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Abstract
Buffer overflow exploits make use of the treatment of strings
in C as character arrays rather than as first-class objects.
Manipulation of arrays as pointers and primitive pointer
arithmetic make it possible for a program to access memory
locations which it is not supposed to access. There have been
many efforts in the past to overcome this vulnerability by per-
forming array bounds checking in C. Most of these solutions
are either inadequate, inefficient or incompatible with legacy
code. In this paper, we present an efficient and transparent
runtime approach for protection against all known forms of
buffer overflow attacks. Our solution consists of two tools:
TIED (Type Information Extractor and Depositor) and Lib-
safePlus. TIED extracts size information of all global and au-
tomatic buffers defined in the program from the debugging in-
formation produced by the compiler and inserts it back in the
program binary as a data structure available at runtime. Lib-
safePlus is a dynamic library which provides wrapper func-
tions for unsafe C library functions such asstrcpy . These
wrapper functions check the source and target buffer sizes us-
ing the information made available by TIED and perform the
requested operation only when it is safe to do so. For dy-
namically allocated buffers, the sizes and starting addresses
are recorded at runtime. With our simple design we are able
to protect most applications with a performance overhead of
less than 10%.

1 Introduction

Buffer overflows constitute a major threat to the security of
computer systems today. A buffer overflow exploit is both
common and powerful, and is capable of rendering a com-
puter system totally vulnerable to the attacker. As reported
by CERT, 11 out of 20 most widely exploited attacks have
been found to be buffer overflow attacks [1]. More than 50%
of CERT advisories [2] for the year 2003 reported buffer over-
flow vulnerabilities. It is thus a major concern of the comput-
ing community to provide a practical and efficient solution to
the problem of buffer overflows.

In a buffer overflow attack, the attacker’s aim is to gain
access to a system by changing the control flow of a pro-
gram so that the program executes code that has been care-
fully crafted by the attacker. The code can be inserted in the
address space of the program using any legitimate form of in-
put. The attacker then corrupts a code pointer in the address
space by overflowing a buffer and makes it point to the in-
jected code. When the program later dereferences this code
pointer, it jumps to the attacker’s code. Such buffer overflows
occur mainly due to the lack of bounds checking in C library
functions and carelessness on the programmer’s part. For ex-
ample, the use ofstrcpy() in a program without ensuring
that the destination buffer is at least as large as the source
string is apparently a common practice among many C pro-
grammers.

Buffer overflow exploits come in various flavours. The
simplest and also the most widely exploited form of attack
changes the control flow of the program by overflowing some
buffer on the stack so that the return address or the saved
frame pointer is modified. This is commonly called the “stack
smashing attack” [3]. Other more complex forms of attacks
may not change the return address but attempt to change the
program control flow by corrupting some other code point-
ers (such as function pointers, GOT entries, longjmp buffers,
etc.) by overflowing a buffer that may be local, global or dy-
namically allocated. Many common forms of buffer overflow
attacks are described in [4].

Due to the huge amount of legacy C code existing today,
which lacks bounds checking, an efficient runtime solution
is needed to protect the code from buffer overflows. Other
solutions which have developed over the years such as man-
ual/automatic auditing of the code, static analysis of pro-
grams, etc., are mostly incomplete as they do not prevent all
attacks. A runtime solution is required because certain type
of information is not available statically. For example, infor-
mation about dynamically allocated buffers is available only
at runtime. However, most current runtime solutions are un-
acceptable because they either do not protect against all forms
of buffer overflow attacks, break existing code, or impose too



high an overhead to be successfully used with common ap-
plications. An acceptable solution must tackle all of these
problems.

