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Abstract In a buffer overflow attack, the attacker’s aim is to gain
Buffer overflow exploits make use of the treatment of stringsiccess to a system by changing the control flow of a pro-
in C as character arrays rather than as first-class objects.gram so that the program executes code that has been care-
Manipulation of arrays as pointers and primitive pointer fully crafted by the attacker. The code can be inserted in the
arithmetic make it possible for a program to access memonaddress space of the program using any legitimate form of in-
locations which it is not supposed to access. There have beqmut. The attacker then corrupts a code pointer in the address
many efforts in the past to overcome this vulnerability by perspace by overflowing a buffer and makes it point to the in-
forming array bounds checking in C. Most of these solutiongected code. When the program later dereferences this code
are either inadequate, inefficient or incompatible with legacypointer, it jumps to the attacker’s code. Such buffer overflows
code. In this paper, we present an efficient and transparenvccur mainly due to the lack of bounds checking in C library
runtime approach for protection against all known forms of functions and carelessness on the programmer’s part. For ex-
buffer overflow attacks. Our solution consists of two tools:ample, the use dftrcpy()  in a program without ensuring
TIED (Type Information Extractor and Depositor) and Lib- that the destination buffer is at least as large as the source
safePlus. TIED extracts size information of all global and au-string is apparently a common practice among many C pro-
tomatic buffers defined in the program from the debugging ingrammers.
formation produced by the compiler and inserts it back in the = Buffer overflow exploits come in various flavours. The
program binary as a data structure available at runtime. Lib- simplest and also the most widely exploited form of attack
safePlus is a dynamic library which provides wrapper func-changes the control flow of the program by overflowing some
tions for unsafe C library functions such ascpy . These puffer on the stack so that the return address or the saved
wrapper functions check the source and target buffer sizes ugrame pointer is modified. This is commonly called the “stack
ing the information made available by TIED and perform thesmashing attack’|3]. Other more complex forms of attacks
requested operation only when it is safe to do so. For dymay not change the return address but attempt to change the
namically allocated buffers, the sizes and starting addressegrogram control flow by corrupting some other code point-
are recorded at runtime. With our simple design we are ableers (such as function pointers, GOT entries, longjmp buffers,
to protect most applications with a performance overhead ottc.) by overflowing a buffer that may be local, global or dy-

less than 10%. namically allocated. Many common forms of buffer overflow
attacks are described inl [4].
1 Introduction Due to the huge amount of legacy C code existing today,

which lacks bounds checking, an efficient runtime solution
Buffer overflows constitute a major threat to the security ofis needed to protect the code from buffer overflows. Other
computer systems today. A buffer overflow exploit is bothsolutions which have developed over the years such as man-
common and powerful, and is capable of rendering a comual/automatic auditing of the code, static analysis of pro-
puter system totally vulnerable to the attacker. As reportedjrams, etc., are mostly incomplete as they do not prevent all
by CERT, 11 out of 20 most widely exploited attacks haveattacks. A runtime solution is required because certain type
been found to be buffer overflow attacks [1]. More than 50%of information is not available statically. For example, infor-
of CERT advisories [2] for the year 2003 reported buffer over-mation about dynamically allocated buffers is available only
flow vulnerabilities. It is thus a major concern of the comput-at runtime. However, most current runtime solutions are un-
ing community to provide a practical and efficient solution to acceptable because they either do not protect against all forms
the problem of buffer overflows. of buffer overflow attacks, break existing code, or impose too



high an overhead to be successfully used with common agfer unsafe C library functions. Each such wrapper function

plications. An acceptable solution must tackle all of thesechecks the bounds of the destination buffer before performing

problems. the actual operation. For dynamically allocated buffers, Lib-
In this paper, we present a simple yet robust solution tesafePlus maintains an additional runtime data structure that

guard against all known forms of buffer overflow attacks. Thestores information about the locations and sizes of all dynam-

solution is a transparent runtime approach to prevent such aigally allocated buffers. In contrast to other approaches which

tacks and consists of two tools: TIED and LibsafePlus. Lib-are mainly compiler extensions, LibsafePlus does not require

safePlus is a dynamically loadable library and is an extensiosource code access if the program is compiled with-the

to Libsafe [5]. LibsafePlus contains wrapper functions for un-option and is not statically linked with the C library.

safe C library functions such asgcpy . Awrapper function

determines the source and target buffer sizes and performs t| N
xecurable
—g option

