networks” by Leskovec et al.) which are not found in Michalis’ and Petros’ results. Moreover,
these papers are not selected in the unpersonalized setting, when no trust preferences are taken into account.
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Figure 6: Top ten papers selected for Q = {4468, 5688} where B is defined as (A) all the plant biology papers, or (B)
all the immunology papers, in the PNAS data set. Node colors correspond to article classification, as indicated by the key.
(Colloquium refers to the National Academy of Sciences Colloquium on Virulence and Defense in Host-Pathogen Interactions:
Common Features Between Plants and Animals. “Other” refers to unclassified papers, e.g., “From the Academy.”.) Numbers
indicate order of selection by optimization algorithm, roughly indicating order of importance (cf. Tables 3 and 4).

4 Approach Summary
We summarize our approach as follows:
Initialization

1. Define a vocabulary of concepts C (e.g., technical terms).
2. For each concept c ∈ C, define a directed, acyclic graph Gc, with edge weights as in Section 2.1.
3. Compute relevance weights γ(c)d and β(c)

d , for all c ∈ C and documents d, as described in Section 2.3.1.
4. Precompute Influencec(u↔ v) for all concepts c, and all pairs of documents u and v, using Algorithm 1.
5. Similarly, precompute AuthorInfluencec(a → b), for all authors a, all documents b, and all c ∈ C, using

Algorithm 2.
Per user
Given a user’s trusted set of papers B, compute τ (c)a|B for all authors a and c ∈ C.
Per query
Given query set Q, optimize Equation 3 using CELF [29].

5 Related Work
Researchers in both the library science and computer science communities have studied the shortcomings of the
traditional keyword search paradigm [5, 35, 37]. In fact, our specific query model of defining a researcher’s
information need as a set of papers rather than as a keyword string has been described before [9, 30]. In one
particularly related line of research, collaborative filtering techniques that have been successful for movie and
product recommendations were adapted to the paper recommendation setting [30, 45]. Another approach uses
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networks perspective

graphics perspective

data mining perspective

no trust preferences

Figure 7: A visualization of related work for Faloutsos, Faloutsos, and Faloutsos’ “On power-law relationships of the Internet
topology.” The top word cloud represents papers selected using Equation 2, with no trust preferences. (The size of each word
in the cloud is proportional to its prevalence in the selected documents.) The subsequent three word clouds represent papers
selected using Equation 3 with three different trusted sets B, one representing each author’s perspective. Each word cloud
visualizes the selected papers that are unique to each author’s result set. For example, the bottom word cloud shows the papers
found in Christos’ data mining-focused results, but do not exist in Petros’ or Michalis’ result sets.

hypothesis testing to determine the articles that most influence each paper–the paper’s Information Genealogy–
based only on article text [43]. Unlike these previous approaches, our methodology is based on a unified model of
text and citations that places special emphasis on the different trust preferences of individual researchers.

Previous work has also considered the more general, yet related, problem of taking positive examples of mem-
bership in a set and using them to expand the set [17, 22]. While such approaches have been applied to the domain
of research literature, they do not explicitly model the particular characteristics of our problem, e.g., the effect of
citations, publication venues and authorship.

Moreover, it is also important to note that our algorithm is operational in that it describes a method for selecting
papers, in contrast with many descriptive studies in bibliometrics, sociology and other fields [13, 40, 33, 34, 4,
41]. In particular, the large body of work on topic modeling in computer science and statistics focuses on fitting
probabilistic models to document collections by modeling latent themes in the data [8]. While often applied to
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Figure 8: User study results comparing two variants of our algorithm, Beyond Keyword Search (BKS), with and without
incorporating trust preferences, with the Relational Topic Model (RTM), Information Genealogy (IG) and Google Scholar.
Values in bar plots (A), (B) and (C) are responses to the indicated study questions averaged over all sixteen participants, with
error bars indicating one standard error. (D) shows how many participants (out of 16) found that our method produced more
diverse results compared to the alternative techniques.

corpora of scholarly literature [18, 24, 3, 7, 42, 6, 15, 21], paper recommendation is not the primary objective of
these models. Rather, our algorithm follows from a line of work that frames document selection as an explicit
optimization problem (cf. [16]).