In this paper, we present a simple yet robust solution to
guard against all known forms of buffer overflow attacks. The
solution is a transparent runtime approach to prevent such at-
tacks and consists of two tools: TIED and LibsafePlus. Lib-
safePlus is a dynamically loadable library and is an extension
to Libsafe [5]. LibsafePlus contains wrapper functions for un-
safe C library functions such asstrcpy . A wrapper function
determines the source and target buffer sizes and performs the
required operation only if it would not result in an overflow.
To enable runtime size checking we need to have additional
type information about all buffers in the program. This is
done by compiling the target program with the-g debugging
option. TIED (Type Information Extractor and Depositor) is
a tool that extracts the debugging information from a program
binary and then augments the binary with an additional data
structure containing the size information for all buffers in the
program. This information is utilized by LibsafePlus to range
check buffers at runtime. For keeping track of the sizes of
dynamically allocated buffers, LibsafePlus intercepts calls to
the malloc family of functions. Our tools thus neither re-
quire access to the source code (if it was compiled with the-g
option) nor any modifications to the compiler, and are com-
pletely compatible with legacy C code. The tools have been
found to be effective against all forms of attacks and impose a
low runtime performance overhead of less than 10% for most
applications.

The rest of the paper is organized as follows. We present
an overview of our approach in Section 2. Section 3 de-
scribes the implementation of TIED and LibsafePlus. This
is followed by a description of performance experiments and
results, in Section 4. Section 5 briefly discusses the related
work done in the area of buffer overflow protection. Section 6
concludes the paper.

2 Basic approach

The steps in the protection of a program using TIED and Lib-
safePlus are shown in Figure 1. The key idea here is to aug-
ment the executable with information about the locations and
sizes of character buffers. To this end, the program source
must be compiled with the-g option which directs the com-
piler to dump debugging information regarding the sizes and
types of all variables in the program in the generated exe-
cutable binary. The next step is to rewrite the executable with
the required information as an additional data structure in the
form of a separate read-only section of the executable. This
makes the information about buffer sizes available at runtime.
The binary rewriting of the executable is done by TIED. Lib-
safePlus is implemented as a dynamically loadable library
that must be preloaded for a process to be protected. To en-
able range checking, LibsafePlus provides wrapper functions

for unsafe C library functions. Each such wrapper function
checks the bounds of the destination buffer before performing
the actual operation. For dynamically allocated buffers, Lib-
safePlus maintains an additional runtime data structure that
stores information about the locations and sizes of all dynam-
ically allocated buffers. In contrast to other approaches which
are mainly compiler extensions, LibsafePlus does not require
source code access if the program is compiled with the-g
option and is not statically linked with the C library.

Figure 1: Rewriting of the binary executable by TIED and
runtime range checking by LibsafePlus

LibsafePlus is implemented as an extension to Libsafe [5].
Libsafe is also a dynamically loadable library which pro-
vides wrapper functions for unsafe C library functions such
asstrcpy() . However, Libsafe protects only against stack
smashing attacks. Even for stack variables, Libsafe assumes
a safe upper bound on the size of a buffer instead of deter-
mining its exact size. Therefore, it is possible for the attacker
to change variables in the program that are next to the buffer
in memory. Unlike Libsafe, our tools offer full protection
against all forms of attack and determine the exact sizes of
all buffers. They have been tested extensively and have been
found to be effective against all forms of buffer overruns. Our
tools successfully prevented all the 20 different overflow at-
tacks in the testbed developed by Wilander and Kamkar for
testing tools for dynamic overflow attacks [6], while the orig-
inal Libsafe could only detect only 6 of the 20 attacks.

In the following subsections, we describe in detail the de-
sign of Libsafe and our extensions to it. We first describe in
Section 2.1, the protection mechanism used by Libsafe and
then show in Section 2.2, how LibsafePlus extends the basic
protection mechanism, to handle all forms of buffer overflow
attacks.

2.1 Runtime range checking by Libsafe

The goal of Libsafe is to prevent corruption of the return ad-
dresses and saved frame pointers on the stack in the event
of a stack buffer overflow. Libsafe does not guarantee pro-
tection against any other form of attack. To ensure that the
frame pointers and the return addresses are never overwrit-
ten, Libsafe assumes a safe upper bound on the size of stack
buffers, since it does not possess sufficient information to de-
termine the exact sizes of stack buffers at runtime. The un-



derlying principle is that a buffer cannot extend beyond the
stack frame within which it is allocated. Thus the maxi-
mum size of a buffer is the difference between the starting
address of the buffer and the frame pointer for the correspond-
ing stack frame. To determine the frame corresponding to a
stack buffer, the topmost stack frame pointer is retrieved and
the frame pointers are traversed on the stack until the required
frame is discovered.