Executable with|
required operation only if it would not result in an overflow. cornmladwun—» i3peinformation

To enable runtime size checking we need to have addition
type information about all buffers in the program. This is

done by compiling the target program with tige debugging
option. TIED (Type Information Extractor and Depositor) is un

atool that extracts the debugging information from a progran b N execation
binary and then augments the binary with an additional data overtlow ez
structure containing the size information for all buffers in the
program. This information is utilized by LibsafePlus to range
check buffers at runtime. For keeping track of the sizes o
dynamically allocated buffers, LibsafePlus intercepts calls to

themalloc  family of functions. Our tools thus neither re- | . o ic 2150 a dynamically loadable library which pro-

quire access to the source code (ifit was compiled withighe vides wrapper functions for unsafe C library functions such

option) nor any modifications to the compiler, and are Com'asstrcpy() . However, Libsafe protects only against stack

) ) . r%mashing attacks. Even for stack variables, Libsafe assumes
found to be effective against all forms of attacks and impose A safe upper bound on the size of a buffer instead of deter-

i 0,
low runtime performance overhead of less than 10% for moS’ltnining its exact size. Therefore, it is possible for the attacker

applications. to change variables in the program that are next to the buffer

The rest of the paper is organized as follows. We preser’ﬁ_' memory. Unlike Libsafe, our tools offer full protection

an overview of our approach in Sectiph 2. Secfign 3 de-,__. - :
. ) . . _against all forms of attack and determine the exact sizes of
scribes the implementation of TIED and LibsafePlus. This gains S I Xact sizes

. - . Il buffers. They have been tested extensively and have been
is followed by a description of performance experiments anqa

) . . X . und to be effective against all forms of buffer overruns. Our
results, in Sectiofi]4. Secti¢n 5 briefly discusses the reIatng g

) . ols successfully prevented all the 20 different overflow at-
work done in the area of buffer overflow protection. Sedfiion 6tacks in the testbed developed by Wilander and Kamkar for
concludes the paper.

testing tools for dynamic overflow attacks [6], while the orig-
inal Libsafe could only detect only 6 of the 20 attacks.
2 Basic approach In the following subsections, we describe in detail the de-
sign of Libsafe and our extensions to it. We first describe in
The steps in the protection of a program using TIED and Lib-Section 2L, the protection mechanism used by Libsafe and
safePlus are shown in Figyrg 1. The key idea here is to aughen show in Sectiop 2.2, how LibsafePlus extends the basic
ment the executable with information about the locations anghrotection mechanism, to handle all forms of buffer overflow
sizes of character buffers. To this end, the program sourcattacks.
must be compiled with theg option which directs the com-
piler to dump dgbuggiqg information rggarding the sizes an%l Runtime range checking by Libsafe
types of all variables in the program in the generated exe-
cutable binary. The next step is to rewrite the executable witfThe goal of Libsafe is to prevent corruption of the return ad-
the required information as an additional data structure in thelresses and saved frame pointers on the stack in the event
form of a separate read-only section of the executable. Thief a stack buffer overflow. Libsafe does not guarantee pro-
makes the information about buffer sizes available at runtimetection against any other form of attack. To ensure that the
The binary rewriting of the executable is done by TIED. Lib- frame pointers and the return addresses are never overwrit-
safePlus is implemented as a dynamically loadable libraryen, Libsafe assumes a safe upper bound on the size of stack
that must be preloaded for a process to be protected. To ebuffers, since it does not possess sufficient information to de-
able range checking, LibsafePlus provides wrapper functiongermine the exact sizes of stack buffers at runtime. The un-

Preload

Figure 1: Rewriting of the binary executable by TIED and
{untime range checking by LibsafePlus

LibsafePlus is implemented as an extension to Libsafe [5].