Finally, we note that the approach we describe in this paper is, in fact, agnostic to the specific definition of
influence we use, and thus while we define influence to have an explicit probabilistic interpretation, other such
definitions are possible. For instance, recent work by Lao and Cohen [28] provides an approach based on path-
constrained random walks, which we can plug in as an alternative definition for influence.

6 Experimental Results
While these illustrative examples provide intuition, in order to truly evaluate our methodology we must solicit
feedback from real scientific researchers. To this end, we conducted a user study involving sixteen subjects (all
doctoral students in computer science or related fields).

We compare two variants of our algorithm–with and without incorporating trust preferences of the participant–
with three representative alternative techniques: Google Scholar [23], Information Genealogy [43] (a hypothesis
testing approach based on document text), and the Relational Topic Model [11] (a state-of-the-art topic model
incorporating both text and citations to model latent themes in data)3. For each participant, we use each of these
techniques to find related work for a previously written paper–that participant’s study paper–thereby simulating a
real research scenario. We define each query set Q to be the references of the corresponding study paper, and we
ask each participant to list up to four trusted conferences or journals, which we use to define B. The articles used
in this study come from the ACM Digital Library [1], as described in the appendix.

3Previous work [30] has shown that Google keyword search outperforms collaborative filtering techniques for selecting useful papers, and
thus we do not directly compare against these approaches.
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In the case of Google Scholar, we ask a coauthor of the participant to provide the ideal keyword query he or
she would use to find related work for the study paper. We enter this query into Google Scholar, and retrieve a
result set containing the top ten papers that also appear in our ACM data set. In some cases, the keyword query
provided was too specific, resulting in fewer than ten Google Scholar results.

For the Relational Topic Modeling approach, we fit the model to our data using the collapsed Gibbs sampling
package provided by the authors [10]. We use K=50 topics, a burn-in of 750 samples, and collect our results over
750 additional samples. The parameters are set according to guidance from the first author (alpha=1/K, beta=4,
eta=1/(size of vocabulary)). To select a set of related work, we compute the link probability from the study paper
to each additional paper, and return the top ten most likely new links. We note that we give the model access to the
abstract of the study paper–information that our algorithms do not have access to.

Finally, as the Information Genealogy model only takes into account document text, we provide the algorithm
with the abstract of the study paper and retrieve the ten papers in the corpus with the most influence on the study
paper. We use the same convex optimization package as used by the authors of the paper [31].

Unlike many previous studies, each participant was asked to evaluate all five comparison methods, rather than
just a single technique. In total, 612 distinct papers were recommended using these five techniques across all
sixteen participants.

Each participant was presented with the recommended articles for his or her study paper in a double-blind fash-
ion, masking the identity of the technique used to select each paper. Participants were asked to answer questions on
the usefulness, novelty and trustworthiness of each paper with respect to their research.4 Additionally, participants
were presented with entire result sets and asked to evaluate them in terms of diversity. Figure 8 shows the results
of the study, from which we can glean the following main observations:

1. On average, users find the papers our algorithm selects to be more useful than those selected by the compar-
ison techniques. The topic modeling approach performs especially poorly, with fewer than half of selected
papers deemed useful.

2. Explicitly modeling the individual trust preferences of users leads to more trustworthy papers being selected.
However, this comes at the expense of novelty in the selected articles, as researchers are more familiar with
the work of authors they trust.

3. Our algorithm provides more diverse results than the comparison techniques, which is unsurprising, as our
objective functions penalize redundancy.

7 Discussion
These results illustrate the success of our approach in recommending highly relevant literature personalized to the
preferences of individual researchers, acting as a promising complement to keyword search. On a personal note,
employing our approach during the writing of this article led us to related work from another subfield of computer
science that we had not discovered using more traditional search methods [30, 45]. In closing, we believe that the
challenges researchers face in expressing their information needs extend beyond scientific literature to domains
like patents, law and news, and the work presented herein is a significant step towards addressing this general
concern.

