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Abstract
We propose a programming language, called PCML5, for build-
ing distributed applications with distributed access control. Target
applications include web-based systems in which programs must
compute with stipulated resources at different sites. In such a set-
ting, access control policies are decentralized (each site may im-
pose restrictions on access to its resources without the knowledge
of or cooperation with other sites) and spatially distributed (each
site may store its policies locally). To enforce such policies PCML5

employs a distributed proof-carrying authorization framework in
which sensitive resources are governed by reference monitors that
authenticate principals and demand logical proofs of compliance
with site-specific access control policies. The language provides
primitive operations for authentication, and acquisition of proofs
from local policies. The type system of PCML5 enforces locality
restrictions on resources, ensuring that they can only be accessed
from the site at which they reside, and enforces the authentication
and authorization obligations required to comply with local access
control policies. This ensures that a well-typed PCML5 program
cannot incur a runtime access control violation at a reference mon-
itor for a controlled resource.

1. Introduction
The increasing importance of web-based services motivates the
consideration of languages to support the construction of applica-
tions that involve computation and resources distributed over mul-
tiple sites. In such a setting, site administrators naturally wish to
restrict access to their resources to certain authorized principals.
These access control policies are inherently decentralized because
it is unreasonable to assume a central authority governing all re-
sources in a networked system. Morever, these policies are spatially
distributed since each site may store its policy locally. This paper
is concerned with the design of a kernel programming language,
which we call PCML5, to support the construction of distributed
programs that comply with such distributed access control poli-
cies. PCML5 employs a distributed proof-carrying authorization
(DPCA) framework to enforce such policies.

Proof-carrying authorization (PCA) was introduced by Appel
and Felten (Appel and Felten 1999) and developed further in sub-
sequent work (Bauer et al. 2001, 2005; Garg 2009). In this frame-
work, access control policies are specified as theories in an au-
thorization logic (Lampson et al. 1992; Abadi et al. 1993; Abadi
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2003, 2006a; Garg and Pfenning 2006). Each protected resource
is governed by a reference monitor that authenticates principals
and demands a formal proof of authorization to control access to
it. Access control is thereby reduced to proof checking (not proof
search!) in the authorization logic. The formal proofs of authoriza-
tion required for access may be logged by the reference monitor to
provide an audit trail that may be used to analyze permissible, but
unintended, accesses.

In a centralized setting the authorization policy may be thought
of as a single logical theory that resides in one place and governs
access to all resources in a system. In a distributed setting it is nat-
ural to consider a distributed access control policy consisting of
the local authorization policies residing at each site in a distributed
system, each being a logical theory within a global authorization
logic specifying the rules of access control. The administrative au-
thority for each site controls the access control policy for its re-
sources, stating the conditions under which they may be accessed.
These policies are thus both decentralized and spatially distributed.
To be sufficiently expressive in a distributed setting, the authoriza-
tion logic must include the means to make assertions on behalf of
a principal, and may involve principals other than the controlling
authority. As a simple example, a conventional access control list
may be thought of as a conjunction of propositions of the form
〈k〉mayrd(d, k′), which should be read as stating that the control-
ling principal k says that the principal k′ may read the database
d. A number of authorization logics, beginning with the seminal
work by Lampson et al. (Lampson et al. 1992), provide support for
such assertions. The problem of specifying and enforcing policies
in a scenario with spatially distributed policies was first studied in
the context of authentication in the Taos operating system (Wob-
ber et al. 1994), and later in the context of trust management sys-
tems (Blaze et al. 1996; Clarke et al. 2001; Li et al. 2002).

PCML5 enforces distributed access control policies using a dis-
tributed proof-carrying authorization (DPCA) framework. DPCA
is a generalization of PCA to a setting in which both computing re-
sources and access control policies are distributed across multiple
sites, each with its own controlling authority. Resources at each site
are controlled by a proof-carrying reference monitor that demands
a proof in distributed authorization logic as a condition for access.
The proofs themselves are constructed according to the rules of
the logic augmented by the policies in force at each site in a dis-
tributed system. A distributed program must execute a distributed
proof construction algorithm to gather the relevant fragments of
the policy from the various sites in the system, combining them
to form proofs that are presented to the reference monitor govern-
ing each resource. Moreover, a program is executed on behalf of a
principal, as evidenced by the possession of a credential obtained
through a standard authentication protocol. The reference monitor
for a resource requires both the authentication credentials and the
authorization proof to control access to it. (In a fuller treatment than
is considered here, the reference monitor could also require further
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Φa = {〈acm〉∀x:Prin.∀y:Prin.

db.read
Proof of 〈acm〉mayrd(conf, k)
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Φu = {〈univ〉is student(alice, univ)}

⊃ mayrd(conf, y),

〈acm〉is member(univ, acm)}

(Alice starts executing code here)

Figure 1. An example scenario for distributed PCA

information such as the time of day, or a certificate revocation list
to enforce access control restrictions.)

A simple example of such a system is given in Figure 1. Here we
consider three sites, viz., browser, univserver, and acmserver.
The site acmserver is governed by the principal acm, and has a
database conf protected by a reference monitor that mediates ac-
cesses to it. For illustration, we only consider an API db.read
for reading the database. Each site w is associated with a lo-
cal security policy, denoted by Φw, that governs access to its re-
sources. As an example application written in PCML5, we con-
sider in Section 8 a distributed program for reading the database at
acmserver using its proof-carrying interface db.read. The pro-
gram first authenticates the principal on whose behalf it is run-
ning. Then it constructs a proof for the authenticated principal. In
this example, a proof of 〈acm〉mayrd(conf, alice) can be con-
structed by suitably combining the three facts from local security
policies. These facts are acquired by doing local proof searches.
One way to construct the proof is to first assemble a proof of
〈univ〉is student(alice, univ) at univserver, followed by
constructing a proof of

〈univ〉is student(alice, univ) ⊃ 〈acm〉mayrd(conf, alice)
at acmserver. The final proof is assembled by moving both
the proofs to acmserver where they are combined using an ⊃-
elimination. This proof is then used at the call-site for database
access at acmserver. The results of this call are brought back to
browser.

As we noticed above, an authorization proof usually consists
of facts obtained at various sites. Such proofs, however, are veri-
fied by reference monitors that have apriori access only to the lo-
cal policies at their sites. In practice, digital certificates are used
as atomic proofs of assertions made by principals. In order to as-
sert P , a principal k simply signs P using his/her private key. In
this manner, digital certificates provide an unforgeable, irrefutable,
and univerally checkable means of establishing assertions. Local

security policies contain a digital certificate for each proposition
of the form 〈k〉P in the policy. The certificate is substituted for
any hypothesis about the proposition in any proof acquired locally,
thereby yielding a closed proof that can be verified by any reference
monitor.

The run-time attack model we consider is based on the DPCA
framework just sketched. In particular, all programs, whether writ-
ten in PCML5 or not, are assumed to execute against a DPCA-
based access control system to ensure the security of protected re-
sources. Untyped programs may incur run-time failures caused by
improper access to a monitored resource, in particular, failure to
provide proper credentials or to provide a valid proof of authority
for an access.

PCML5 is designed to facilitate construction of non-malicious
distributed programs that comply with a distributed access con-
trol policy. The type system of PCML5 extends that of the ML5

language for distributed computing (Murphy 2008; Murphy et al.
2004) to express the authentication and authorization obligations
imposed by the DPCA run-time. As the central theorem of this pa-
per, we obtain the guarantee that a precisely characterized class of
well-typed PCML5 program cannot incur a run-time access control
violation at a reference monitor of a protected resource (Theorems
7.6. 7.5). This is achieved by the following mechanisms:

• As in its precursor, ML5, the PCML5 type system enforces
locality restrictions on resources that ensure that access must
take place at the site governing that resource.

• A distributed authorization logic is integrated into the type sys-
tem of PCML5 so that the demands for proofs at the call sites
of reference monitors can be expressed and enforced within the
language. PCML5 does not depend on any particular authoriza-
tion logic; we use a particularly simple one developed by Garg
et al. (Garg and Pfenning 2006) to illustrate the main ideas.
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• A primitive is provided for doing proof search using local
authorization policies at sites. Proofs obtained locally can be
combined together to obtain proofs valid with respect to the
global authorization policy.

• A primitive is provided to authenticate as a principal in the
system. Authentication demands of a reference monitor can be
expressed using its type.

2. Authorization logic
The presentation of PCML5 in this paper uses the GP authoriza-
tion logic (Garg and Pfenning 2006), which we summarize in this
section. However, we emphasize that we pick a specific logic for
illustration only. Since the logic is integrated into the type system
using higher-order abstract syntax (as described in Section 5), the
PCML5 language can be easily coupled with other authorization
logics that can be encoded in the framework.

Sorts s ::= prin | db
First-order terms a ::= α | a

Predicate symbols p
Propositions P ::= P1 ⊃ P2 | P1 ∧ P2

| ∀α:s.P | 〈a〉P | p(a1, . . . , an)
Basic judgments J ::= a:s | P true | a affirms P

Proposition context Φ ::= · | Φ, P true
Term context ∆ ::= · |∆, α:s

Signature Σ ::= · |Σ,a:s |Σ, p:(s1, . . . , sn)

The logic is parameterized by a signature Σ that fixes the arity
of the predicates; p:(s1, . . . , sn) denotes that p is a predicate of ar-
ity n with si being the sort of its ith argument. There are atleast two
sorts, viz., prin and db, representing principals and databases re-
spectively. The signature also fixes principal and database constants
a.

Apart from the standard propositional connectives, the logic
features a family of modalities indexed by principals, to express
propositions affirmed by principals. The modal proposition 〈a〉P
(read as “a says P ”) expresses that proposition P is endorsed by
principal a. There are three forms of basic judgments: the sorting
judgment a:s, which means that the first-order term a is of the
sort s; the truth judgment P true; and the affirmation judgment
a affirms P , which means that a (a term of the sort prin)
endorses P .

We use ∆; Φ `LΣ J to mean the hypothetical judgment J from
assumptions ∆ and Φ, under the signature Σ. The superscript L
differentiates entailment in the logic from that in hypothetical judg-
ments of PCML5 which we shall introduce later. We collect hy-
potheses about sorting judgments x:s under the context ∆; hy-
potheses of truth judgments P true are written as Φ. We do not
need to form hypotheses about affirmation judgments in this logic.

In order to illustrate the says modality, we present selected rules
from a natural deduction for the logic in Figure 2. Rule (truaff)
says that true propositions are affirmed by all principals. Rule (〈〉-I)
internalizes the judgment a affirms P as the proposition 〈a〉P .
Rule(〈〉-E) eliminates the modality in 〈a〉P1 by using a proof of
〈a〉P1 to cut a hypothesis P1 true in a derivation of affirmation
a affirms P2 by the same principal a.

3. Distributed policies and proof-checking
In our setup, each site is governed by an administrative principal
who decides the authorization policy at that site. We shall use the
notation w̄ to denote the governing principal at site w. We model
the local policy as a context of propositions declared to be true by
the governing principal. From a global perspective, a proposition P
declared by the principal w̄ has the force of the proposition 〈w̄〉P .