derlying principle is that a buffer cannot extend beyond thein the form of special debugging sections. DWARF (Debug-
stack frame within which it is allocated. Thus the maxi- ging With Arbitrary Record Format) [7] is the standard format
mum size of a buffer is the difference between the startindor encoding the symbolic, source level debugging informa-
address of the buffer and the frame pointer for the correspondion. TIED uses thdibdwarf consumer interfacé [8] to read
ing stack frame. To determine the frame corresponding to ¢he DWARF information present in the executable. For each
stack buffer, the topmost stack frame pointer is retrieved andunction, information about all the local buffers is collected
the frame pointers are traversed on the stack until the requireid the form of (offset from frame pointer, size) pair. In the
frame is discovered. current implementation, we extract information about char-
Based on the above design, Libsafe isimplemented as a dypcter arrays only. For global buffers, the starting addresses
namically loadable library which provides wrapper functionsand sizes are extracted. The members of arrays, structures
for unsafe C functions such asrcpy() . The purpose of and unions are also explored to detect any buffers that may lie
a wrapper function is to determine the size of the destinationithin them. Figurg¢ P demonstrates a typical case of buffers
buffer and check whether the destination buffer is at least awithin structures. TIED detects all the 40 buffers in this case.
large as the source string. If the check fails, the program is
terminated. Otherwise, the wrapper function simply calls the

- ; : struct s
original C library function. char a[10];

char b[5];
2.2 Extended runtime range checking by Lib- }
safePlus struct s foo[20];

As seen above, Libsafe determines bounds on the size of stack ] o

buffers and prevents overwriting of frame pointers and return Figure 2: Buffers within a structure

addresses. Although, it provides transparent runtime protec-

tion against buffer overflows it does so only for stack buffers. Buffers that appear inside a union may overlap with each

Also, for stack buffers the attacker is allowed to overwrite other. For example, consider the variabldeclared as in Fig-

everything in the stack frame upto the frame pointer. ure[3. Here, the buffex.s2.b  partially overlaps with both
Our extension to Libsafe, LibsafePlus is able to thwart allx.sl.a andx.sl.c . The problem is to decide whether a

forms of buffer overflow attacks. In order to perform pre- string copy of 10 bytes at destination addrgssid *)&x

cise range checking of global and local buffers, LibsafePlust 4) should be permitted. If it is, it may be used by an at-

uses the information about buffer sizes made available to it dacker to overflonx.sl.a and write an arbitrary value to

runtime by TIED. If this information is not available, Libsafe- X.s1.b . On the other hand, if the string copy is not permit-

Plus falls back to the checks performed by Libsafe (no rangéed, legitimate writes ta.s2.b may be denied. TIED, by

checks for global buffers and upper bounds on sizes of locaiefault, takes the latter approach, in order to prevent all pos-

buffers). For range checking dynamically allocated bufferssible buffer overflows. However, it is possible to force TIED

LibsafePlus intercepts calls to tmealloc family of func-  to take the former approach by specifying a command line

tions and thus keeps track of the sizes of various dynamicallpption.

allocated buffers.

3.2 Binary rewriting

3 Implementation After extracting the type information from the DWARF tables

in the executable, TIED first filters it to retain information

In this section, we describe the implementation of TIED andynly about variables that are character arrays. It then con-
LibsafePlus. Sectiorls 3.1 ahd 3.2 show how TIED extractgrycts data structures to store this information for efficient
the type information from an executable and makes it availyyntime lookup. These data structures are then dumped back
able as a new section in the binary. Secfior 3.3 describes hojto the executable file as a new read-only, loadable section.
LibsafePlus keeps track of the addresses and sizes of dynamyrently TIED handles executable files in the ELF format
ically allocated buffers. Finally, in Secti¢gn 8.4, we describegpyy,

how LibsafePlus range checks buffers at runtime by intercept- The type information available at runtime is organized in

ing unsafe C library functions. the form of several tables that are linked with each other
through pointers, as shown in Figure 4. The top level struc-
3.1 Extracting type information ture is a type information header that contains pointers to,

and sizes of a global variable table, and a function table. The
If the -g option is used to compile a program, the compilerglobal variable table contains the starting addresses and sizes
adds type information about all variables to the executabl®f all global buffers. The function table contains an entry for



struct my_structl{
char a[10];

void *b;

char c[10];

3

struct my_struct2{
void *a;

char b[16];

h

union my_union{
struct my_structl s1;
struct my_struct2 s2;

}x

Q 10
%nsla 10 bypes

14

_%slo 19 byes

4 x.s2.b 16 bpes

Figure 3: Overlapping buffers inside a union

After constructing these tables in its own address space,
TIED finds a suitable virtual address in the target executable
for dumping these data structures. The data structure is then
“serialized” to a byte array, and the pointers are relocated
according to the address at which the data structure will be
placed in the target binary.