Based on the above design, Libsafe is implemented as a dy-
namically loadable library which provides wrapper functions
for unsafe C functions such asstrcpy() . The purpose of
a wrapper function is to determine the size of the destination
buffer and check whether the destination buffer is at least as
large as the source string. If the check fails, the program is
terminated. Otherwise, the wrapper function simply calls the
original C library function.

2.2 Extended runtime range checking by Lib-
safePlus

As seen above, Libsafe determines bounds on the size of stack
buffers and prevents overwriting of frame pointers and return
addresses. Although, it provides transparent runtime protec-
tion against buffer overflows it does so only for stack buffers.
Also, for stack buffers the attacker is allowed to overwrite
everything in the stack frame upto the frame pointer.

Our extension to Libsafe, LibsafePlus is able to thwart all
forms of buffer overflow attacks. In order to perform pre-
cise range checking of global and local buffers, LibsafePlus
uses the information about buffer sizes made available to it at
runtime by TIED. If this information is not available, Libsafe-
Plus falls back to the checks performed by Libsafe (no range
checks for global buffers and upper bounds on sizes of local
buffers). For range checking dynamically allocated buffers,
LibsafePlus intercepts calls to themalloc family of func-
tions and thus keeps track of the sizes of various dynamically
allocated buffers.

3 Implementation

In this section, we describe the implementation of TIED and
LibsafePlus. Sections 3.1 and 3.2 show how TIED extracts
the type information from an executable and makes it avail-
able as a new section in the binary. Section 3.3 describes how
LibsafePlus keeps track of the addresses and sizes of dynam-
ically allocated buffers. Finally, in Section 3.4, we describe
how LibsafePlus range checks buffers at runtime by intercept-
ing unsafe C library functions.

3.1 Extracting type information

If the -g option is used to compile a program, the compiler
adds type information about all variables to the executable

in the form of special debugging sections. DWARF (Debug-
ging With Arbitrary Record Format) [7] is the standard format
for encoding the symbolic, source level debugging informa-
tion. TIED uses thelibdwarf consumer interface [8] to read
the DWARF information present in the executable. For each
function, information about all the local buffers is collected
in the form of (offset from frame pointer, size) pair. In the
current implementation, we extract information about char-
acter arrays only. For global buffers, the starting addresses
and sizes are extracted. The members of arrays, structures
and unions are also explored to detect any buffers that may lie
within them. Figure 2 demonstrates a typical case of buffers
within structures. TIED detects all the 40 buffers in this case.

struct s{
char a[10];
char b[5];

};
struct s foo[20];

Figure 2: Buffers within a structure

Buffers that appear inside a union may overlap with each
other. For example, consider the variablex declared as in Fig-
ure 3. Here, the bufferx.s2.b partially overlaps with both
x.s1.a andx.s1.c . The problem is to decide whether a
string copy of 10 bytes at destination address((void *)&x
+ 4) should be permitted. If it is, it may be used by an at-
tacker to overflowx.s1.a and write an arbitrary value to
x.s1.b . On the other hand, if the string copy is not permit-
ted, legitimate writes tox.s2.b may be denied. TIED, by
default, takes the latter approach, in order to prevent all pos-
sible buffer overflows. However, it is possible to force TIED
to take the former approach by specifying a command line
option.

3.2 Binary rewriting

After extracting the type information from the DWARF tables
in the executable, TIED first filters it to retain information
only about variables that are character arrays. It then con-
structs data structures to store this information for efficient
runtime lookup. These data structures are then dumped back
into the executable file as a new read-only, loadable section.
Currently TIED handles executable files in the ELF format
only.