∆; Φ `LΣ P true ∆; Φ `LΣ a : prin

∆; Φ `LΣ a affirms P
(truaff)

∆; Φ `LΣ a affirms P

∆; Φ `LΣ 〈a〉P true
(〈〉-I)

∆; Φ `LΣ 〈a〉P1 true ∆; Φ, P1 true `LΣ a affirms P2

∆; Φ `LΣ a affirms P2

(〈〉-E)

Figure 2. Selected rules from natural deduction for the authoriza-
tion logic. (Reproduced from (Garg and Pfenning 2006)).

Thus the local policy at w, called Φw, is a context of the form:

Φw ::= 〈w̄〉P1 true, . . . , 〈w̄〉Pn true

A proof presented to a reference monitor may contain facts from
local policies at various sites. Logically, such a proof is valid under
the union of local policies at all sites. We refer to this union as the
amalgamated authorization policy and denote it by

Φ =
[

w∈Wld

〈w̄〉Φw

where Wld is the set of all sites. We use the same notation for
amalgamated policy as a proposition context from Section 2 in
order to highlight that a policy is just a context in the logic. In
implementations, evidence for the local policy at a site is provided
by digitally signed certificates, which can be verified by reference
monitors at any site. A certificate for proposition P signed by a
principal a is unforgeable and establishes the judgment 〈a〉P true
irrefutably. Verification of a proof constructed from such evidences
requires checking the validity of these certificates. We view these
evidences as implementing the amalgamated authorization policy.
Therefore, our formalism directly uses the full policy Φ for the
purpose of proof-checking at reference monitors.

In practical distributed authorization systems for trust manage-
ment (Blaze et al. 1996) and other applications (Bauer et al. 2005)
policy statements made by an administrator at its site w are of-
ten cached at another site w′ in order to aid distributed proof
construction. For example, consider the authorization policy at
univserver from Figure 1. The evidence for
〈univ〉is student(alice, univ) may be cached at Alice’s ma-
chine browser. In this paper, we do not consider caching of proofs
at sites. The policy available at a site is restricted to only consist of
declarations made by the principal governing that site.

4. Overview of PCML5

We shall now informally discuss the key ideas behind PCML5.
There are three main aspects of PCML5:

1. PCML5 is a language for writing distributed programs that
interact with resources which are distributed across different
administrative domains. The type system tracks the site where
a computation is executed. This allows the language to enforce
the requirement that a resource can be accessed only from the
site where it is situated.

2. PCML5 uses an authorization logic as a part of its type system.
The logic is used to express within the language authorization
proof obligations that are imposed by reference monitors.

3. PCML5 allows construction of proofs by combining the results
of a distributed proof search with proof constructors from au-
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thorization logic. The type system statically ensures that proofs
passed to a reference monitor satisfy its proof specifications.
This ensures that a call made to a reference monitor from a
well-typed PCML5 program never incurs a runtime error due to
failure of verification of proof.

We now elaborate on each of these aspects.

4.1 Distribution of computation
PCML5 is based on ML5 (Murphy 2008; Murphy et al. 2004),
which is a distributed programming language based on propositions-
as-types interpretation of the modal logic Intuitionistic S5 where
modal worlds are interpreted as sites in a distributed system.
The central idea that PCML5 inherits from ML5 is that terms
are classified using types relative to sites. The typing judgment
Γ ` m : A@w means that under the hypotheses about variables
in Γ, the term m is typed as A for the site w where it is to be
evaluated.

The idea of typing relative to worlds is central to writing dis-
tributed programs since it allows the type system to track where
different pieces of code are meant to execute. A term m for the site
w′ can be remotely executed from a world w by doing a get[w′]m
at w. This causes computation to move to w′ to execute m, and the
result is brought back to w, provided type of the result is mobile.
We discuss mobility later in Section 5.3 after having introduced the
formalism.

4.2 Authorization logic
PCML5 incorporates an authorization logic as static constructors
using higher-order abstract syntax. Constructors are classified by
kinds. Propositions belong to the kind Prop and proofs of a propo-
sition P are kinded as Prf(A) where A is the representation of the
proposition P . Proof of an affirmation judgment a affirms P is
represented as a constructor of kind A1 Affirms A2, where A1

represents the principal a, and A2 is the representation of P . As we
shall see later, this translation provides a compositional bijection
between propositions, proofs, and affirmations, on one hand, and
constructors of kind Prop, Prf(), and Affirms , on the other.

The main requirement from this translation is to be able to
reflect the consequence relation of logic in an adequate manner
using PCML5 as is done in LF (Harper et al. 1993). Thus if there
is a proof of P2 hypothetical in a proof of P1 in the logic, one
can write a constructor of kind Prf(A2) with a free variable of
kind Prf(A1) in the language, and vice versa, where Ai’s are the
representations of propositions Pi’s. We shall make this relation
precise once we introduce the formalism.

In order to ensure that adequacy is without doubt, we follow
a phase distinction (Cardelli 1988) between static and dynamic
phases of PCML5. The constructor level is constrained to be pure
in the sense that constructors do not depend on runtime terms. This
way terms can be arbitrarily effectful, but they do not affect the
types in any way.

4.3 Representation of principals and resources
Principals and resources appear in propositions and proofs, and also
occur as runtime values. In order to maintain a phase distinction, we
differentiate between the runtime and the compile-time representa-
tions of principals and resources, yielding a dual representation for
them:

1. They appear as static constructors of kind Prin and Db.
These constructors appear in types and propositions, such as
mayrd(d, p).

2. They are also represented as runtime values that mediate access
to them. The type system tracks the identities of these runtime
values by linking them to their static counterparts using their

types. The type db(A) is a singleton type that represents run-
time database values indexed by A, which has the kind Db. We
refer to the static representations, like A, as indices.

The two representations are created together. For databases, this is
done using a primitive operation db.open: ∃α::Db.db(α).

In the case of principals, we need runtime representations of
only those principals that are authenticated. The type Iam(A) rep-
resents the type of authentication tokens for A::Prin.

4.4 Runtime acquisition of proofs
PCML5 enables querying local security policies at all sites for
proofs. This is done using a primitive operation acquire[A]{α.m1 |m2}
that, when executed at a site w, does a local proof search for a proof
of A using only Φw, the policy at w. The language itself does not
specify or depend on any particular proof search strategy. It is
however reasonable to assume that any strategy used in an imple-
mentation should at least succeed in finding a proof when one is
present as an atomic fact in the policy.

The key idea behind acquire is that it enables acquiring facts
from security policies and incorporating them in the program at
runtime. The results of the runtime query, if successful, discharge
the hypothesis α bound in the branch m1. In case the query suc-
ceeds, the result is substituted for α in m1 and execution proceeds
with m1. In case the query fails, m2 is executed.

5. Syntax and static semantics
Figure 3 presents the syntax of PCML5. We divide the syntax into
three levels: runtime terms, constructors, and kinds. Runtime terms
are classified by types, which are a subset of constructors, and
constructors are classified by kinds. The language is parameterized
by two forms of signatures:

1. Σc: is the signature that introduces constructor constants,
a⇒K. Besides constant principals and databases, this signa-
ture introduces the encoding of authorization logic.

2. Σt: is the term signature and it gives types to externally imple-
mented API constants c:∀〈α1⇒K1, . . . , αn⇒Kn〉.A @ w.

In order to avoid normalization at the constructor level, we
present only the normal (canonical) forms in the style of Canonical
LF (Harper and Licata 2007). The idea is to exclude β and η re-
dexes altogether by rearranging the constructors as neutral (N ) and
normal (A) forms so that all occurrences of eliminations appear be-
fore any introduction. Since we admit only canonical constructors,
we use hereditary substitution (Watkins et al. 2002) to keep con-
structors canonical upon substitution, details of which are omitted
here.

5.1 Judgment forms
The basic judgment forms used in static semantics are:

K kind K is a well-formed kind
A ⇐ K A is checked for the kind K
N ⇒ K K is synthesized as the kind of N
m : A@w m is of type A at the world w

We maintain a phase-distinction between static and dynamic
phases in PCML5. This means that runtime terms do not appear in
constructors. Accordingly, we divide the context into a static part,
∆, which gives kinds to constructor variables α, and a dynamic part
Γ which types term variables x. Because of the phase-distinction,
the dynamic context is needed only for term typing judgments.
Selected rules defining well-formed kinds are shown here:
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Kinds K ::= Type | Wld | Prop | Prin | Prf(A)

| A1 Affirms A2 | Db | Πα::K1.K2

Constructors
(Neutral forms) N ::= α | a | A1 → A2 | A1 ×A2 | A1 + A2 | unit

| ∃α::K.A | Iam(A) | (N A)

(Normal forms) A, w, k ::= N | λα::K.A

Polytypes τ ::= ∀〈α1:K1, . . . , αn:Kn〉A
Terms m ::= x | λx:A.m | (m1 m2) | 〈m1, m2〉 | π1m | π2m | inl m | inr m

| case m of x.(m1 |m2) | 〈〉
| let x = m1 in m2

| get[w]m

| acquire[A] | authenticate
| c[A1, . . . , An](m)

| {α = A; m : A′}
| open {α, x} = m1 in m2

| iam[a]

Constructor signature Σc ::= · | Σc,a:K
Term signature Σt ::= · | Σt, c:τ@w

Constructor context ∆ ::= · |∆, α⇒K
Term context Γ ::= · | Γ, x:A@w

Figure 3. PCML5 syntax: Shaded parts are PCML5’s additions to ML5

∆ `Σc A ⇐ Prop

∆ `Σc Prf(A) kind
(Proof)

∆ `Σc A1 ⇐ Prin ∆ `Σc A2 ⇐ Prop

∆ `Σc A1 Affirms A2 kind
(Affirms)

The kind Prf(A) classifies proofs of proposition A, and
A1 AffirmsA2 classifies evidences for the judgment A1 affirmsA2

from Section 2.
All types except one in PCML5 are inherited from ML5.

PCML5 adds an abstract type Iam(A) of authentication creden-
tials of the principal A. We shall return to this type in Section 5.4
when we discuss authentication.

∆ `Σc A ⇐ Prin

∆ `Σc Iam(A) ⇒ Type
(auth)

5.2 Representing authorization logic
The kind level of PCML5 is sufficiently rich to encode the au-
thorization logic from Section 2 using higher-order abstract syn-
tax. For instance, the proposition P1⊃P2 can be encoded as the
constructor imp A1 A2, where imp ⇒ Prop→Prop→Prop is a
constructor constant. Propositions in the logic become construc-
tors of kind Prop in PCML5. Proofs, i.e., derivations of the judg-
ment ∆; Φ `LΣ P true get translated into open constructors of
kind Prf(A), where A is translation of P , under the context ∆
that represents ∆, Φ. Affirmations, i.e., derivations of judgment
∆; Φ `LΣ a affirms P are translated into open constructors of
kind A1 Affirms A2 where A1 and A2 are representations of a
and P respectively.