To ensure that addresses of existing code and data elements
in the target binary do not change, the target binary is ex-
tended towards lower addresses by a size that is large enough
to hold the type information data structures and is a multi-
ple of the page size. The new data structure is dumped in
this space. A pointer to the new section is made available as
the value of a special symbol in the dynamic symbol table
of the binary. Since this requires changes to .thenstr
.dynsym , and.hash sections, and these sections cannot
be enlarged without changing addresses of existing objects,
TIED places the extended versions of these sections in the
new space created, and changes their addresses in the existing
.dynamic section. Figurg]5 illustrates the changes made to
the target binary.

each function that has one or more character buffers as local
variables or argumenfsEach entry in the function table con-
tains the starting and ending code addresses for the functio

ELF HEADER

PROGRAM HEADERS

and the size of and a pointer to the local variable table for the
function. The local variable table for a function contains sizes
and offsets from the frame pointer for each local variable of
the function or argument to the function that is a characte
array. The global variable table, the function table, and the
local variable tables are all sorted on the addresses or offsg

to facilitate fast lookup

Globxg:fo,header pointer

No. of global variables

Prr. to global var. table
No. of functions

Prr. to function wble

Global Yariable Table

Starting address | Size

Function Table

Local Variable Table
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/

Figure 4: Data structures for storing type information
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Figure 5: ELF executable before and after rewriting

3.3 Extracting size of heap buffers

By binary rewriting, all the buffers whose sizes are known
at compile time can be protected from overflow. To cap-
ture the sizes of all dynamically allocated buffers, Libsafe-
Plus intercepts all calls to thmalloc family of functions,
viz. malloc ,calloc ,realloc andfree . In addition to
calling the actual glibc function, the wrapper function records

1An array can be an argument passed by value to a function if the array ithe starting address and the size of the chunk of memory al-
part of a structure and the structure is passed by value.

located. The number of elementmemin the buffer is also



recorded.nmemis equal to 1 except for buffers allocated us- wrapper is performed. If the size of destination buffer is avail-
ing calloc(nmemb, size) , in which case it is equal to able, size of the contents of source buffer is determined. The
nmemb LibsafePlus usesmemto enforce a more rigorous contents are copied only if destination buffer is large enough
size checE] For example, for the code below, an overflow to hold all the contents. The program is killed otherwise.

will be detected if the tighter check is enforced.

char *buf = (char *)calloc( 5, 10 ); 4 Performance

strepy(buf, "A long string");
PY( g 9 We have tested LibsafePlus for its ability to detect buffer

A red-black tree([9] is used to maintain the size informa-overflows as well as for the overhead incurred by loading
tion about dynamically allocated buffers. The tree containg ibsafePlus with applications. To test the protection ability of
a node for each buffer allocated usinmlloc , calloc or  LibsafePlus, we used the test suite developed by Wilander and
realloc . On freeing a memory area usifige , the cor-  Kamkar [6]. This test suite implements 20 techniques to over-
responding node is removed. Memory allocation for nodes irflow a buffer located on stacldata or.bss sections. The
the red-black tree is done by a fast, custom memory allocataest suite executable was first modified using TIED. TIED de-
that directly usesnmapto allocate memory. tected all the global and local buffers declared in the test suite

program. LibsafePlus was then preloaded while running the
3.4 Intercepting unsafe functions and bounds binary. All tests were successfully terminated by LibsafePlus

verification when an overflow was attempted.
For testing performance overhead incurred due to Libsafe-

As outlined in Sectiof]2, LibsafePlus works by interceptingPlus, we first measured overhead at a function call level.
unsafe C library functions. The wrapper functions attempt taNext, the overall performance of 12 representative applica-
determine the size of destination buffer. If the size of sourcdions was measured. In the following subsections, we de-
buffer is less than that of the destination buffer, an actual C liscribe these tests and their results.
brary function likememcpyor strncpy is used to perform
the copying. An overflow is declared when the size of con-4 1 Micro benchmarks
tents being copied is more than what the destination can hold,
in which case the program is killed. If the size of the bufferIn this section, we present a comparison of the execu-
can not be determined (for example, if TIED was not used tdion times of various library functions likenalloc()
augment the binary and the buffer is either global or local)memcpy() etc. for the following three cases.
the default protection offered by Libsafe is provided.