The type information available at runtime is organized in
the form of several tables that are linked with each other
through pointers, as shown in Figure 4. The top level struc-
ture is a type information header that contains pointers to,
and sizes of a global variable table, and a function table. The
global variable table contains the starting addresses and sizes
of all global buffers. The function table contains an entry for



struct my_struct1{
char a[10];
void *b;
char c[10];
};
struct my_struct2{
void *a;
char b[16];
};
union my_union{
struct my_struct1 s1;
struct my_struct2 s2;
} x;

Figure 3: Overlapping buffers inside a union

each function that has one or more character buffers as local
variables or arguments.1 Each entry in the function table con-
tains the starting and ending code addresses for the function,
and the size of and a pointer to the local variable table for the
function. The local variable table for a function contains sizes
and offsets from the frame pointer for each local variable of
the function or argument to the function that is a character
array. The global variable table, the function table, and the
local variable tables are all sorted on the addresses or offsets
to facilitate fast lookup.

Figure 4: Data structures for storing type information

1An array can be an argument passed by value to a function if the array is
part of a structure and the structure is passed by value.

After constructing these tables in its own address space,
TIED finds a suitable virtual address in the target executable
for dumping these data structures. The data structure is then
“serialized” to a byte array, and the pointers are relocated
according to the address at which the data structure will be
placed in the target binary.

To ensure that addresses of existing code and data elements
in the target binary do not change, the target binary is ex-
tended towards lower addresses by a size that is large enough
to hold the type information data structures and is a multi-
ple of the page size. The new data structure is dumped in
this space. A pointer to the new section is made available as
the value of a special symbol in the dynamic symbol table
of the binary. Since this requires changes to the.dynstr ,
.dynsym , and .hash sections, and these sections cannot
be enlarged without changing addresses of existing objects,
TIED places the extended versions of these sections in the
new space created, and changes their addresses in the existing
.dynamic section. Figure 5 illustrates the changes made to
the target binary.

Figure 5: ELF executable before and after rewriting

3.3 Extracting size of heap buffers

By binary rewriting, all the buffers whose sizes are known
at compile time can be protected from overflow. To cap-
ture the sizes of all dynamically allocated buffers, Libsafe-
Plus intercepts all calls to themalloc family of functions,
viz. malloc , calloc , realloc andfree . In addition to
calling the actual glibc function, the wrapper function records
the starting address and the size of the chunk of memory al-
located. The number of elementsnmemin the buffer is also



recorded.nmemis equal to 1 except for buffers allocated us-
ing calloc(nmemb, size) , in which case it is equal to
nmemb. LibsafePlus usesnmemto enforce a more rigorous
size check.2 For example, for the code below, an overflow
will be detected if the tighter check is enforced.

char *buf = (char *)calloc( 5, 10 );
strcpy(buf, "A long string");

A red-black tree [9] is used to maintain the size informa-
tion about dynamically allocated buffers. The tree contains
a node for each buffer allocated usingmalloc , calloc or
realloc . On freeing a memory area usingfree , the cor-
responding node is removed. Memory allocation for nodes in
the red-black tree is done by a fast, custom memory allocator
that directly usesmmapto allocate memory.

3.4 Intercepting unsafe functions and bounds
verification

As outlined in Section 2, LibsafePlus works by intercepting
unsafe C library functions. The wrapper functions attempt to
determine the size of destination buffer. If the size of source
buffer is less than that of the destination buffer, an actual C li-
brary function likememcpyor strncpy is used to perform
the copying. An overflow is declared when the size of con-
tents being copied is more than what the destination can hold,
in which case the program is killed. If the size of the buffer
can not be determined (for example, if TIED was not used to
augment the binary and the buffer is either global or local),
the default protection offered by Libsafe is provided.

To determine the size of the destination buffer, it is first
checked whether the destination buffer is on the stack, simply
by checking if its address is greater than the current stack
pointer. If found on stack, the stack frame encapsulating the
buffer is found by tracing the frame pointers. The function
corresponding to the stack frame is searched in the function
table present in the new section, using the return address from
the stack frame above. Finally, the size of the buffer is found
by searching in the local variable table corresponding to the
function.

If the buffer is not on stack, it is checked whether it is
on the heap by comparing its address with the minimum
heap address. The minimum heap address is recorded by
themalloc andcalloc wrappers and is the address of the
chunk allocated by the first call tomalloc or calloc . The
buffer is assumed to be on the heap if its address is greater
than the minimum heap address. In this case, its size is deter-
mined by searching in the red-black tree.