The central principle behind the translation of logic is that hy-
pothetical reasoning in PCML5 represents the consequence relation
of the logic. This enables constructing proofs in a program that are
hypothetical in proofs of certain propositions (such as those where
a runtime policy query is involved), and later discharging those hy-

potheses using facts from authorization policies. In order to state
an adequacy theorem, we first need some terminology: We use the
notation Σ+

c to denote the signature consisting of constants in Σc

and the constants defining the embedding of authorization logic in
PCML5. The following judgments show representation of an entity
from the logic into a construct in the language (rules are omitted
here but can be found in our full report (Avijit et al. 2009)):

∆ `LΣ P prop � ∆ `
Σ+

c
A ⇐ Prop Propositions

∆; Φ `LΣ P true � ∆ `
Σ+

c
A ⇐ Prf(A) Proofs

∆; Φ `LΣ a affirms P �
∆ `

Σ+
c

A ⇐ A1 Affirms A2 Affirmations

We lift the translation to contexts and signatures in the straight-
forward manner, representing a hypothesis P true using as
α⇒Prf(A) where A is the representation of P , and α is a fresh
variable. In the following theorem, we shall assume that Σc is a
representation of Σ and ∆1, ∆2 represent the contexts ∆ and Φ
resp..

Theorem 5.1 (Adequacy). Let ∆ `LΣ P1 prop � ∆1 `
Σ+

c

A1 ⇐ Prop, and ∆ `LΣ P2 prop � ∆1 `Σ+
c

A2 ⇐ Prop.
Then ∆; Φ, P1 true `LΣ P2 true iff there exists A3 such that
∆1, ∆2, α⇒Prf(A1) `Σ+

c
A3 ⇐ Prf(A2).

In the rest of the paper, we freely use logical notation instead
of its translation for readability. For instance, we use A1 ⊃ A2 to
mean imp A1 A2. The notation Φ̂ denotes the representation of the
authorization policy Φ in the language.

5.3 Situated typing and distributed computation
PCML5 inherits the notion of typing relative to worlds from ML5.
Here we briefly recap the central ideas from ML5: distribution of
computation and mobility of data.

The main motivation behind situated typing in ML5 is to express
locality of resources, and use it to restrain where a piece of code
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can run, with the idea being that a resource can only be accessed
by code running at the same location. Distribution of execution is
achieved by moving result of a computation from one location to
another using a get. This is expressed in the following typing rule:

∆; Γ `Σc;Σt m : A@w′ ∆ `Σc A mobile

∆; Γ `Σc;Σt get[w′]m : A@w
(get)

If m is well-typed for w′, then it may be executed using a remote
call from another world w. ML5 however restricts the remote invo-
cation to terms of mobile types only. The first requirement for a type
to be mobile is that all values of that type should be typable at all
worlds. This ensures that when the result of m is brought back from
w′ to w, the value makes sense at w. Base types such as string
are mobile as their values can be typed at any site. Types represent-
ing local resources such as reference cells are not mobile. Function
types are also not mobile in ML5 because, by design, computations
are never shipped across sites. Instead code meant to be run at a
site is compiled and stored at that site. Only the locus of execution
shifts from one site to another, as in a remote procedure call.

PCML5 adds a new type Iam(A) for typing authentication
credentials to the types inherited from ML5. The type Iam(A)
is mobile because authentication credentials are typable at all
worlds. An existential type ∃α::K.A is mobile if the type A of
the packed value is mobile, regardless of α. Thus, for instance, the
type ∃α::Prin.Iam(α) is mobile. All constructors are considered
mobile in the sense that their kinding is independent of their loca-
tion. In particular, principal and resource indices, and proofs are
typable at all sites.

5.4 Authentication
For each constant principal a declared in the constructor signature
Σc, we use a constant iam[a] as its authentication token which is
typed as Iam(a).

a⇒Prin ∈ Σc

∆; Γ `Σc;Σt iam[a] : Iam(a)@w
(Iam-I)

PCML5 provides an abstract operation authenticate to au-
thenticate the program on behalf of a principal. In an implementa-
tion, this could be achieved through well-established protocols for
authentication, e.g. Kerberos (Neuman and Ts’o 1994). The oper-
ation returns a principal together with an authentication token that
serves as a proof of the principal having been authenticated.

The operation authenticate is typed as:

∆; Γ `Σc;Σt authenticate : ∃α::Prin.Iam(α) option@w

The primitive is typed using an option type because it may fail to
return any meaningful value. Let us consider the case when the
primitive is successful. The result is typed as ∃α::Prin.Iam(α)
in this case. Notice that the authentication credential is typed as
Iam(α) linking it to the abstract component α of the abstraction.
The runtime term of type Iam(α) and the static proxy α can be
viewed as dual representations of an authenticated principal. Be-
cause of the abstraction, the static component uniquely represents a
particular instance of opening up the package, since it is assumed to
be different from everything else. Thus a credential of type Iam(α)
represents a particular instance of doing authentication in the pro-
gram.

5.5 Authorization
An authorization proof is constructed by doing proof search using
local security policies at various sites. This is done using a primitive
operation acquire[A]. The type system tracks the kinds of proofs
starting with acquire[A] to API calls where the proofs are used.

5.5.1 Distributed proof acquisition
acquire[A] optionally returns a proof of A. We use an existential
type to model this.

∆ `Σc A ⇐ Prop

∆; Γ `Σc;Σt acquire[A] : ∃α::Prf(A).unit option@w

The success case is typed as ∃α::Prf(A).unit. When this ex-
istential type is eliminated as open {α, x} = m1 in m2, an
assumption α⇒Prf(A) is introduced in the scope of m2 during
type-checking. We have mentioned before that all kinds are mobile
meaning that constructors are typable at all sites. Thus the variable
α stands for a globally-valid proof of proposition A in m2 even
though it is discharged using a proof obtained locally at a site.

5.5.2 Proof checking at API call sites
API constants, c, are introduced using the term signature Σt. In
order to call an API, its polymorphic arguments have to be fully
instantiated. The typing rule statically reflects the proof-verification
that happens at the reference monitor during such a call. All the
constructor arguments are typed statically according to the type of
the API constant.

Σt(c) = ∀〈α1:K1, . . . , αn:Kn〉(A → A′)
∆ `Σc Ak ⇐ [A1/α1] . . . [Ak−1/αk−1]Kk (k = 1..n)

∆; Γ `Σc;Σt m : [A1/α1] . . . [An/αn]A@w

∆; Γ `Σc;Σt c[A1, . . . , An](m) : [A1/α1] . . . [An/αn]A′@w

Notice that for an API call to be well-typed, the constructor ar-
guments should be of the proper kind under the context ∆ as per the
type specification of the API. At runtime, the hypotheses are dis-
charged using closed constructors. The hypothetical judgment en-
sures that typing of arguments is preserved upon discharging these
hypotheses. This in turn ensures success of runtime verification of
these proofs at reference monitors. We elaborate on proof verifica-
tion at refence monitors when we give the dynamics of API calls in
Section 6.6.

An important technical detail here is the dependency among the
constructor arguments. Consider the type ∀〈α1:K1, . . . , αn:Kn〉A →
A′. The kind of an argument potentially depends on all previ-
ous arguments. This is manifest in the premiss ∆ `Σc Ak ⇐
[A1/α1] . . . [Ak−1/αk−1]Kk that substitutes arguments A1 through
Ak−1 in Kk while checking the kind of Aj .

6. Runtime semantics
Term evaluation in PCML5 has the following aspects, in addition
to distribution:

1. Principals, databases and APIs : The transition system is pa-
rameterized by a constructor signature Σc, and an API signa-
ture Σt. The signatures remain fixed throughout the evaluation
of the program. We assume a fixed set of principal and database
indices, introduced through the constructor signature Σc. In ad-
dition to principals and databases, Σc also introduces represen-
tation of an authorization logic.

2. Execution under a security policy: Each location has a fixed
authorization policy associated with it. The policy at site w
consists of assertions made by the principal w̄ who governs that
site. We formulate the local policy at site w as:

Φ̂w ::= α1⇒Prf(〈w̄〉A1), . . . , αn⇒Prf(〈w̄〉An)

where α1, . . . , αn are chosen fresh.
We assume that all local policies are well-formed with respect
to the signature Σc that defines the authorization logic. As
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mentioned before, the amalgamated authorization policy Φ̂ is
the union of all local policies.

3. Authorization checks at reference monitors An API call
c[A1, . . . , An](m) results in the reference monitor type-checking
A1 through An (as shown by Rule (api-reduce) later). Some
of these Ai’s may be proofs constructed by a distributed acqui-
sition of local policy assertions from various sites. As discussed
in Section 3, local assertions make sense globally and are im-
plemented in an unforgeable and irrefutable manner by signing
the asserted proposition with the principal’s signing key. In the
formalism, we directly use the global security policy Φ̂ to serve
as the context for type-checking the proofs at API call-sites at
runtime.

4. Authentication and active principals: As evaluation pro-
gresses, principals may be authenticated using the authenticate
primitive. Principals who have been authenticated during a pro-
gram run are called active principals. We keep a record of all ac-
tive principals as a set of principals A ⊆ {a | a⇒Prin ∈ Σc}.
The program starts execution with A = φ, i.e. no principal is
assumed to be authenticated at the beginning of the program.

6.1 Judgment forms
We describe the dynamic semantics using a transition relation be-
tween terms. We use the following judgment forms:

1. m;A 7→Σc;Σt;Φ̂
w m′;A′: Under the signatures Σc; Σt and

the amalgamated authorization policy Φ̂, the term m, executed
at world w, steps to the term m′ in a single transition; the set
of active principals changes from A to A′. Since Σc, Σt and
Φ̂ remain fixed during evaluation, we often omit them while
presenting the transition system.

2. m valA: means that the term m is a value under the runtime
record A, and is not evaluated further.

6.2 The value judgment
The value judgment m valA defines values with respect to the run-
time state A. The rules for determining values of the types such as
function, product, sum and existential types are straightforward; we
adopt eager evaluation for products, sums and existential packages.

The crucial part of this definition is the case for values of type
Iam(A). An authentication token iam[a] is a value only if a is an
authenticated principal, i.e. if a is part of the active setA. The need
for this assumption is explained in Section 6.6.

a ∈ A
iam[a] valA

(Iam-V)

6.3 Distribution
A remote call get[w′]m is evaluated at a world w as follows:

m;A 7→w′ m′;A′

get[w′]m;A 7→w get[w′]m′;A′
(get-eval)

m valA

get[w′]m;A 7→w m;A
(get-reduce)

Rule (get-eval) expresses the remote execution of m at the
world w′. In case m is a value, it is brought to w from w′ (Rule
(get-reduce)). This transfer is safe, i.e., m is well-typed at w
because the type system guarantees that m has a mobile type.

6.4 Local policy acquisition
The acquire[A] primitive does a proof search for the proposi-
tion A using the local policy Φ̂w at the site where it is executed.