To determine the size of the destination buffer, it is first
checked whether the destination buffer is on the stack, simply e The program was protected with Libsafe.
by checking if its address is greater than the current stack
pointer. If found on stack, the stack frame encapsulating the
buffer is found by tracing the frame pointers. The functionThe tests were conducted on a 1.6 GHz Pentium 4 machine
corresponding to the stack frame is searched in the functiorunning Linux 2.4.18.
table present in the new section, using the return address from We present here the performance results for two most
the stack frame above. Finally, the size of the buffer is founccommonly used string handling functionsnemcpy and
by searching in the local variable table corresponding to th&trcpy . To measure the overhead of finding sizes of global
function. and local buffers using the new section in the executable, we

If the buffer is not on stack, it is checked whether it is performed the following experiment. The test program con-
on the heap by comparing its address with the minimunmtained 100 global buffers and 100 functions. Each function
heap address. The minimum heap address is recorded Iyad 3 local buffers. The time required by a singlemcpy()
themalloc andcalloc wrappers and is the address of the into global and local buffers was measured for varying num-
chunk allocated by the first call tmalloc orcalloc . The ber of bytes copied. As shown in Figyre 6, we found a con-
buffer is assumed to be on the heap if its address is greatgtant overhead of 0.8 for memcpy() to global buffers.
than the minimum heap address. In this case, its size is deteThis translates to a 100% overhead foemcpy() upto 64
mined by searching in the red-black tree. bytes and decreases to a 12% overheadrfemcpy() in-

Finally, if the buffer is neither on stack, nor on heap, it is volving about 1024 bytes. For local buffers, the overhead due
searched for in the global variable table. If none of the aboveo LibsafePlus is 2.,2s per call tomemcpy() as shown in
checks yields the size of buffer, the intended operation of théigure[7. This includes the 0.8 overhead due to Libsafe for
2A few programs have been found to fail when the rigorous check is ap-locatmg the stack frame correspondlng FO the buffer. .
plied. LibsafePlus, therefore, provides the strict check as an option that can To measure the overhead of finding size of a heap variable
be turned on using an environment variable. from the red-black tree, the test program first allocated 1000

e The test was run without any protection.

e The program was protected with LibsafePlus.
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heap buffers. It then allocated another heap buffer and me:

sured the time taken by omeemcpy() to it. This represents
the worst case performance as the buffer being copied to
the right most child in the red-black tree. As shown in Fig-
ure[§, the overhead due to LibsafePlus is/&.@er call to
memcpy() .
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0.8us for buffers of size 1 byte to O for buffers of about 400
bytes. This is because the wrapper functionswcpy()
in LibsafePlus usememcpy() for copying, which is 6 to

8 times faster thastrcpy()

and heap buffers respectively.

for large buffer sizes. Fig-
ures[ 10 an@ 11 show similar results frcpy()
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Next, we measured the overhead due to LibsafePlus in
dynamic memory allocation. The insertion and deletion of
nodes in the red-black tree is the primary constituent of
this overhead. We measured the time required by a pair of

malloc() andfree()

calls. The number of buffers al-

ready present in the red-black tree at the time of allocating
the buffer was varied frord® to 22'. As shown in Figurg 12,

the time taken by LibsafePlus fanalloc()

, free()

pair

grows almost logarithmically with the number of buffers al-
ready present in the red-black tree. This is expected because
of theO(log(N)) time operations of insertion and deletion of

nodes in a red-black tree.

Macro benchmarks

We also measured the performance of LibsafePlus for calls

to strepy()

. The testbed was similar to the one describedNext, we measured the performance overhead due to Libsafe-

earlier formemcpy() . Figure[9 shows the time taken by Plus using a number of applications that involve substantial

onestrcpy()

to a global buffer. The overhead drops from dynamic memory allocation and operations lgtecpy()



Application

| What was measured

|

Apache-2.0.48

Bison-1.875
Enscript-1.6.1
Hypermail-2.1.8
OpenSSH-3.7.1
OpenSSL-0.9.7
Gnupg-1.2.3
Grep-2.5
Monkey

Ccrypt

Tar

Sendmail-8.12.10

Connection rate, response time and error rate while requesting a large file from the web
Time to connect and connection rate achieved while sending a large message.

Time to parse a large grammar file and generate C code.

Time to convert a large text file to postscript.

Time to process a large mailbox file.

Time to transfer a large set of files using the loopback interface.

Time to sign and verify using RSA.

Time to encrypt and decrypt a large file.

Time to perform a search for palindromes using back references on a large file.
Connection rate, response time and error rate while requesting a large file from the web
Time to decrypt a large file encrypted using ccrypt.