Finally, if the buffer is neither on stack, nor on heap, it is
searched for in the global variable table. If none of the above
checks yields the size of buffer, the intended operation of the

2A few programs have been found to fail when the rigorous check is ap-
plied. LibsafePlus, therefore, provides the strict check as an option that can
be turned on using an environment variable.

wrapper is performed. If the size of destination buffer is avail-
able, size of the contents of source buffer is determined. The
contents are copied only if destination buffer is large enough
to hold all the contents. The program is killed otherwise.

4 Performance

We have tested LibsafePlus for its ability to detect buffer
overflows as well as for the overhead incurred by loading
LibsafePlus with applications. To test the protection ability of
LibsafePlus, we used the test suite developed by Wilander and
Kamkar [6]. This test suite implements 20 techniques to over-
flow a buffer located on stack,.data or .bss sections. The
test suite executable was first modified using TIED. TIED de-
tected all the global and local buffers declared in the test suite
program. LibsafePlus was then preloaded while running the
binary. All tests were successfully terminated by LibsafePlus
when an overflow was attempted.

For testing performance overhead incurred due to Libsafe-
Plus, we first measured overhead at a function call level.
Next, the overall performance of 12 representative applica-
tions was measured. In the following subsections, we de-
scribe these tests and their results.

4.1 Micro benchmarks

In this section, we present a comparison of the execu-
tion times of various library functions likemalloc() ,
memcpy() etc. for the following three cases.

• The test was run without any protection.

• The program was protected with Libsafe.

• The program was protected with LibsafePlus.

The tests were conducted on a 1.6 GHz Pentium 4 machine
running Linux 2.4.18.

We present here the performance results for two most
commonly used string handling functions:memcpy and
strcpy . To measure the overhead of finding sizes of global
and local buffers using the new section in the executable, we
performed the following experiment. The test program con-
tained 100 global buffers and 100 functions. Each function
had 3 local buffers. The time required by a singlememcpy()
into global and local buffers was measured for varying num-
ber of bytes copied. As shown in Figure 6, we found a con-
stant overhead of 0.8µs for memcpy() to global buffers.
This translates to a 100% overhead formemcpy() upto 64
bytes and decreases to a 12% overhead formemcpy() in-
volving about 1024 bytes. For local buffers, the overhead due
to LibsafePlus is 2.2µs per call tomemcpy() as shown in
Figure 7. This includes the 0.9µs overhead due to Libsafe for
locating the stack frame corresponding to the buffer.

To measure the overhead of finding size of a heap variable
from the red-black tree, the test program first allocated 1000



Figure 6: memcpy( ) to a global buffer

Figure 7: memcpy( ) to a local buffer

heap buffers. It then allocated another heap buffer and mea-
sured the time taken by onememcpy() to it. This represents
the worst case performance as the buffer being copied to is
the right most child in the red-black tree. As shown in Fig-
ure 8, the overhead due to LibsafePlus is 1.6µs per call to
memcpy() .

Figure 8: memcpy() to a heap buffer

We also measured the performance of LibsafePlus for calls
to strcpy() . The testbed was similar to the one described
earlier for memcpy() . Figure 9 shows the time taken by
onestrcpy() to a global buffer. The overhead drops from

Figure 9: strcpy() to a global buffer

0.8µs for buffers of size 1 byte to 0 for buffers of about 400
bytes. This is because the wrapper function forstrcpy()
in LibsafePlus usesmemcpy() for copying, which is 6 to
8 times faster thanstrcpy() for large buffer sizes. Fig-
ures 10 and 11 show similar results forstrcpy() to local
and heap buffers respectively.

Figure 10: strcpy() to a local buffer

Next, we measured the overhead due to LibsafePlus in
dynamic memory allocation. The insertion and deletion of
nodes in the red-black tree is the primary constituent of
this overhead. We measured the time required by a pair of
malloc() and free() calls. The number of buffers al-
ready present in the red-black tree at the time of allocating
the buffer was varied from25 to 221. As shown in Figure 12,
the time taken by LibsafePlus formalloc() , free() pair
grows almost logarithmically with the number of buffers al-
ready present in the red-black tree. This is expected because
of theO(log(N)) time operations of insertion and deletion of
nodes in a red-black tree.