This proof search may fail. We do not stipulate the procedure used
for local theorem-proving. For this reason, we model this prim-
itive using a non-deterministic step: the Rule (acq-succ) non-
deterministically chooses a proof A′ such that A′ has the kind
Prf(A) under the assumptions Φ̂w.

Φ̂w `Σc A′ ⇐ Prf(A)

acquire[A];A 7→w SOME {α = A′; 〈〉 : unit};A
(acq-succ)

The failure case is modeled by a transition to the value NONE:

acquire[A];A 7→w NONE;A (acq-fail)

6.5 Authentication
Authentication, if successful, results in the production of a token for
the authenticated principal. We use a non-deterministic rule which
may result in a token for any principal that has been declared in the
signature Σc.

a::Prin ∈ Σc

authenticate;A 7→w SOME {α = a; iam[a] : Iam(α)};A ∪ {a}
(auth-succ)

The record A is augmented with a to note this authentication.
In case of failure, authenticate returns NONE, and A is left

unchanged:

authenticate;A 7→w NONE;A
(auth-fail)

An important technical detail to note here is that we require
Σc to contain all possible principals. This is manifest in the Rule
(auth-succ) where authenticate does not generate a new prin-
cipal identity but simply picks one up from Σc.

6.6 API calls to reference monitors
API constants represent externally implemented functions. We
model their behavior using a non-deterministic transition to an
arbitrary term of the appropriate type.

m;A 7→w m′;A′

c[A1, . . . , An](m);A 7→w c[A1, . . . , An](m′);A′
(api-eval)

Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉A → A′@w

∀i ∈ [0..n− 1] Φ̂ `Σc Ai+1 ⇐ [A1/α1] . . . [Ai/αi]Ki+1

m1 valA

c[A1, . . . , An](m1);A 7→Σc;Σt;Φ
w m2;A

(api-reduce)

The Rule (api-reduce) illustrates the central actions that take
place during a call to a reference monitor:

1. Authorization checks The central point of PCA is that refer-
ence monitors for APIs check proofs. Proofs are passed as con-
structor arguments to the API. In order to verify them, the ref-
erence monitor needs the amalgamated policy Φ̂.
Consider the Rule (api-reduce). Before evaluating the API
call, the reference monitor type-checks all the constructor ar-
guments A1 . . . An under Φ̂. For well-typed programs, the type
system (cf. Section 5.5.2) guarantees that all type checks suc-
ceed.

2. Authentication checks In addition to verifying proofs, the ref-
erence monitor checks authentication credentials. APIs for such
monitors are polymorphic in the authenticated principal α, and
require an extra parameter of type Iam(α). In order to verify
an authentication credential iam[a], the reference monitor sim-
ply checks whether a ∈ A, where A is the active set at the
time of API call. In the formalism, authentication checks are
reflected implicitly in the value judgment. An authentication to-
ken iam[a] is considered a value under an active set A only if
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a ∈ A (Rule Iam-V). This way, we reduce authentication check-
ing to checking that the argument to the API call (m1 in Rule
(api-reduce)) is a value.

6.7 PCA runtime errors
A term may incur a runtime fault at a reference monitor in the
following two ways:

1. Either the proofs passed to the monitor API do not type-check,

2. An authentication credential is not valid, in the sense that the
purported principal does not appear in the authentication record
A.

We formalize these errors explicitly using the judgment m ↑A.
This judgment formalizes the intuition that m is not a value, and
m;A 67→w.

a 6∈ A
iam[a] ↑A

(iam↑)

Φ̂ 0Σc Ai ⇐ [A1/α1] . . . [Ai−1/αi−1]Ki

c[A1, . . . , An](m) ↑A
(c↑)

In addition, we have rules to propagate errors through evaluation
of other terms, of which we present only a sample here:

m1 ↑A
〈m1, m2〉 ↑A

(pair↑1)
m1 valA m2 ↑A

〈m1, m2〉 ↑A
(pair↑2)

The rules for the error judgment follow the evaluation order. A
pair 〈m1, m2〉 can incur an error at two instances: either when m1

which is evaluated first incurs an error (as in Rule (pair↑1)), or
when m1 has been evaluated to a value and m2 incurs an error (as
shown in Rule (pair↑2)).

7. Metatheory
We now prove the central result of this paper: a class of well-typed
PCML5 programs do not incur runtime faults at reference monitors.
We have already summarized a notion of error states (Section 6.7)
that formalizes exactly the runtime failures we are trying to avoid.

We start by proving progress and preservation for PCML5. This
means that well-typed terms do not get stuck. However, static
typing alone does not rule out authentication errors, i.e. failures that
happen when the reference monitor gets a token iam[a] and a is not
an active principal. This happens because the type system does not
track runtime authentication events, i.e. calls to authenticate.

Throughout this section we shall assume that Σc; Σt are well-
formed signatures and Φ̂ is an amalgamated security policy which
is well-formed under Σc.

7.1 Type safety
Theorem 7.1 (Progress). Let A be a set of active principals from
Σc. If ∆; · `Σc;Σt m : A@w, then

1. either m valA,
2. or ∃m′,A′.m;A 7→Σc;Σt;Φ̂

w m′;A′,
3. or m ↑A without using the Rule (c↑).

Theorem 7.2 (Preservation of typing). Assume that all API con-
stants declared in Σt preserve the typing. If m;A 7→Σc;Σt;Φ̂

w m′;A′
and ∆; · `Σc;Σt m : A@w,
then ∆, Φ̂; · `Σc;Σt m′ : A@w.

In order to guarantee that terms do not incur authentication er-
rors in addition to not getting stuck, we define a notion of authen-
tication safety for terms with respect to a set of active principals. A

well-typed term is regarded as authentication safe if it never eval-
uates to an unauthenticated token. We prove that an authentication
safe term does not evaluate to an error state. In addition, we prove
that authentication safety is preserved by evaluation; these two the-
orems together ensure that authentication safe terms do not incur
runtime access violations at reference monitors. Finally we show
how authentication safety for the case where the set of active prin-
cipals is empty can be enforced using the type system.

7.2 Authentication history
The runtime semantic ensures that authenticate is the only way
in which a new authentication token can be generated. We further
wish to enforce that a token iam[a] appears in a term only when
the associated history A mentions a as one of the authenticated
principals. We use a judgment of the form ∆; Γ `AΣc;Σt

m :
A@w to denote that, in addition to the term being well-typed,
all authentication tokens in m have the corresponding principal
recorded inA. This judgment resembles the static typing judgment
∆; Γ `Σc;Σt m : A@w except for the case of iam[a], where we
demand that the principal a be present in A. We present a sample
of rules here:

a::Prin ∈ Σc a ∈ A
∆; Γ `AΣc;Σt

iam[a] : Iam(a)@w

∆; Γ, x:A@w `AΣc;Σt
m : A′@w

∆; Γ `AΣc;Σt
λx:A.m : A → A′@w

∆; Γ `AΣc;Σt
m1 : A1 → A2@w ∆; Γ `AΣc;Σt

m2 : A1@w

∆; Γ `AΣc;Σt
(m1 m2) : A2@w

Theorem 7.3. If ∆; Γ `AΣc;Σt
m : A@w then ∆; Γ `Σc;Σt m :

A@w.

We assume that API calls do not directly introduce spurious
authentication tokens in their results. The following assumption
about API calls summarizes this:

Definition 7.4 (Authentication safety for APIs). Let
Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉A1 → A2@w. Let P be the set
of constants a s.t. a::Prin ∈ Σc. The API c is authentication safe
if the following holds:

For all constructors B1, . . . , Bn such that
· `Σc Bi+1 ⇐ [B1/α1] . . . [Bi/αi]Ki+1. Let v be well-typed,
and be safe for A as ∆; · `AΣc;Σt

v : [B1/α1] . . . [Bn/αn]A1@w.
If c[B1, . . . , Bn](v);A 7→w m;A, then m is safe for A, i.e.
∆; · `AΣc;Σt

m : [B1/α1] . . . [Bn/αn]A2@w.

This restriction forces the resulting term to be safe w.r.t. all the
possibleA’s for which the argument v is safe, thus ensuring that all
authentication tokens in the result of the call are inherited from the
argument v, i.e. no new iam[A] are introduced in the result.

If all APIs are authentication safe, then authentication safety is
preserved by evaluation:

Theorem 7.5 (Preservation of authentication safety). Let all API
constants declared in Σt be safe in the sense of Def. 7.4.
If m;A 7→Σc;Σt;Φ̂

w m′;A′ and ∆; · `AΣc;Σt
m : A@w,

then ∆, Φ̂; · `A
′

Σc;Σt
m′ : A@w.

Furthermore, authentication safety ensures that reference mon-
itors cannot reject calls from well-typed and authentication-safe
programs.

Theorem 7.6 (Progress under authentication safety). Let A be a
set of active principals from Σc. If ∆; · `AΣc;Σt

m : A@w, then
either m valA, or ∃m′,A′.m;A 7→Σc;Σt;Φ̂

w m′;A′.
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Notice that in contrast to Theorem 7.1 which has a failure clause
(m ↑A), Theorem 7.6 excludes the possibility of an authentication-
safe term getting stuck and ensures that it is either a value, or that it
takes a step to another term. The progress theorem (Theorem 7.6),
together with preservation (Theorem 7.5) ensures that an authenti-
cation safe, well-typed term never incurs a runtime fault at refer-
ence monitors.

7.3 Initializing evaluation
A closed well-typed program m begins evaluation under an empty
set of authenticated principals. By virtue of the progress and preser-
vation theorems for authentication safety, in order to ensure that
evaluation never incurs a runtime error, it is sufficient to ensure that
·; · `{}Σc;Σt

m : A@w. This can be enforced easily using the typ-
ing rules by simply disallowing all constants iam[c] as well-typed
terms. This is possible because while checking for authentication
safety of a term under A, all the sub-terms are checked under the
same A.

8. Example
We revisit the example scenario from Figure 1. The program
shown in Figure 4 illustrates how a distributed program running
at browser can access the database conf at acmserver using a
proof constructed using distributed proof-search at univserver
and acmserver.

8.1 External API and other declarations
The program in Figure 4 first declares principal, database and world
constants as extern declarations. The extern principal dec-
laration runs an initialization code to acquire the runtime repre-
sentation of the principal (using the name supplied) and binds it
to the variable in the declaration. The classifiers bytecode and
javascript in world declarations determine the language of the
generated code for the respective worlds. Lines 10-12 declare the
addresses for the three sites.

Lines 14-16 declare predicates using the extern prop decla-
ration. A declaration extern prop (s1, ..., sn) p declares
p to be a predicate with s1 through sn being the sorts of its argu-
ments.

Next we declare types for the database API at acmserver. The
constructor dbhandle has the kind Db→ Type. The API db.open
takes a database name of type string and returns the runtime
identity of the database packaged with its static proxy, as discussed
in Section 4.3. We use the syntax {a:K, A} for the existential type
∃a::K.A. For simplicity, databases in this paper are simply (key,
value) pairs, where both the key and the value are strings. Line 21
introduces the proof-carrying API for reading databases: db.read
is typed polymorphically in the accessing principal p, the database
d, and the proof f of acm affirming that p is allowed to read d.
The argument to db.read is a triple consisting of (1) a value of
type Iam(p) which forms an evidence of p’s authentication, (2) the
runtime structures associated with the database d, and (3) the key
to be read. Both the database operations db.open, and db.read are
local to acmserver.