8 Acknowledgments
Research funded by NSF CNS-0625518 and ONR YIP N000140810752 and PECASE N000141010672. Word
clouds generated using wordle.net. The authors are grateful to the Association for Computing Machinery for
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A Data details and preprocessing
In this paper we refer to two data sets of scientific publications:

1. PNAS Data: Five years worth of articles from the Proceedings of the National Academy of Sciences (1997-
2001; 13,648 papers).

2. ACM Data: A subset of the Association for Computing Machinery Digital Library, focused on papers in
machine learning and related areas (1959-2009; 35,042 papers).

Both data sets include the title, authors, publication date, venue or publication track, citations, abstract and full text
(when available) of each paper. The particular running example in our paper refers to the PNAS articles in Table 1.

Each data set was preprocessed to ensure the acyclicity of the citation graph, as well as to extract a vocabulary
C of important concepts. The content of each paper is represented as a frequency vector of these selected concepts.

Processing the citation graph. Based on simple chronology, one would expect a citation graph to be acyclic;
after all, a researcher cannot cite a paper if it does not yet exist. However, this is not quite the case in practice. For
instance, colleagues writing several papers simultaneously may cite each other, leading to doubly-connected pairs
in the graph. As our algorithms rely on the acyclicity of the citation graph, we take the following steps to remove
cycles:

1. Remove self cycles from the graph (i.e., edges that start and end at the same node).

2. Find the strongly connected components (SCCs) of the graph (i.e., maximal subgraphs such that for any two
nodes x, y in the subgraph, there is a path from x to y and a path from y to x). In a directed acyclic graph
(DAG), all the SCCs are of size one. However, this is generally not the case in real citation graphs.

3. For SCCs of size two (i.e., “I cite you and you cite me”), we employ the following heuristic to determine
which edge to cut:

• If the two papers were published in different years, have the later paper cite the earlier paper.

• Else, if number of citations is different, have the lesser cited paper cite the more highly cited paper.

• Else, pick one of the two edges uniformly at random.

4. While the previous step takes care of most cycles, a few peculiar cases with SCCs of size greater than
two usually remain. There are few enough of these that we look at each such component individually, and
manually decide which edges to cut.

Finally, recall that we augment the citation graph with edges indicating common authorship. In this step, we only
connect papers that were written within five years of each other, as influence may tend to diminish over time.
Moreover, when augmenting the graph with these edges, we ensure that we are not creating any cycles.
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Selecting concepts. A typical corpus of scientific publications may contain tens of thousands of unique words,
but only a fraction of them will be informative. Thus, working with the entire set of words rather than a particular
subset can be wasteful. To this end, for each data set, we select a subset of words that we use as concepts:

• Ignore stop words (e.g., “the,” “and,” “of,” etc.), words containing non-alphanumeric characters, and words
that are too long (> 20 characters) or too short (< 3 characters).

• Of the remaining words, select the top 10,000 most frequent.

• Of these words, select ones that appear in at least 40 articles but fewer than 3,500 articles. If a word appears
in too few articles, it is likely to be overly specific, while if it appears in a large fraction of articles, it is likely
to be too general (e.g., the word “cell” for the case of PNAS, or “computer” for ACM). (These numbers are
for the PNAS data set. For the larger ACM collection, we require words to appear in at least 100 documents
and in no more than 8,000.)

• Finally, in an attempt to avoid selecting marginal words, we only select words such that when they appear in
a document, they appear at least twice (on average).

In future work, more sophisticated concept selection can be investigated.

B User Study Details
The following questions were asked of each user study participant, for each article presented:

1. Assume you came across this paper while working on the study paper. From reading the title and abstract,
would you have been inclined to:

(a) continue reading the paper (even if just to skim), because you think it might be useful to the work of
the study paper?

(b) walk away (i.e., from the title and abstract alone, you can already tell that this paper is not useful to the
work of the study paper)?

2. Do you feel that this paper would have been a must read for you when working on the study paper? (i.e., you
would have read this paper carefully had you known about it, and perhaps would have cited it) [Yes, No]

3. Did you know about this paper before? [Yes, No]
4. Taking the authors and venue into account, would you be inclined to trust what this paper has to say?