4.2 Macro benchmarks

Next, we measured the performance overhead due to Libsafe-
Plus using a number of applications that involve substantial
dynamic memory allocation and operations likestrcpy()



Application What was measured
Apache-2.0.48 Connection rate, response time and error rate while requesting a large file from the web server.
Sendmail-8.12.10 Time to connect and connection rate achieved while sending a large message.
Bison-1.875 Time to parse a large grammar file and generate C code.
Enscript-1.6.1 Time to convert a large text file to postscript.
Hypermail-2.1.8 Time to process a large mailbox file.
OpenSSH-3.7.1 Time to transfer a large set of files using the loopback interface.
OpenSSL-0.9.7 Time to sign and verify using RSA.
Gnupg-1.2.3 Time to encrypt and decrypt a large file.
Grep-2.5 Time to perform a search for palindromes using back references on a large file.
Monkey Connection rate, response time and error rate while requesting a large file from the web server.
Ccrypt Time to decrypt a large file encrypted using ccrypt.
Tar Time to compress and bundle a large set of files.

Table 1: Description of application benchmarks

Figure 11: strcpy() to a heap buffer

Figure 12: Performance overhead for malloc(), free() pair

to buffers. In all, a total of 12 applications were used to eval-
uate the overhead of LibsafePlus and Libsafe. Table 1 de-
scribes the performance metric used in each case. The perfor-
mance overheads are shown in Figure 13. The graph shows
normalized metric values with respect to the case when no li-
brary was preloaded. The overhead due to LibsafePlus was
found to be less than 34% for all cases except for Bison.
In 8 out of 12 applications, the overhead of LibsafePlus was
within 5% of that of Libsafe. In case of Enscript, Grep and
Bison, the slowdown observed is due to a huge number of
dynamic memory allocations and string operations on heap
buffers.

We now present a comparison of performance overhead of
our tool with that of CRED [10] (strings only mode). As
shown in Table 2, for 9 out of the 11 applications which
have been used to measure the performance overhead of both
the tools, LibsafePlus performs better than CRED. The slow-
down observed for CRED, as compared to LibsafePlus, is sig-
nificant for Apache, Enscript, Hypermail, Gnupg and Mon-
key.

Application LibsafePlus CRED
Apache 1.0X 1.6X
Bison 2.4X 1.2X
Enscript 1.3X 1.9X
Hypermail 1.1X 2.3X
OpenSSH 1.0X 1.0X
OpenSSL 1.0X 1.1X
Gnupg 1.0X 1.8X
Grep 1.3X 1.2X
Monkey 1.3X 1.8X
Tar 1.0X 1.0X
Ccrypt 1.0X 1.1X

Table 2: Performance overheads of LibsafePlus and CRED
(strings only mode)



Figure 13: Macro performance overheads

5 Related work

In this section, we review the related work in the area of pro-
tection against buffer overflow attacks.

5.1 Kernel based techniques

The common feature used by the majority of buffer overflow
attacks is the ability to execute code located on the stack. So-
lar Designer has developed a Linux patch that makes the stack
non-executable [11], precisely to counteract the stack smash-
ing attacks. The solution has some serious weaknesses. First,
nested functions or trampoline functions, which are used by
LISP interpreters, many Objective C compilers (including
gcc), and most common implementations of signal handlers
in Unix, require the stack to be executable. Second, the at-
tacker does not require the code to be stored on a stack buffer
for the exploit to work. Methods to bypass the non-executable
stack defense have been explored by Wojtczuk [12].

PaX [13] is another kernel patch which aims to protect the
heap as well as the stack. The idea behind PaX is to mark the
data pages non-executable by overloading supervisor/user bit
on pages and enabling the page fault handler to distinguish
the page faults due to attempts to execute data pages. PaX
also imposes a significant performance overhead due to addi-
tional work done by the page fault handler for each page fault.
Although protecting the heap offers some additional protec-

tion but still it does not guarantee complete protection from
all forms of attacks. For example, return-into-libc attacks are
still possible.