8.2 Distributed proof construction
We now discuss the steps involved in reading conf at acmserver.
This is done in Lines 28-57 by the function readpaper which is
typed at acmserver.

The first operation (Lines 29-31) is to authenticate the principal.
In case authentication fails, the program raises the Abort exception
and halts. In case of a successful authentication, authenticate
returns a value of type ∃α::Prin.Iam(α), which is bound to
authpkg.

Let us consider the case when authentication succeeds. In this
case authpkg gets bound to a package {α = k; iam[k] : Iam(α)},
where k is the authenticated principal. The side-effect of this suc-
cessful authentication is that k gets added to the set of active prin-
cipals.

Assume that the amalgamated policy is given as the following
context Φ̂, with the variables α1, α2, α3 chosen fresh. The whole
program is run under this context. In an implementation, these
variables would be bound to digital certificates.

Φ̂ =

8>>>>>><>>>>>>:

α1 ⇒ 〈univ〉is student(alice, univ),
α2 ⇒ 〈acm〉is member(univ, acm),
α3 ⇒ 〈acm〉∀x:prin.∀y:prin.

is member(x, acm) ∧ 〈x〉is student(y, x)
⊃ mayrd(conf, y)

...

9>>>>>>=>>>>>>;
The task now is to construct a proof of

〈acm〉mayrd(conf, k).

This task depends on the identity of the authenticated principal.
The static index of the authenticated principal is obtained by open-
ing the package authpkg (Line 33), binding me to k, and cookie
to iam[k]. The rest of the code in the function executes in the scope
of this open.

We begin by first acquiring the certificate for studentship for
k. This is done by moving evaluation to the site univserver and
searching for a proof of 〈univ〉is student(k, univ) there. The
query acquire on Line 36 succeeds if k is alice because in this
case there is a direct proof, α1, in the policy. In the absence of
any other proofs in univserver’s local policy, this query fails
for other principals k. A successful acquire on Line 36 binds
studentcert to the optional package SOME {α = α1; 〈〉 : unit},
and the result is brought back to acmserver by the get. Notice that
the result of an acquire is of a mobile type and therefore can be
brought over from univserver to acmserver. The program raises
the exception abort and terminates in case this acquire fails.

Next we need to acquire a proof that k is allowed access to the
database conf. This proof search depends on the static identity of
the database conf. This identity is obtained using db.open at Line
40, which, if successful binds the proxy to d, and the runtime handle
to h upon opening the package returned by db.open. We proceed
(Line 44) with a query for the following proposition at acmserver:

univ says is_student(me, univ)
implies
acm says mayrd(d, me)

This particular proof search illustrated the idea of combining
proofs from various sites. The proof search is done at acmserver
even though the antecedents of the implication represent non-local
facts. The hypothesis is discharged (Line 50) using proofs α1

acquired separately at univserver. This discharge of assumptions
using non-local facts to obtain a globally valid proof is possible
because constructors are typeable at all locations.

Notice that in order to construct the accessibility proof, it is
critical to assemble univ’s policy from univserver. The policy
of acm alone does not suffice for the required proof. That is, one
cannot hope for the direct query

acquire[acm says mayrd (d, me)]

to be successful at acmserver. The proof query in Lines 44-46 can
be viewed as temporarily extending the policy at acmserver to in-
clude the non-local fact 〈univ〉is student(k, univ), whereupon
the accessibility proof becomes derivable at acmserver.
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1 unit
2 import "std.mlh"
3
4 extern principal acm = "acm"
5 extern principal univ = "univ"
6 extern bytecode world acmserver
7 extern bytecode world univserver
8 extern javascript world browser
9

10 extern val acmaddr ~ acmserver addr
11 extern val univaddr ~ univserver addr
12 extern val browseraddr ~ browser addr
13
14 extern prop (prin, prin) is_member
15 extern prop (db, prin) mayrd
16 extern prop (prin, prin) is_student
17
18 extern type (d:db) dbhandle
19 extern val db.open :
20 string -> {d:db, dbhandle(d)} option @ acmserver
21 extern val (p: prin, d: db, f: says acm mayrd(d, p))
22 db.read :
23 Iam(p) * dbhandle(d) * string -> string
24 @ acmserver
25
26 exception Abort of string
27
28 fun readpaper () =
29 let val authpkg = case authenticate of
30 NONE => raise Abort "authentication failed"
31 | SOME p => p
32 in
33 open authpkg as {me: prin, cookie} in
34 let val studcert =
35 case from univaddr
36 get acquire [univ says is_student(me, univ)] of
37 NONE => raise Abort "studentship search failed"
38 | SOME c => c
39 in
40 case db.open "conf" of
41 NONE => raise Abort "db.open failed"
42 | SOME dbase =>
43 open dbase as {d:db, h} in
44 case acquire [univ says is_student(me, univ)
45 implies
46 acm says mayrd(d, me)] of
47 NONE => raise Abort "mayrd search failed"
48 | SOME prf => open {studpf, _} = studcert in
49 open {pf, _} = prf in
50 db.read[me, d, impE pf studpf]
51 (cookie, h, "paper.pdf")
52 end
53 end
54 end
55 end
56 end
57 end
58
59 do from acmaddr get readpaper ()
60
61 end

Figure 4. PCML5 code for accessing a PCA-enabled resource under a distributed authorization policy. The code corresponds to the setup
introduced in Figure 1.
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8.3 Database access using required proofs
Lines 48-53 show the code that makes an API call to read conf us-
ing the proof constructed above. First the proof packages returned
by acquire’s are opened binding the proof constructors to studpf
and pf. The accessibility proof is constructed as impE pf studpf.
impE is a constructor from the embedding of the authorization logic
representing ⊃-elimination; it has the kind

Πα::Prop.Πβ::Prop.Prf(α ⊃ β) → Prf(α) → Prf(β)

The constructor pf is a proof of

〈univ〉is student(k, univ) ⊃ 〈acm〉mayrd(conf, k)

under Φ̂acmserver, and studpf is a proof of 〈univ〉is student(k, univ)

under Φ̂univserver. Both proofs are therefore well-typed under Φ̂.
Thus the proof impE pf studpf proves 〈acm〉mayrd(conf, k) un-
der the amalgamated policy Φ̂.

Apart from the authorization check, the monitor checks if the
credential cookie represents an authenticated principal by consult-
ing the set of active principals. This check also succeeds because
authenticate done at Line 29 augments the active set with k.
Since both checks succeed, the API call is successful. The result,
which is of the mobile type string, is returned back to browser
on Line 59.

9. Related work
Aura (Jia et al. 2008; Vaughan et al. 2008) is a language for enforc-
ing authorization policies. It is based on DCC (Abadi et al. 1999).
Our language differs from Aura in terms of the domain of use be-
cause ours is a distributed programming language for distributed
authorization policies. Aura is neither a distributed programming
language, nor does it handle distributed policies.

As a matter of technique, PCML5 differs from Aura in the
way they incorporate the authorization logic. While PCML5 uses a
higher-order encoding of an authorization logic as static construc-
tors, with a phase distinction between static and dynamic phases,
the proof level in Aura is a Curry-Howard interpretation of an au-
thorization logic, and is based on DCC (Abadi 2006b).

Also, Aura does not have a notion of authentication of the prin-
cipal executing the program. A special principal identifier called
self is used to refer to the executing principal. In contrast, PCML5

uses authentication tokens as indicators of the fact that a certain
principal had been authenticated. This also allows for a program to
acquire multiple authenticities during its evaluation.

RCF (Bengtson et al. 2008) uses refinement types together with
dependent types to express pre- and post-conditions. The proof
obligations are represented as preconditions in the API. Thus a
function for reading databases may be typed as

read : file:string{mayrd(file)} → string

where file:string{mayrd(file)} is the refinement type of
strings f for which mayrd(f) holds. Refinement types are in-
troduced using a term of the form assume C, which is typed as
:unit{C}. The typing context can be thought of as defining a

theory which is the set of all the formulae appearing in it. A promi-
nent difference between PCML5 and RCF is that PCML5 uses
explicit proof terms unlike RCF. In absence of proof terms, the
type-checking algorithm of RCF uses an SMT solver to verify if
the typing context proves a particular logic formula. Another dif-
ference is that RCF does not have a phase distinction since runtime
values can appear inside types, because formulas need to mention
runtime entities.

PCAL (Chaudhuri and Garg 2009) is another language that re-
lies on external SMT solvers during compile-time to construct PCA
proofs. Users annotate program points with propositions that they

expect to hold there. The compiler first checks that the annotation
at a point is sufficient to guarantee access to the command exe-
cuted at that point. Then it attempts to construct a proof statically
as per the annotation. In case it cannot construct a proof statically,
the compiler produces code to dynamically construct the required
proof. Using a combination of both methods, the compiler ensures
compliance with the PCA interface.

Fable(Swamy et al. 2008) is another language that provides stat-
ically enforced compliance with security policies. The idea is to
have an abstract type of tagged program values that can only be
manipulated using trusted policy functions. A program is divided
into two fragments: the policy fragment that provides the abstrac-
tion, and the application fragment that functions as a client for the
abstraction, treating tagged values abstractly. Different kinds of se-
curity properties can be expressed by having different interpreta-
tions for the tags. Thus instead of designing a language around a
particular form of policies, such as is PCML5, Fable attempts to
provide a general framework in which different kinds of policies
can be expressed. This however comes at a cost: the language it-
self does not guarantee any security property itself (other than type
safety); the relevant properties need to be proved separately for ev-
ery policy fragment.

The idea of statically checking the permission for accessibility
has been used in a completely different setting as compared to ours
by Krishnaswami et al. (Krishnaswami and Aldrich 2005). They
use the notion of domains with inter-domain accessibility permis-
sions to statically enforce that code from a domain may access an
element of another domain only if there is a chain of access per-
missions from the former to the latter domain. Analogous to the
proof-carrying APIs in PCML5, their proposal allows specification
of access permissions associated with a domain. They use domains
to encapsulate stateful parts of modules for which it is desirable
to restrict access from outside domains. The type system enforces
compliance of the module and its interface to a high-level policy of
accessibility, i.e., protected parts of the module are not leaked out
by the interface.