(a) For sure [4]
(b) Probably [3]
(c) Not sure [2]
(d) Probably not [1]
(e) Not at all [0]

(Figure 8A plots the responses to questions 1 and 2. Figure 8B plots the responses to question 4. Figure 8C plots
the responses to question 3.)

After answering these questions for all papers selected by all five approaches, the participant is presented with
all ten pairings of the five approaches, head to head, one pair of result sets at a time (e.g., RTM results on the left of
the screen, our results with trust on the right). For each pair of result sets, the participant is asked to indicate which
of the result sets is more diverse, or if they are equally diverse. As a diverse set of useless results is not beneficial
to a researcher, in this part of the study we only display the papers that were indicated as useful by the participant
in the previous section (i.e., an affirmative answer to question 1). (These diversity results are plotted in Figure 8D.)

C Selected Papers
Tables 2-4 show the papers selected for our running PNAS example from the main text. In particular, Tables 3
and 4 show the papers presented in Figure 6. Table 5 provides the papers selected for the example in Figure 1D.
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Table 1: Articles from PNAS example
ID Title Year Volume Pages
160 Physiological reactions of nitric oxide and hemoglobin: A radical re-

think
1999 96 9967-9969

244 Isolation of a temperate bacteriophage encoding the type III effector
protein SopE from an epidemic Salmonella typhimurium strain

1999 96 9845-9850

292 Bacteriophages in the evolution of pathogen-host interactions 1999 96 9452-9454
1139 Nitroreductase A is regulated as a member of the soxRS regulon of Es-

cherichia coli
1999 96 3537-3539

1304 A mechanism of paraquat toxicity involving nitric oxide synthase 1999 96 12760-12765
1839 Ancient origins of nitric oxide signaling in biological systems 1999 96 14206-14207
2094 Hemoglobin induction in mouse macrophages 1999 96 6643-6647
2136 Virulent Salmonella typhimurium has two periplasmic Cu, Zn-

superoxide dismutases
1999 96 7502-7507

2389 A highly conserved sequence is a novel gene involved in de novo vita-
min B6 biosynthesis

1999 96 9374-9378

2452 The oxyhemoglobin reaction of nitric oxide 1999 96 9027-9032
4468 Periplasmic superoxide dismutase protects Salmonella from products of

phagocyte NADPH-oxidase and nitric oxide synthase
1997 94 13997-14001

5550 Nitric oxide in plant immunity 1998 95 10345-10347
5688 Defense gene induction in tobacco by nitric oxide, cyclic GMP, and

cyclic ADP-ribose
1998 95 10328-10333

7273 Roles for mannitol and mannitol dehydrogenase in active oxygen-
mediated plant defense

1998 95 15129-15133

8305 S-nitrosothiol repletion by an inhaled gas regulates pulmonary function 2001 98 5792-5797
8365 Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl

equivalent with molecular oxygen
2001 98 10108-10112

8445 Expression and phylogeny of claudins in vertebrate primordia 2001 98 10196-10201
8490 Peptide methionine sulfoxide reductase from Escherichia coli and My-

cobacterium tuberculosis protects bacteria against oxidative damage
from reactive nitrogen intermediates

2001 98 9901-9906

Tables 6-9 show the papers selected for the example in Figure 7.
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Table 1 (cont.): Articles from PNAS example
ID Title Year Volume Pages

8643 Plant mitogen-activated protein kinase cascades: Negative regulatory
roles turn out positive

2001 98 784-786

8853 Myoglobin: A scavenger of bioactive NO 2001 98 735-740
8901 Simultaneous observation of the O—O and Fe—O2 stretching modes

in oxyhemoglobins
2001 98 479-484

8910 Activation of a mitogen-activated protein kinase pathway is involved in
disease resistance in tobacco

2001 98 741-746

9135 Catalytic consumption of nitric oxide by 12/15- lipoxygenase: Inhibi-
tion of monocyte soluble guanylate cyclase activation

2001 98 8006-8011

9318 Helicobacter pylori arginase inhibits nitric oxide production by eukary-
otic cells: A strategy for bacterial survival