5.2 Static analysis based techniques

Static analysis approaches to handling buffer overflows at-
tempt to analyze the program source and determine if the pro-
gram execution can result in a buffer overflow.

Wagneret al. formulated the detection of buffer overruns
as an integer range analysis problem [14]. The approach
models C strings as a pair of integer ranges (allocated size
and length) and vulnerable C library functions are modeled
in terms of their operations on the integer ranges. Thus, the
problem reduces to an integer range tracking problem. The
described tool checks, for each string buffer, whether its in-
ferred length is at least as large as the allocated length. The
tool is impractical to use since it produces a large number of
false positives, due to lack of precision, as well as some false
negatives.

The annotation based static code checker based on
LCLint [15] by Larochelle and Evans [16] exploits the infor-
mation provided in programs in the form of semantic com-
ments. The approach extends the LCLint static checker by
introducing new annotations which allow the declaration of
a set of preconditions and postconditions for functions. The
tool does not detect all buffer overflow vulnerabilities and of-



ten generates spurious warnings.
CSSV [17] is another tool for statically detecting string ma-

nipulation errors. The tool handles large programs by analyz-
ing each procedure separately and requiresprocedure con-
tractsto be defined by the programmer. A procedure contract
defines a set of preconditions, postconditions and side-effects
of the procedure. The tool is impractical to use for existing
large programs since it requires the declaration of procedure
contracts by the programmer. As for other static techniques,
the tool can produce false alarms.

5.3 Runtime techniques

StackGuard [18] is an extension to the GNU C compiler
that protects against stack smashing attacks. StackGuard en-
hances the code produced by the compiler so that it detects
changes to the return address by placing acanaryword on
the stack above the return address and checking the value
of the canary before the function returns. Thecanary is a
sequence of bytes which could be fixed or random. The ap-
proach assumes that the return address is unaltered if and only
if the canary word is unaltered. StackGuard imposes a signifi-
cant runtime overhead and requires access to the source code.
Techniques to bypass StackGuard protection are described by
Richarte [19].

StackShield [20] is also implemented as a compiler exten-
sion that protects the return address. The basic idea here is to
save return addresses in an alternate non-overflowable mem-
ory space. The resulting effect is that return addresses on the
stack are not used, instead the saved return addresses are used
to return from functions. As with StackGuard, the source
code needs to be recompiled for protection. A detailed de-
scription of StackShield protection and techniques to bypass
it were presented by Richarte [19].

Propolice [21] is another compiler extension which modi-
fies the syntax tree or intermediate language code for the pro-
tected program. SSP (Propolice) aims to protect the saved
frame pointer and the return address by placing a random ca-
nary on the stack above the saved frame pointer. In addition,
SSP protects local variables and function arguments by creat-
ing a local copy of arguments and rearranging the local vari-
ables on the stack so that all local buffers are stored at a higher
address than local variables and pointers. As for StackGuard
and StackShield, it requires the recompilation of the source
code. Although SSP protects against stack smashing attacks,
it is vulnerable to other forms of attacks.

The memory access error detection technique by Austinet
al. [22] extends the notion of pointers in C to hold additional
attributes such as the location, size and scope of the pointer.
This extended pointer representation is called thesafe pointer
representation. The additional attributes are used to perform
range access checking when dereferencing a pointer or while
doing pointer arithmetic. The approach fails to work with
legacy C code as it changes the underlying pointer represen-

tation.
The backwards compatible bounds checking technique by

Jones and Kelly [23] is a compiler extension that employs the
notion ofreferent objects. The referent object for a pointer is
the object to which it points. The approach works by main-
taining a global table of all referent objects which maintains
information about their size, location, etc. Furthermore, a
separate data structure is maintained for heap buffers by mod-
ifying malloc() andfree() functions. Range checking
is done at the time of dereferencing a pointer or while per-
forming pointer arithmetic. The technique breaks existing
code and involves a high performance overhead for applica-
tions which are pointer and array intensive since every pointer
or array access has to be checked at runtime.