Time to compress and bundle a large set of files.

server.

server.

Table 1: Description of application benchmarks

to buffers. In all, a total of 12 applications were used to eval-

Tiioe taken [os)

uate the overhead of LibsafePlus and Libsafe. Thble 1 de-
scribes the performance metric used in each case. The perfor-
mance overheads are shown in Figurg 13. The graph shows
normalized metric values with respect to the case when no li-
brary was preloaded. The overhead due to LibsafePlus was
found to be less than 34% for all cases except for Bison.
In 8 out of 12 applications, the overhead of LibsafePlus was
within 5% of that of Libsafe. In case of Enscript, Grep and
Bison, the slowdown observed is due to a huge number of
dynamic memory allocations and string operations on heap
buffers.

We now present a comparison of performance overhead of
our tool with that of CREDI[10] (strings only mode). As
shown in Tabld P, for 9 out of the 11 applications which
have been used to measure the performance overhead of both
the tools, LibsafePlus performs better than CRED. The slow-
down observed for CRED, as compared to LibsafePlus, is sig-
nificant for Apache, Enscript, Hypermail, Gnupg and Mon-
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Figure 12: Performance overhead for malloc(), free() pair Table 2: Performance overheads of LibsafePlus and CRED

(strings only mode)
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5 Related work tion but still it does not guarantee complete protection from

all forms of attacks. For example, return-into-libc attacks are
In this section, we review the related work in the area of pro-still possible.
tection against buffer overflow attacks.

5.2 Static analysis based techniques

5.1 Kernel based techniques
q Static analysis approaches to handling buffer overflows at-

The common feature used by the majority of buffer overflowtempt to analyze the program source and determine if the pro-
attacks is the ability to execute code located on the stack. S@ram execution can result in a buffer overflow.
lar Designer has developed a Linux patch that makes the stack Wagneret al. formulated the detection of buffer overruns
non-executable [11], precisely to counteract the stack smaslas an integer range analysis probleml![14]. The approach
ing attacks. The solution has some serious weaknesses. Firgtpdels C strings as a pair of integer ranges (allocated size
nested functions or trampoline functions, which are used bynd length) and vulnerable C library functions are modeled
LISP interpreters, many Objective C compilers (includingin terms of their operations on the integer ranges. Thus, the
gcc), and most common implementations of signal handlerproblem reduces to an integer range tracking problem. The
in Unix, require the stack to be executable. Second, the adescribed tool checks, for each string buffer, whether its in-
tacker does not require the code to be stored on a stack buffégrred length is at least as large as the allocated length. The
for the exploit to work. Methods to bypass the non-executabléool is impractical to use since it produces a large number of
stack defense have been explored by Wojtczuk [12]. false positives, due to lack of precision, as well as some false
PaX [13] is another kernel patch which aims to protect thenegatives.
heap as well as the stack. The idea behind PaX is to mark the The annotation based static code checker based on
data pages non-executable by overloading supervisor/user RCLint [15] by Larochelle and Evan§ [16] exploits the infor-
on pages and enabling the page fault handler to distinguisimation provided in programs in the form of semantic com-
the page faults due to attempts to execute data pages. PaXents. The approach extends the LCLint static checker by
also imposes a significant performance overhead due to addiatroducing new annotations which allow the declaration of
tional work done by the page fault handler for each page faulta set of preconditions and postconditions for functions. The
Although protecting the heap offers some additional protectool does not detect all buffer overflow vulnerabilities and of-



ten generates spurious warnings. tation.

CSSV/[17]is another tool for statically detecting string ma- The backwards compatible bounds checking technique by
nipulation errors. The tool handles large programs by analyzdones and Kelly [23] is a compiler extension that employs the
ing each procedure separately and requpesedure con- notion ofreferent objectsThe referent object for a pointer is
tractsto be defined by the programmer. A procedure contracthe object to which it points. The approach works by main-
defines a set of preconditions, postconditions and side-effectaining a global table of all referent objects which maintains
of the procedure. The tool is impractical to use for existinginformation about their size, location, etc. Furthermore, a
large programs since it requires the declaration of procedurseparate data structure is maintained for heap buffers by mod
contracts by the programmer. As for other static techniquedfying malloc() andfree() functions. Range checking
the tool can produce false alarms. is done at the time of dereferencing a pointer or while per-
forming pointer arithmetic. The technique breaks existing
code and involves a high performance overhead for applica-
tions which are pointer and array intensive since every pointer