2001 98 13844-13849

9429 Reciprocal electromechanical properties of rat prestin: The motor
molecule from rat outer hair cells

2001 98 4178-4183

9452 B lymphocyte-restricted expression of prion protein does not enable
prion replication in prion protein knockout mice

2001 98 4034-4037

9467 Plasma nitrite rather than nitrate reflects regional endothelial nitric ox-
ide synthase activity but lacks intrinsic vasodilator action

2001 98 12814-12819

9573 Supermolecular structure of the enteropathogenic Escherichia coli type
III secretion system and its direct interaction with the EspA-sheath-like
structure

2001 98 11638-11643

9582 Modulation of nitric oxide bioavailability by erythrocytes 2001 98 11771-11776
9625 Cysteine-3635 is responsible for skeletal muscle ryanodine receptor

modulation by NO
2001 98 11158-11162

9890 In vivo mechanism-based inactivation of S-adenosylmethionine decar-
boxylases from Escherichia coli, Salmonella typhimurium, and Saccha-
romyces cerevisiae

2001 98 10578-10583

10008 Structure of sortase, the transpeptidase that anchors proteins to the cell
wall of Staphylococcus aureus

2001 98 6056-6061

10090 Comparison of a hair bundle’s spontaneous oscillations with its re-
sponse to mechanical stimulation reveals the underlying active process

2001 98 14380-14385

10118 Compressive nonlinearity in the hair bundle’s active response to me-
chanical stimulation

2001 98 14386-14391

10123 In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards 2001 98 2826-2831
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Table 1 (cont.): Articles from PNAS example
ID Title Year Volume Pages

10161 Defective localization of the NADPH phagocyte oxidase to Salmonella-
containing phagosomes in tumor necrosis factor p55 receptor-deficient
macrophages

2001 98 2561-2565

10372 Regulation of the Mycobacterium tuberculosis hypoxic response gene
encoding α-crystallin

2001 98 7534-7539

10605 Physical basis of two-tone interference in hearing 2001 98 9080-9085
10642 A fatty acid desaturase modulates the activation of defense signaling

pathways in plants
2001 98 9448-9453

10693 Scrapie prion protein accumulation by scrapie-infected neuroblastoma
cells abrogated by exposure to a prion protein antibody

2001 98 9295-9299

10844 Neuroglobin is up-regulated by and protects neurons from hypoxic-
ischemic injury

2001 98 15306-15311

10850 Oxygen radical inhibition of nitric oxide-dependent vascular function
in sickle cell disease

2001 98 15215-15220

10900 Epitope tagging of chromosomal genes in Salmonella 2001 98 15264-15269
10940 Polymerization of a single protein of the pathogen Yersinia enterocolit-

ica into needles punctures eukaryotic cells
2001 98 4669-4674

11134 Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the
transport and metabolism of nitric oxide by hemoglobin in the human
circulation

2000 97 9943-9948

11770 Protection from nitrosative stress by yeast flavohemoglobin 2000 97 4672-4676
11791 The Pseudomonas syringae Hrp pathogenicity island has a tripartite

mosaic structure composed of a cluster of type III secretion genes
bounded by exchangeable effector and conserved effector loci that con-
tribute to parasitic fitness and pathogenicity in plants

2000 97 4856-4861

12134 Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signal-
ing

2000 97 3747-3752

12176 Cochlear mechanisms from a phylogenetic viewpoint 2000 97 11736-11743
12270 Putting ion channels to work: Mechanoelectrical transduction, adapta-

tion, and amplification by hair cells
2000 97 11765-11772

12286 Molecular mechanisms of sound amplification in the mammalian
cochlea

2000 97 11759-11764

12379 Contribution of Salmonella typhimurium type III secretion components
to needle complex formation

2000 97 11008-11013

13042 A conserved amino acid sequence directing intracellular type III secre-
tion by Salmonella typhimurium

2000 97 7539-7544

23



Table 1 (cont.): Articles from PNAS example
ID Title Year Volume Pages

13204 Reactive oxygen and nitrogen intermediates in the relationship between
mammalian hosts and microbial pathogens

2000 97 8841-8848

13240 The Arabidopsis dnd1 “defense, no death” gene encodes a mutated
cyclic nucleotide-gated ion channel

2000 97 9323-9328

13264 Nitric oxide and salicylic acid signaling in plant defense 2000 97 8849-8855
13279 Genetic complexity of pathogen perception by plants: The example of