10. Conclusion and future work
We have presented a language-based approach for enforcing dis-
tributed authorization policies. We are currently working on a pro-
totype implementation of PCML5, building upon the implementa-
tion of ML5 (Murphy 2008). We plan to implement distributed ap-
plications using PCML5. We also plan to mechanize the metatheory
of PCML5. In this paper, we have assumed a very simple model of
spatial distribution of policies: the local policy at a site w contains
only assertions made by the principal who governs w. In practice,
however, assertions made by one principal may be cached at other
sites, as is done in trust management systems (Blaze et al. 1996).
In future work, we plan to support such richer forms of distribution
of authorization policies.
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A. PCML5 static semantics

Σc ok

· ok
Σc ok · `Σc K kind a 6∈ dom(Σc)

Σc,a::K ok

Σt ok[Σc]

· ok[Σc]

Σt ok[Σc] α1⇒K1, . . . , αj−1⇒Kj−1 `Σc Kj kind(j ∈ [1..n]) α1⇒K1, . . . , αn⇒Kn `Σc A ⇐ Type

Σt, c:∀〈α1:K1, . . . , αn:Kn〉A ok[Σc]

∆ `Σc K kind

∆ `Σc Type kind ∆ `Σc Prin kind ∆ `Σc Wld kind ∆ `Σc Db kind ∆ `Σc Prop kind

∆ `Σc P ⇐ Prop

∆ `Σc Prf(P ) kind

∆ `Σc P ⇐ Prop ∆ `Σc k ⇐ Prin

∆ `Σc k Affirms P kind

∆ `Σc K1 kind ∆, α⇒K1 `Σc K2 kind

∆ `Σc Πα::K1.K2 kind

(Normal constructors) ∆ `Σc A ⇐ K

∆ `Σc N ⇒ K K 6= Πα::K1.K2

∆ `Σc N ⇐ K

∆, α⇒K `Σc A ⇐ K′

∆ `Σc λα::K.A ⇐ Πα::K.K′

(Neutral Constructors) ∆ `Σc N ⇒ K

∆(α) = K

∆ `Σc α ⇒ K

Σc(a) = K

∆ `Σc a ⇒ K

∆ `Σc A1 ⇐ Type ∆ `Σc A2 ⇐ Type

∆ `Σc A1 → A2 ⇒ Type

∆ `Σc A1 ⇐ Type ∆ `Σc A2 ⇐ Type

∆ `Σc A1 ×A2 ⇒ Type

∆ `Σc A1 ⇐ Type ∆ `Σc A2 ⇐ Type

∆ `Σc A1 + A2 ⇒ Type ∆ `Σc unit⇒ Type

∆ `Σc A ⇐ Type ∆ `Σc w ⇐ Wld

∆ `Σc A at w ⇒ Type

∆ `Σc N ⇒ Πα::K1.K2 ∆ `Σc A ⇐ K1

∆ `Σc (N A) ⇒ [A/α]K2

∆, α⇒K `Σc A ⇐ Type

∆ `Σc ∃α::K.A ⇒ Type

∆ `Σc A ⇐ Prin

∆ `Σc Iam(A) ⇒ Type

Figure 5. Well-formed signatures and kinds, and constructor kinding

B. Runtime Semantics
The operational semantics is described using judgments of the form m;A 7→Σc;Σt;Φ

w m′;A′ indexed by the signatures Σc; Σt; Φ, and a
world w. The signatures Σc, Σt and Φ remain constant during evaluation, and we shall omit them whenever they are evident from the context.
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(Terms) ∆; Γ `Σc;Σt m : A@w

∆; Γ `Σc;Σt m1 : A1@w ∆; Γ, x:A1@w `Σc;Σt m2 : A2@w

∆; Γ `Σc;Σt let x = m1 in m2 : A2@w

∆; Γ `Σc;Σt m1 : A2 → A1@w ∆; Γ `Σc;Σt m2 : A2@w

∆; Γ `Σc;Σt (m1 m2) : A1@w

∆; Γ `Σc;Σt m : A1 ×A2@w

∆; Γ `Σc;Σt π1m : A1@w

∆; Γ `Σc;Σt m : A1 ×A2@w

∆; Γ `Σc;Σt π2m : A2@w

∆; Γ `Σc;Σt m1 : A1 at w′@w ∆; Γ, x:A1@w′ `Σc;Σt m2 : A2@w

∆; Γ `Σc;Σt leta x = m1 in m2 : A2@w

∆ `Σc w′ ⇐ Wld ∆; Γ `Σc;Σt m : A@w′ ∆ `Σc A mobile

∆; Γ `Σc;Σt get[w′]m : A@w

∆ `Σc A ⇐ Prop

∆; Γ `Σc;Σt acquire[A] : ∃α::Prf(A).unit option@w

Σt(c) = ∀〈α1:K1, . . . , αn:Kn〉(A → A′)
∆ `Σc Ak ⇐ [A1/α1] . . . [Ak−1/αk−1]Kk (k = 1..n) ∆; Γ `Σc;Σt m : [A1/α1] . . . [An/αn]A@w

∆; Γ `Σc;Σt c[A1, . . . , An](m) : [A1/α1] . . . [An/αn]A′@w

∆; Γ `Σc;Σt m : A1 + A2@w ∆; Γ, x:A1@w `Σc;Σt m1 : A@w ∆; Γ, x:A2@w `Σc;Σt m2 : A@w

∆; Γ `Σc;Σt case m of x.(m1 |m2) : A@w

∆; Γ `Σc;Σt m1 : ∃α::K.A@w ∆, α⇒K; Γ, x:A@w `Σc;Σt m2 : A2@w ∆ `Σc A2 ⇐ Type

∆; Γ `Σc;Σt open {α, x} = m1 in m2 : A2@w

∆ `Σc w ⇐ Wld

∆; Γ `Σc;Σt authenticate : ∃α::Prin.Iam(α) option@w ∆; Γ, x:A@w, Γ′ `Σc;Σt x : A@w

∆; Γ, x:A1@w `Σc;Σt m : A2@w

∆; Γ `Σc;Σt λx:A1.m : A1 → A2@w

∆ `Σc w ⇐ Wld

∆; Γ `Σc;Σt 〈〉 : unit@w

∆; Γ `Σc;Σt m1 : A1@w ∆; Γ `Σc;Σt m2 : A2@w

∆; Γ `Σc;Σt 〈m1, m2〉 : A1 ×A2@w

∆; Γ `Σc;Σt m : A@w

∆; Γ `Σc;Σt hold m : A at w@w

∆; Γ `Σc;Σt m : A@w ∆ `Σc w′ ⇐ Wld

∆; Γ `Σc;Σt held m : A at w@w′
∆; Γ `Σc;Σt m : A1@w

∆; Γ `Σc;Σt inl m : A1 + A2@w

∆; Γ `Σc;Σt m : A2@w

∆; Γ `Σc;Σt inr m : A1 + A2@w

∆ `Σc A ⇐ K ∆; Γ `Σc;Σt m : [A/α]A′@w

∆; Γ `Σc;Σt {α = A; m : A′} : ∃α::K.A′@w

∆ `Σc k ⇐ Prin ∆ `Σc w ⇐ Wld

∆; Γ `Σc;Σt iam[k] : Iam(k)@w

Figure 6. Typing rules for terms and values. We use A option to mean A + unit.

∆ `Σc A1 mobile ∆ `Σc A2 mobile

∆ `Σc A1 ×A2 mobile

∆ `Σc A1 mobile ∆ `Σc A2 mobile

∆ `Σc A1 + A2 mobile ∆ `Σc unit mobile

∆ `Σc A at w mobile ∆ `Σc Iam(A) mobile

∆, α:K `Σc A mobile

∆ `Σc ∃α::K.A mobile

Figure 7. Mobile types
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λx:A.m valA
(→ -V)

m1 valA m2 valA

〈m1, m2〉 valA
(×-V) 〈〉 valA

(unit-V)
m valA

inl m valA
(+-V1)

m valA

inr m valA
(+-V2)

held m valA
(at -V)

a ∈ A
iam[a] valA

(Iam-V)
m valA

{α = A; m : A′} valA
(∃-V)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m1;A 7→w m′
1;A′

let x = m1 in m2;A 7→w let x = m′
1 in m2;A′

m1 valA

let x = m1 in m2;A 7→w [m1/x]m2;A

m1;A 7→w m′
1;A′

(m1 m2);A 7→w (m′
1 m2);A′

m2;A 7→w m′
2;A′

(λx:A.m1 m2);A 7→w (λx:A.m1 m′
2);A′

m2 valA

(λx:A.m1 m2);A 7→w [m2/x]m1;A

m1;A 7→w m′
1;A′

〈m1, m2〉;A 7→w 〈m′
1, m2〉;A′

m1 valA m2;A 7→w m′
2;A′

〈m1, m2〉;A 7→w 〈m1, m
′
2〉;A′

m;A 7→w m′;A′

π1m;A 7→w π1m
′;A′

〈m1, m2〉 valA
π1〈m1, m2〉;A 7→w m1;A

m;A 7→w m′;A′

π2m;A 7→w π2m
′;A′

〈m1, m2〉 valA
π2〈m1, m2〉;A 7→w m2;A

m;A 7→w m′;A′

hold m;A 7→w hold m′;A′

m valA

hold m;A 7→w held m;A
m1;A 7→w m′

1;A′

leta x = m1 in m2;A 7→w leta x = m′
1 in m2;A′

m1 valA

leta x = held m1 in m2;A 7→w [m1/x]m2;A
m;A 7→w′ m′;A′

get[w′]m;A 7→w get[w′]m′;A′
m valA

get[w′]m;A 7→w m;A

a::Prin ∈ Σc

authenticate;A 7→Σc;Σt;Φ
w SOME {α = a; iam[a] : Iam(α)};A ∪ {a} authenticate;A 7→Σc;Σt;Φ

w NONE;A

acquire[A];A 7→w NONE;A
Φ̂w `Σc A′ ⇐ Prf(A)

acquire[A];A 7→Σc;Σt;Φ̂
w SOME {α = A′; 〈〉 : unit};A

m;A 7→w m′;A′

c[A1, . . . , An](m);A 7→w c[A1, . . . , An](m′);A′

Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉A → A′@w ∀i ∈ [0..n− 1] · `Σc,Φ Ai+1 ⇐ [A1/α1] . . . [Ai/αi]Ki+1 m1 valA

c[A1, . . . , An](m1);A 7→Σc;Σt;Φ
w m2;A

m;A 7→w m′;A′

inl m;A 7→w inl m′;A′
m;A 7→w m′;A′

inr m;A 7→w inr m′;A′
m;A 7→w m′;A′

case m of x.(m1 |m2);A 7→w case m′
of x.(m1 |m2);A

inl m valA

case inl m of x.(m1 |m2);A 7→w [m/x]m1;A
inr m valA

case inr m of x.(m1 |m2);A 7→w [m/x]m2;A′

m;A 7→w m′;A′

{α = A; m : A′};A 7→w {α = A; m′ : A′};A′
m1;A 7→w m′

1;A′

open {m1, α} = x in m2;A 7→w open {m′
1, α} = x in m2;A′

{α = A; m : A′} valA
open {α, x} = {α = A; m : A′} in m′;A 7→w [A/α][m/x]m′;A

Figure 8. Dynamic semantics

15 2009/10/5



m ↑Σt;Σc
A

a 6∈ A
iam[a] ↑Σt;Σc

A

Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉A → A′ · 0Σc Aj ⇐ [A1/α1] . . . [Aj−1/αj−1]Kj

c[A1, . . . , An](m) ↑Σt;Σc
A

m1 ↑A
let x = m1 in m2 ↑A

m1 ↑A
(m1 m2) ↑A

m2 ↑A
(λx:A.m1 m2) ↑A

m1 ↑A
〈m1, m2〉 ↑A

m1 valA m2 ↑A
〈m1, m2〉 ↑A

m ↑A
π1m ↑A

m ↑A
π2m ↑A

m ↑A
hold m ↑A

m1 ↑A
leta x = m1 in m2 ↑A

m ↑A
get[w]m ↑A

m ↑A
inl m ↑A

m ↑A
inr m ↑A

m ↑A
case m of x.(m1 |m2) ↑A

m ↑A
{α = A; m : A′} ↑A

m ↑A
open {α, x} = m in m′ ↑A

Figure 9. Stuck states

C. Metatheory
C.1 Type safety
Definition C.1 (Authentication safety). We informally say that a well-typed term m under signatures Σc; Σt and contexts ∆; Γ is
authentication safe wrt. an authentication history A if:

1. ∆; Γ `Σc;Σt m : A@w,
2. Any iam[a] appearing in the term also appears in A.