StackGuard[[18] is an extension to the GNU C compilerOr array access has to be checked at runtime.
that protects against stack smashing attacks. StackGuard en-The C Range Error Detector(CRED) [10] is an extension
hances the code produced by the compiler so that it detect Jones and Kelly's approach. CRED extends the idea of
changes to the return address by placingaaaryword on  referent objects and allows the use of a previously stored out-
the stack above the return address and checking the valw-bounds address to compute an in-bounds address. This is
of the canary before the function returns. Téenaryis a  done by storing all the information about out-of-bounds ad-
sequence of bytes which could be fixed or random. The apdresses in an additional data structure on the heap. The ap-
proach assumes that the return address is unaltered if and orftyoach fails if an out-of-bounds address is passed to an exter-
if the canary word is unaltered. StackGuard imposes a signifinal library or if an out-of-bounds address is cast to an integer
cant runtime overhead and requires access to the source coééd subsequently cast back to a pointer. As for Jones and
Techniques to bypass StackGuard protection are described Ifelly’s technique, the tool involves a high performance over-
Richarte [19]. head for pointer/array intensive programs since every access
StackShield[[20] is also implemented as a compiler extento a pointer has to be checked.
sion that protects the return address. The basic idea here is toThe type assisted dynamic array bounds checking tech-
save return addresses in an alternate non-overflowable memigque by Lhee and Chapih [24] is also a compiler extension
ory space. The resulting effect is that return addresses on thibat works by augmenting the executable with additional in-
stack are not used, instead the saved return addresses are uk®thation consisting of the address, size and type of local
to return from functions. As with StackGuard, the sourcebuffers, pointers passed as parameters to functions and static
code needs to be recompiled for protection. A detailed debuffers. An additional data structure is maintained for heap
scription of StackShield protection and techniques to bypasbuffers. Range checking is actually performed by modified
it were presented by Richari{e [19]. C library functions which utilize this information to guaran-
Propolice [[21] is another compiler extension which modi-tee that overflows do not occur. As for other compiler based
fies the syntax tree or intermediate language code for the prdechniques, the solution is not portable and requires access to
tected program. SSP (Propolice) aims to protect the saveiihe source code of the program. It can be seen that our ap-
frame pointer and the return address by placing a random cgroach is very similar to Lhee and Chapin’s approach. How-
nary on the stack above the saved frame pointer. In additiorgver, the main advantage of our approach is that it does not
SSP protects local variables and function arguments by createquire compiler modifications and can work with the output
ing a local copy of arguments and rearranging the local variof any compiler that can produce debugging information in
ables on the stack so that all local buffers are stored at a highéihe DWARF format.
address than local variables and pointers. As for StackGuard PointGuard([25] is a pointer protection technique that en-
and StackShield, it requires the recompilation of the sourcerypts pointers when they are stored in memory and de-
code. Although SSP protects against stack smashing attacksypts them when they are loaded into CPU registers. Point-
it is vulnerable to other forms of attacks. Guard is implemented as a compiler extension that modifies
The memory access error detection technique by Awdtin the intermediate syntax tree to introduce code for encryption
al. [22] extends the notion of pointers in C to hold additional and decryption. Encryption provides for confidentiality only,
attributes such as the location, size and scope of the pointdrence PointGuard gives no integrity guarantees. Although,
This extended pointer representation is calledsthfe pointer  PointGuard imposes an almost zero performance overhead
representation. The additional attributes are used to perforifor most applications, it protects only code pointers (func-
range access checking when dereferencing a pointer or whikon pointers and longjmp buffers) and data pointers and of-
doing pointer arithmetic. The approach fails to work with fers no protection for other program objects. Also, protection
legacy C code as it changes the underlying pointer represef mixed-mode code using PointGuard requires programmer

5.3 Runtime techniques



intervention.

One of the major drawbacks of all existing runtime tech-
nigues is that they require changes to the compiler. None[
of these techniques seem to have been adopted by any of
the mainstream compilers so far. In contrast, our approach
does not require any compiler modifications and can be used[Z]
with any existing compiler. We feel that this may lead to

widespread adoption of this technique in practice.

6 Conclusions and future work

In this paper, we have presented TIED and LibsafePlus.
These are simple, robust and portable tools that can together
guard against all known forms of buffer overflow attacks.
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