Rcr3, a tomato gene required specifically by Cf-2
2000 97 8807-8814

13283 Pseudomonas syringae Hrp type III secretion system and effector pro-
teins

2000 97 8770-8777

13316 Nitric oxide prevents cardiovascular disease and determines survival in
polyglobulic mice overexpressing erythropoietin

2000 97 11609-11613

13344 Role of circulating nitrite and S-nitrosohemoglobin in the regulation of
regional blood flow in humans

2000 97 11482-11487

Table 2: Selected papers for PNAS example (no trust)
Rank Title Year Volume Pages

1 Nitric oxide in plant immunity 1998 95 10345-10347
2 Defective localization of the NADPH phagocyte oxidase to Salmonella-

containing phagosomes in tumor necrosis factor p55 receptor-deficient
macrophages

2001 98 2561-2565

3 Ancient origins of nitric oxide signaling in biological systems 1999 96 14206-14207
4 Virulent Salmonella typhimurium has two periplasmic Cu, Zn-

superoxide dismutases
1999 96 7502-7507

5 Nitric oxide and salicylic acid signaling in plant defense 2000 97 8849-8855
6 Reactive oxygen and nitrogen intermediates in the relationship between

mammalian hosts and microbial pathogens
2000 97 8841-8848

7 A mechanism of paraquat toxicity involving nitric oxide synthase 1999 96 12760-12765
8 Roles for mannitol and mannitol dehydrogenase in active oxygen-

mediated plant defense
1998 95 15129-15133

9 The Arabidopsis dnd1 “defense, no death” gene encodes a mutated
cyclic nucleotide-gated ion channel

2000 97 9323-9328

10 Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signal-
ing

2000 97 3747-3752
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Table 3: Selected papers for PNAS example (as a plant biologist)
Rank Title Year Volume Pages

1 Nitric oxide and salicylic acid signaling in plant defense 2000 97 8849-8855
2 Ancient origins of nitric oxide signaling in biological systems 1999 96 14206-14207
3 The Arabidopsis dnd1 “defense, no death” gene encodes a mutated

cyclic nucleotide-gated ion channel
2000 97 9323-9328

4 Roles for mannitol and mannitol dehydrogenase in active oxygen-
mediated plant defense

1998 95 15129-15133

5 Defective localization of the NADPH phagocyte oxidase to Salmonella-
containing phagosomes in tumor necrosis factor p55 receptor-deficient
macrophages

2001 98 2561-2565

6 Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signal-
ing

2000 97 3747-3752

7 A fatty acid desaturase modulates the activation of defense signaling
pathways in plants

2001 98 9448-9453

8 Reactive oxygen and nitrogen intermediates in the relationship between
mammalian hosts and microbial pathogens

2000 97 8841-8848

9 Virulent Salmonella typhimurium has two periplasmic Cu, Zn-
superoxide dismutases

1999 96 7502-7507

10 A highly conserved sequence is a novel gene involved in de novo vita-
min B6 biosynthesis

1999 96 9374-9378

Table 4: Selected papers for PNAS example (as an immunologist)
Rank Title Year Volume Pages

1 Defective localization of the NADPH phagocyte oxidase to Salmonella-
containing phagosomes in tumor necrosis factor p55 receptor-deficient
macrophages

2001 98 2561-2565

2 Virulent Salmonella typhimurium has two periplasmic Cu, Zn-
superoxide dismutases

1999 96 7502-7507

3 Reactive oxygen and nitrogen intermediates in the relationship between
mammalian hosts and microbial pathogens

2000 97 8841-8848

4 Helicobacter pylori arginase inhibits nitric oxide production by eukary-
otic cells: A strategy for bacterial survival

2001 98 13844-13849

5 Nitric oxide and salicylic acid signaling in plant defense 2000 97 8849-8855
6 Nitric oxide in plant immunity 1998 95 10345-10347
7 Peptide methionine sulfoxide reductase from Escherichia coli and My-

cobacterium tuberculosis protects bacteria against oxidative damage
from reactive nitrogen intermediates