The C Range Error Detector(CRED) [10] is an extension
of Jones and Kelly’s approach. CRED extends the idea of
referent objects and allows the use of a previously stored out-
of-bounds address to compute an in-bounds address. This is
done by storing all the information about out-of-bounds ad-
dresses in an additional data structure on the heap. The ap-
proach fails if an out-of-bounds address is passed to an exter-
nal library or if an out-of-bounds address is cast to an integer
and subsequently cast back to a pointer. As for Jones and
Kelly’s technique, the tool involves a high performance over-
head for pointer/array intensive programs since every access
to a pointer has to be checked.

The type assisted dynamic array bounds checking tech-
nique by Lhee and Chapin [24] is also a compiler extension
that works by augmenting the executable with additional in-
formation consisting of the address, size and type of local
buffers, pointers passed as parameters to functions and static
buffers. An additional data structure is maintained for heap
buffers. Range checking is actually performed by modified
C library functions which utilize this information to guaran-
tee that overflows do not occur. As for other compiler based
techniques, the solution is not portable and requires access to
the source code of the program. It can be seen that our ap-
proach is very similar to Lhee and Chapin’s approach. How-
ever, the main advantage of our approach is that it does not
require compiler modifications and can work with the output
of any compiler that can produce debugging information in
the DWARF format.

PointGuard [25] is a pointer protection technique that en-
crypts pointers when they are stored in memory and de-
crypts them when they are loaded into CPU registers. Point-
Guard is implemented as a compiler extension that modifies
the intermediate syntax tree to introduce code for encryption
and decryption. Encryption provides for confidentiality only,
hence PointGuard gives no integrity guarantees. Although,
PointGuard imposes an almost zero performance overhead
for most applications, it protects only code pointers (func-
tion pointers and longjmp buffers) and data pointers and of-
fers no protection for other program objects. Also, protection
of mixed-mode code using PointGuard requires programmer



intervention.

One of the major drawbacks of all existing runtime tech-
niques is that they require changes to the compiler. None
of these techniques seem to have been adopted by any of
the mainstream compilers so far. In contrast, our approach
does not require any compiler modifications and can be used
with any existing compiler. We feel that this may lead to
widespread adoption of this technique in practice.

6 Conclusions and future work

In this paper, we have presented TIED and LibsafePlus.
These are simple, robust and portable tools that can together
guard against all known forms of buffer overflow attacks.
Our approach is a transparent runtime solution to the problem
of preventing buffer overflows that is completely compatible
with existing code and does not require source code access.
Experiments show that our approach imposes an acceptably
low overhead due to the runtime checks in most cases.

There are certain cases which our approach is unable to
handle. LibsafePlus can only guard against buffer overflows
due to injudicious use of unsafe C library functions and not
those due to other kinds of errors in the program itself. How-
ever, in most programs buffer overflows occur due to im-
proper use of C library functions rather than erroneous pointer
arithmetic done by the programmer. Moreover, guarding
against erroneous pointer arithmetic implies protecting ev-
ery pointer instruction which would incur a high performance
overhead (as in CRED).

Also, LibsafePlus cannot handle dynamic memory allo-
cated usingalloca . Alloca is used to dynamically create
space in the current stack frame, and the space is automati-
cally freed when the function returns. The difficulty in han-
dling alloca in LibsafePlus is that while memory allocation
can be tracked by intercepting calls toalloca , it is not pos-
sible to track when a buffer is freed, since the freeing happens
automatically when the function that calledalloca returns.
Variable sized automatic arrays (supported by gcc) present a
similar problem.

Since LibsafePlus usesmmapfor allocating nodes for the
red-black tree, programs that usemmapfor requesting mem-
ory at specified virtual addresses may not work with Libsafe-
Plus.

A limitation of the current implementation is that size in-
formation for local and global buffers declared within dynam-
ically loaded libraries is not available at runtime. We are cur-
rently extending LibsafePlus and TIED to address this issue.

TIED and LibsafePlus are available in the
public domain and can be downloaded from
http://www.security.iitk.ac.in/projects/Tied-Libsafeplus.
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