We formally define this concept using a judgment ∆; Γ `AΣc;Σt
m : A@w which is similar to the term typing judgment except for the rule

corresponding to iam[a]:
a::Prin ∈ Σc a ∈ A

∆; Γ `AΣc;Σt
iam[a] : Iam(a)@w

Lemma C.2. If ∆; Γ `AΣc;Σt
m : A@w, then ∆; Γ `Σc;Σt m : A@w.

Proof. By induction on derivation of ∆; Γ `AΣc;Σt
m : A@w.

Lemma C.3 (Values and progress-making terms are not stuck). Let m be a term and A be a set of active principals. If m valA or
∃m′,A′.m;A 7→Σc;Σt;Φ

w m′;A′, then it is not the case that m ↑Σt;Σc
A .

Proof. By induction on the derivation of m valA and m;A 7→Σc;Σt;Φ
w m′;A′.

Theorem C.4 (Progress). Let Σc; Σt be well-formed signatures and Φ̂ be an access control theory. Let A be a set of active principals from
Σc. If ∆; · `AΣc,Φ;Σt

m : A@w, then either m valA, or ∃m′,A′.m;A 7→Σc;Σt;Φ̂
w m′;A′.

Proof. By induction on derivation of ∆; · `AΣc,Φ;Σt
m : A@w.

Case:
∆; · `AΣc,Φ;Σt

m1 : A1@w ∆; x:A1@w `AΣc,Φ;Σt
m2 : A2@w

∆; · `AΣc,Φ;Σt
let x = m1 in m2 : A2@w

∆; · `A
Σc,Φ̂;Σt

m1 : A1@w Premiss
Either m1 valA,
or ∃m′

1,A′.m1;A 7→w m′
1;A′ I.H.

Subcase: m1 valA

let x = m1 in m2;A 7→w [m1/x]m2;A
Subcase: m1;A 7→w m′

1;A′

let x = m1 in m2;A 7→w let x = m′
1 in m2;A′

Case:
∆; x:A1 `AΣc;Σt

m : A2@w

∆; · `AΣc;Σt
λx:A1.m : A1 → A2@w

λx:A1.m valA Rule (→ -V)
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Case:
∆; · `AΣc;Σt

m1 : A2 → A1@w ∆; · `AΣc;Σt
m2 : A2@w

∆; · `AΣc;Σt
(m1 m2) : A1@w

∆; · `AΣc;Σt
m1 : A2 → A1@w Premiss

Either m1 valA,
or ∃m′

1,A′.m1;A 7→w m′
1;A′ I.H.

Subcase: m1 valA.
m1 = λx:A.m Lemma C.5
∆; · `AΣc;Σt

m2 : A2@w Premiss
Either m2 valA,
or ∃m′

2,A′.m2;A 7→w m′
2;A′ I.H.

Subcase: m2 valA
(λx:A.m m2);A 7→w [m2/x]m;A

Subcase: m2;A 7→w m′
2;A′

(λx:A.m m2);A 7→w (λx:A.m m′
2);A′

Subcase: m1;A 7→w m′
1;A′

(m1 m2);A 7→w (m′
1 m2);A′

Case:
∆; · `AΣc;Σt

m1 : A1@w ∆; · `AΣc;Σt
m2 : A2@w

∆; · `AΣc;Σt
〈m1, m2〉 : A1 ×A2@w

By I.H. we get the following three cases:
Subcase: m1;A 7→w m′

1;A′
〈m1, m2〉;A 7→w 〈m′

1, m2〉;A′

Subcase: m1 valA and m2;A 7→w m′
2;A′

〈m1, m2〉;A 7→w 〈m1, m
′
2〉;A′

Subcase: m1 valA and m2 valA.
〈m1, m2〉 valA Rule (×-V)

Case:
∆; · `AΣc;Σt

m : A1 ×A2@w

∆; · `AΣc;Σt
π1m : A1@w

∆; · `AΣc;Σt
m : A1 ×A2@w Premiss

Either m valA,
or ∃m′,A, .m;A 7→w m′;A′ I.H.

Subcase: m valA
m = 〈m1, m2〉, Lemma C.5
π1〈m1, m2〉;A 7→w m1;A

Subcase: m;A 7→w m′;A′
π1m;A 7→w π1m

′;A′
Case:

∆; · `AΣc;Σt
m : A1 ×A2@w

∆; · `AΣc;Σt
π2m : A2@w

∆; · `AΣc;Σt
m : A1 ×A2@w Premiss

Either m valA,
or ∃m′,A, .m;A 7→w m′;A′ I.H.

Subcase: m valA
m = 〈m1, m2〉, Lemma C.5
π2〈m1, m2〉;A 7→w m2;A

Subcase: m;A 7→w m′;A′
π2m;A 7→w π2m

′;A′
Case:

∆ `Σc w′ ⇐ Wld ∆; · `AΣc;Σt
m : A@w′ ∆ `Σc A mobile

∆; · `AΣc;Σt
get[w′]m : A@w

∆; · `AΣc;Σt
m : A@w′ Premiss

Either m valA
or ∃m′,A, .m;A 7→w′ m′;A′ I.H.

Subcase: m valA

get[w′]m;A 7→w m;A
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Subcase: m;A 7→w′ m′;A′

get[w′]m;A 7→w get[w′]m′;A′

Case:
∆ `Σc A ⇐ Prop

∆; · `AΣc;Σt
acquire[A] : ∃α::Prf(A).unit option@w

acquire[A];A 7→w NONE;A
Case:

Σt(c) = ∀〈α1:K1, . . . , αn:Kn〉(A → A′)

∆ `Σc Ak ⇐ [A1/α1] . . . [Ak−1/αk−1]Kk (k = 1..n) ∆; · `AΣc;Σt
m : [A1/α1] . . . [An/αn]A@w

∆; · `AΣc;Σt
c[A1, . . . , An](m) : [A1/α1] . . . [An/αn]A′@w

∆; · `AΣc;Σt
m : [A1/α1] . . . [An/αn]A@w Premiss

Either m valA,
or ∃m′,A, .m;A 7→w m′;A′ I.H.

Subcase: m;A 7→w m′;A′

c[A1, . . . , An](m);A 7→w c[A1, . . . , An](m′);A′

Subcase: m valA
∃m.·; · `Σc;Σt m : [A1/α1] . . . [An/αn]A′@w Assumption
c[A1, . . . , An](v);A 7→w m;A

Case:
∆; · `AΣc;Σt

m : A1@w

∆; · `AΣc;Σt
inl m : A1 ×A2@w

Applying I.H., we have the following two subcases:
Subcase: m valA:

inl m valA Rule +-V1

Subcase: ∃m′,A′.m;A 7→w m′;A′
inl m;A 7→w inl m′;A′

Case:
∆; · `AΣc;Σt

m : A1@w

∆; · `AΣc;Σt
inr m : A1 ×A2@w

Applying I.H., we have the following two subcases:
Subcase: m valA:

inr m valA Rule +-V2

Subcase: ∃m′,A′.m;A 7→w m′;A′
inr m;A 7→w inr m′;A′

Case:
∆; · `AΣc;Σt

m : A1 + A2@w ∆; x:A1@w `AΣc;Σt
m1 : A@w ∆; x:A2@w `AΣc;Σt

m2 : A@w

∆; · `AΣc;Σt
case m of x.(m1 |m2) : A@w

∆; · `AΣc;Σt
m : A1 + A2@w Premiss

Applying I.H. we have the following subcases:

Subcase: m valA

Either m = inl m′, Lemma C.12
case inl m′ of x.(m1 |m2);A 7→w [m′/x]m1;A
or m = inr m′ Lemma C.12
case inr m′ of x.(m1 |m2);A 7→w [m′/x]m2;A

Subcase: m;A 7→w m′;A′

case m of x.(m1 |m2);A 7→w case m′ of x.(m1 |m2);A′

Case:
∆ `Σc A ⇐ K ∆; · `AΣc;Σt

m : [A/α]A′@w

∆; · `AΣc;Σt
{α = A; m : A′} : ∃α::K.A′@w

∆; · `AΣc;Σt
m : [A/α]A′@w Premiss

Applying I.H., we get the following two subcases:
Subcase: m valA:

{α = A; m : A′} valA Rule∃-V
Subcase: ∃m′,A′.m;A 7→w m′;A′

{α = A; m : A′};A 7→w {α = A; m′ : A′};A′
Case:

∆; · `AΣc;Σt
m1 : ∃α::K.A@w ∆, α::K; x:A@w `AΣc;Σt

m2 : A2@w ∆ `Σc A2 ⇐ Type

∆; · `AΣc;Σt
open {α, x} = m1 in m2 : A2@w

18 2009/10/5



∆; · `AΣc;Σt
m1 : ∃α::K.A@w Premiss

Applying I.H. we get the following subcases:

Subcase: m1 valA
m1 = {α = A′; m′ : A} Lemma C.5
open {α, x} = {α = A′; m′ : A} in m2;A 7→w [A′/α][m′/x]m2;A

Subcase: m1;A 7→w m′
1;A′

open {α, x} = m1 in m2;A 7→w open {α, x} = m′
1 in m2;A′

Case:
∆ `Σc w ⇐ Wld

∆; · `AΣc;Σt
authenticate : ∃α::Prin.Iam(α) option@w

authenticate;A 7→w NONE;A
Case:

∆; · `AΣc;Σt
〈〉 : unit@w

〈〉 valA
Case:

a ∈ A
∆; · `AΣc;Σt

iam[a] : Iam(a)@w

a ∈ A Assumption
iam[a] valA

Case:
∆; · `AΣc;Σt

m : A@w

∆; · `AΣc;Σt
hold m : A at w@w

∆; · `AΣc;Σt
m : A@w Premiss

By I.H. we have the following subcases:
Subcase: m valA

hold m;A 7→w held m;A
Subcase: ∃m′,A′.m;A 7→w m′;A′.

hold m;A 7→w hold m′;A′
Case:

∆; · `AΣc;Σt
m : A@w ∆ `Σc w′ ⇐ Wld

∆; · `AΣc;Σt
held m : A at w@w′

held m valA
Case:

∆; · `AΣc;Σt
m1 : A1 at w′@w ∆; x:A1@w′ `AΣc;Σt

m2 : A2@w

∆; · `AΣc;Σt
leta x = m1 in m2 : A2@w

∆; · `AΣc;Σt
m1 : A1 at w′@w Premiss

By I.H. we have the following subcases:
Subcase: m1 valA

m1 = held m, Lemma C.5
leta x = held m in m2;A 7→w [m/x]m2;A

Subcase: ∃m′
1,A′.m1;A 7→w m′

1;A′
leta x = m1 in m2;A 7→w leta x = m′

1 in m2;A′

Lemma C.5 (Canonical forms). Let ∆; · `AΣc;Σt
m : A@w and m valA. Then:

1. If A = A1 → A2, then m = λx:A1.m2.
2. If A = A1 ×A2, then m = 〈m1, m2〉.
3. If A = unit, then m = 〈〉.
4. If A = Iam(A′), then A′ = a , s.t. Σc(a) = Prin, and m = iam[a]. Furthermore a ∈ A.
5. If A = A at w, then m = held m′,
6. If A = A1 + A2, then either m = inl m′, or m = inr m′.
7. If A = ∃α::K.A′, then m = {α = A1; v : A2}.