2001 98 9901-9906

8 Ancient origins of nitric oxide signaling in biological systems 1999 96 14206-14207
9 The oxyhemoglobin reaction of nitric oxide 1999 96 9027-9032
10 A mechanism of paraquat toxicity involving nitric oxide synthase 1999 96 12760-12765
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Table 5: Selected papers for example in Figure 1D
Rank Title Year Volume Pages

1 Defense gene induction in tobacco by nitric oxide, cyclic GMP, and
cyclic ADP-ribose

1998 95 10328-10333

2 Ancient origins of nitric oxide signaling in biological systems 1999 96 14206-14207
3 Periplasmic superoxide dismutase protects Salmonella from products of

phagocyte NADPH-oxidase and nitric oxide synthase
1997 94 13997-14001

4 A mechanism of paraquat toxicity involving nitric oxide synthase 1999 96 12760-12765
5 Nitroreductase A is regulated as a member of the soxRS regulon of Es-

cherichia coli
1999 96 3537-3539

6 Nitric oxide and salicylic acid signaling in plant defense 2000 97 8849-8855
7 S-nitrosothiol repletion by an inhaled gas regulates pulmonary function 2001 98 5792-5797
8 Cysteine-3635 is responsible for skeletal muscle ryanodine receptor

modulation by NO
2001 98 11158-11162

9 The oxyhemoglobin reaction of nitric oxide 1999 96 9027-9032
10 Protection from nitrosative stress by yeast flavohemoglobin 2000 97 4672-4676
11 Hemoglobin induction in mouse macrophages 1999 96 6643-6647
12 Physiological reactions of nitric oxide and hemoglobin: A radical re-

think
1999 96 9967-9969

13 Cochlear mechanisms from a phylogenetic viewpoint 2000 97 11736-11743
14 Plant mitogen-activated protein kinase cascades: Negative regulatory

roles turn out positive
2001 98 784-786

15 Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl
equivalent with molecular oxygen

2001 98 10108-10112

16 Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the
transport and metabolism of nitric oxide by hemoglobin in the human
circulation

2000 97 9943-9948

17 Role of circulating nitrite and S-nitrosohemoglobin in the regulation of
regional blood flow in humans

2000 97 11482-11487

18 Modulation of nitric oxide bioavailability by erythrocytes 2001 98 11771-11776
19 Nitric oxide prevents cardiovascular disease and determines survival in

polyglobulic mice overexpressing erythropoietin
2000 97 11609-11613

20 Plasma nitrite rather than nitrate reflects regional endothelial nitric ox-
ide synthase activity but lacks intrinsic vasodilator action

2001 98 12814-12819
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Table 6: Selected papers for example in Figure 7 (unpersonalized)
Rank Title Authors Year

1 Prediction of future world wide web traffic characteristics for capacity
planning

Christensen, Javagal 1997

2 Self-similarity in World Wide Web traffic: evidence and possible causes Crovella, Bestavros 1997
3 Characteristics of WWW Client-based Traces Cunha et al. 1995
4 Empirically derived analytic models of wide-area TCP connections Paxson 1994
5 End-to-end available bandwidth as a random autocorrelated QoS-

relevant time-series
Chobanyan et al. 2008

6 Efficiently serving dynamic data at highly accessed web sites Challenger et al. 2004
7 A Prefetching Protocol Using Client Speculation for the WWW Bestavros, Cunha 1995
8 Power laws and the AS-level internet topology Siganos et al. 2003
9 Power-law relationship and self-similarity in the itemset support distri-

bution: analysis and applications
Chuang et al. 2008

10 On the origin of power laws in Internet topologies Medina et al. 2000
11 Spatio-temporal network anomaly detection by assessing deviations of

empirical measures
Paschalidis, Smaragdakis 2009

12 Network topology generators: degree-based vs. structural Tangmunarunkit et al. 2002
13 Mathematical models for academic webs: linear relationship or non-

linear power law?
Payne, Thelwall 2005

14 A random graph model for massive graphs Aiello et al. 2000

Table 7: Selected papers for example in Figure 7 (networks)
Rank Title Authors Year

1 Self-similarity in World Wide Web traffic: evidence and possible causes Crovella, Bestavros 1997
2 Empirically derived analytic models of wide-area TCP connections Paxson 1994
3 Power laws and the AS-level internet topology Siganos et al. 2003
4 Characteristics of WWW Client-based Traces Cunha et al. 1995
5 Weighted graphs and disconnected components: patterns and a genera-

tor
McGlohon et al. 2008

6 Learning for accurate classification of real-time traffic Li, Moore 2006
7 BLINC: multilevel traffic classification in the dark Karagiannis et al. 2005
8 Graphs over time: densification laws, shrinking diameters and possible

explanations
Leskovec et al. 2005

9 Graph evolution: Densification and shrinking diameters Leskovec et al. 2007
10 A Prefetching Protocol Using Client Speculation for the WWW Bestavros, Cunha 1995
11 Scalable modeling of real graphs using Kronecker multiplication Leskovec, Faloutsos 2007
12 ANF: a fast and scalable tool for data mining in massive graphs Palmer et al. 2002
13 A random graph model for massive graphs Aiello et al. 2000
14 Profiling internet backbone traffic: behavior models and applications Xu et al. 2005

27



Table 8: Selected papers for example in Figure 7 (graphics)
Rank Title Authors Year

1 Characteristics of WWW Client-based Traces Cunha et al. 1995
2 Power laws and the AS-level internet topology Siganos et al. 2003
3 Empirically derived analytic models of wide-area TCP connections Paxson 1994
4 ANF: a fast and scalable tool for data mining in massive graphs Palmer et al. 2002
5 Self-similarity in World Wide Web traffic: evidence and possible causes Crovella, Bestavros 1997
6 Weighted graphs and disconnected components: patterns and a genera-

tor
McGlohon et al. 2008

7 Parallax photography: creating 3D cinematic effects from stills Zheng et al. 2009
8 On inferring autonomous system relationships in the internet Gao 2001
9 Power-law relationship and self-similarity in the itemset support distri-

bution: analysis and applications
Chuang et al. 2008

10 On the origin of power laws in Internet topologies Medina et al. 2000
11 Composable controllers for physics-based character animation Faloutsos et al. 2001
12 Segmenting motion capture data into distinct behaviors Barbič et al. 2004
13 Efficiently serving dynamic data at highly accessed web sites Challenger et al. 2004
14 Graph mining: Laws, generators, and algorithms Chakrabarti, Faloutsos 2006

28



Table 9: Selected papers for example in Figure 7 (data mining)
Rank Title Authors Year

1 Characteristics of WWW Client-based Traces Cunha et al. 1995
2 Power laws and the AS-level internet topology Siganos et al. 2003
3 Graph evolution: Densification and shrinking diameters Leskovec et al. 2007
4 Graphs over time: densification laws, shrinking diameters and possible

explanations
Leskovec et al. 2005

5 Weighted graphs and disconnected components: patterns and a genera-
tor

McGlohon et al. 2008

6 Self-similarity in World Wide Web traffic: evidence and possible causes Crovella, Bestavros 1997
7 Microscopic evolution of social networks Leskovec et al. 2008
8 Statistical properties of community structure in large social and infor-

mation networks
Leskovec et al. 2008

9 Scalable modeling of real graphs using Kronecker multiplication Leskovec, Faloutsos 2007
10 Empirically derived analytic models of wide-area TCP connections Paxson 1994
11 ANF: a fast and scalable tool for data mining in massive graphs Palmer et al. 2002
12 Structure and evolution of online social networks Kumar et al. 2006
13 Visualization of large networks with min-cut plots, A-plots and R-MAT Chakrabarti et al. 2007
14 GraphScope: parameter-free mining of large time-evolving graphs Sun et al. 2007
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