Proof. By induction on derivation of m valA.
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Lemma C.6 (Term typing inversion). All the rules for ∆; Γ `AΣc;Σt
m : A@w and ∆; Γ `Σc;Σt m : A@w are invertible.

Proof. By induction on derivation of the resp. judgment forms.

Definition C.7 (Consistency of APIs). Let Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉(A1 → A2)@w. Let P be the set of constants a s.t.
a::Prin ∈ Σc. The API c is consistent if the following holds:

∀A ∈ 2P .∀B1 . . . Bn.∀m1.∀m2.
(∀i ∈ [0..n− 1].· `Σc Bi+1 ⇐ [B1/α1] . . . [Bi/αi]Ki+1

∧
∆; · `AΣc;Σt

m1 : [B1/α1] . . . [Bn/αn]A1@w
∧
m1 valA
∧
c[B1, . . . , Bn](m1);A 7→w m2;A)

⊃
∆; · `AΣc;Σt

m2 : [B1/α1] . . . [Bn/αn]A2@w

Lemma C.8 (Monotonicity of A). If m;A 7→w m′;A′, then A ⊆ A′.

Proof. By induction on the definition of m;A 7→w m′;A′.

Lemma C.9 (Weakening of `AΣc;Σt
wrt A). Let A ⊆ A′. If ∆; Γ `AΣc;Σt

m : A@w, then ∆; Γ `A
′

Σc;Σt
m : A@w

Proof. We proceed by induction on derivation of ∆; Γ `AΣc;Σt
m : A@w. The only interesting case is the following:

Case:
a::Prin ∈ Σc a ∈ A

∆; Γ `AΣc;Σt
iam[a] : Iam(a)@w

a ∈ A Premiss
A ⊆ A′ Assumption
a ∈ A′

∆; Γ `A
′

Σc;Σt
m : A@w

All other cases are proved by using the induction hypothesis in a straightforward manner.

Lemma C.10 (Substitution for `AΣc;Σt
). If ∆; Γ, x:A′@w′ `AΣc;Σt

m : A@w, and ∆; Γ `AΣc;Σt
m′ : A′@w′, then ∆; Γ `AΣc;Σt

[m′/x]m :
A@w.

Proof. By induction on the derivation of ∆; Γ, x:A′@w′ `AΣc;Σt
m : A@w.

Theorem C.11 (Preservation of consistency). Let Σc; Σt be well-formed signatures, and Φ̂ be an access control theory. Further let all API
constants declared in Σt be consistent in the sense of Def. C.7.
If m;A 7→Σc;Σt;Φ̂

w m′;A′ and ∆; · `AΣc;Σt
m : A@w,

then ∆, Φ̂; · `A
′

Σc;Σt
m′ : A@w.

Proof. Assume m;A 7→Σc;Σt;Φ
w m′;A′ and ∆; · `AΣc,Φ;Σt

m : A@w.
We proceed by induction on derivation of m;A 7→Σc;Σt;Φ

w m′;A′.

Case:
m1;A 7→w m′

1;A′

let x = m1 in m2;A 7→w let x = m′
1 in m2;A′

∆; · `AΣc;Σt
let x = m1 in m2 : A@w Assumption

∆; · `AΣc;Σt
m1 : A1@w,

∆; x:A1 `AΣc;Σt
m2 : A@w Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′

1 : A@w I.H.
∆, Φ̂; x:A1 `A

′
Σc;Σt

m2 : A@w Lemma C.9, Lemma C.15

∆, Φ̂; · `A
′

Σc;Σt
let x = m1 in m2 : A@w
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Case:
m′

valA

let x = m′
in m;A 7→w [m′/x]m;A

∆; · `AΣc;Σt
let x = m′ in m : A@w Assumption

∆; · `AΣc;Σt
m′ : A1@w,

∆; x:A1 `AΣc;Σt
m : A@w Lemma C.6

∆; · `AΣc;Σt
[m′/x]m : A@w Lemma C.10

∆, Φ̂; · `AΣc;Σt
[m′/x]m : A@w Lemma C.15

Case:
m1;A 7→w m′

1;A′

(m1 m2);A 7→w (m′
1 m2);A′

∆; · `AΣc;Σt
(m1 m2) : A@w Assumption

∆; · `AΣc;Σt
m1 : A2 → A@w,

∆; · `AΣc;Σt
m2 : A2@w Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′

1 : A2 → A@w I.H.
∆, Φ̂; · `A

′
Σc;Σt

m2 : A2@w Lemma C.9, Lemma C.15

∆, Φ̂; · `A
′

Σc;Σt
(m′

1 m2) : A@w
Case:

m2;A 7→w m′
2;A′

(λx:A2.m1 m2);A 7→w (λx:A2.m1 m′
2);A′

∆; · `AΣc;Σt
(λx:A2.m1 m2) : A@w Assumption

∆; · `AΣc;Σt
λx:A2.m1 : A2 → A@w,

∆; · `AΣc;Σt
m2 : A2@w Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′

2 : A2@w I.H.
∆, Φ̂; · `A

′
Σc;Σt

λx:A2.m1 : A2 → A@w Lemma C.9, Lemma C.15

∆, Φ̂; · `A
′

Σc;Σt
(λx:A2.m1 m′

2) : A@w
Case:

m′
valA

(λx:A′.m m′);A 7→w [m′/x]m;A
∆; · `AΣc;Σt

(λx:A′.m m′) : A@w Assumption
∆; · `AΣc;Σt

λx:A′.m : A′ → A@w,
∆; · `AΣc;Σt

m′ : A′@w Lemma C.6
∆; x:A′@w `AΣc;Σt

m : A@w Lemma C.6
∆; · `AΣc;Σt

[m′/x]m : A@w Lemma C.10
∆, Φ̂; · `AΣc;Σt

[m′/x]m : A@w Lemma C.15
Case:

m1;A 7→w m′
1;A′

〈m1, m2〉;A 7→w 〈m′
1, m2〉;A′

∆; · `AΣc;Σt
〈m1, m2〉 : A@w Assumption

∆; · `AΣc;Σt
m1 : A1@w,

∆; · `AΣc;Σt
m2 : A2@w,

A = A1 ×A2 Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′

1 : A1@w I.H.
A ⊆ A′ Lemma C.8

∆, Φ̂; · `A
′

Σc;Σt
m2 : A2@w Lemma C.9, Lemma C.15

∆, Φ̂; · `A
′

Σc;Σt
〈m′

1, m2〉 : A1 ×A2@w
Case:

m1 valA m2;A 7→w m′
2;A′

〈m1, m2〉;A 7→w 〈m1, m
′
2〉;A′

∆; · `AΣc;Σt
〈m1, m2〉 : A@w Assumption

∆; · `AΣc;Σt
mi : Ai@w,

A = A1 ×A2 Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′

2 : A2@w I.H.
A ⊆ A′ Lemma C.8

∆, Φ̂; · `A
′

Σc;Σt
m1 : A1@w Lemma C.9, Lemma C.15

∆, Φ̂; · `A
′

Σc;Σt
〈m1, m2〉 : A@w
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Case:
m;A 7→w m′;A′

π1m;A 7→w π1m
′;A′

∆; · `AΣc;Σt
π1m : A@w Assumption

∆; · `AΣc;Σt
m : A×A′@w Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′ : A×A′@w I.H.

∆, Φ̂; · `A
′

Σc;Σt
π1m

′ : A@w
Case:

〈m1, m2〉 valA
π1〈m1, m2〉;A 7→w m1;A

∆; · `AΣc;Σt
π1〈m1, m2〉 : A@w Assumption

∆; · `AΣc;Σt
〈m1, m2〉 : A1 ×A2@w,

A = A1 Lemma C.6
∆; · `AΣc;Σt

m1 : A1@w Lemma C.6
∆, Φ̂; · `AΣc;Σt

m1 : A1@w Lemma C.15
Case:

m;A 7→w m′;A′

π2m;A 7→w π2m
′;A′

∆; · `AΣc;Σt
π2m : A@w Assumption

∆; · `AΣc;Σt
m : A′ ×A@w Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′ : A′ ×A@w I.H.

∆, Φ̂; · `A
′

Σc;Σt
π2m

′ : A@w
Case:

〈m1, m2〉 valA
π2〈m1, m2〉;A 7→w m2;A

∆; · `AΣc;Σt
π2〈m1, m2〉 : A@w Assumption

∆; · `AΣc;Σt
〈m1, m2〉 : A1 ×A2@w,

A = A2 Lemma C.6
∆; · `AΣc;Σt

m2 : A2@w Lemma C.6
∆, Φ̂; · `AΣc;Σt

m2 : A2@w Lemma C.15
Case:

m;A 7→w′ m′;A′

get[w′]m;A 7→w get[w′]m′;A′

∆; · `AΣc;Σt
get[w′]m : A@w Assumption

∆; · `AΣc;Σt
m : A@w′, · `Σc A mobile Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′ : A@w′ I.H.

∆, Φ̂; · `A
′

Σc;Σt
get[w′]m′ : A@w

Case:
m valA

get[w′]m;A 7→w m;A
∆; · `AΣc;Σt

get[w′]m : A@w Assumption
∆; · `AΣc;Σt

m : A@w′,
∆ `Σc A mobile Lemma C.6
∆; · `AΣc;Σt

m : A@w Lemma C.13
∆, Φ̂; · `AΣc;Σt

m : A@w Lemma C.15
Case:

a::Prin ∈ Σc

authenticate;A 7→Σc;Σt;Φ
w SOME {α = a; iam[a] : Iam(α)};A ∪ {a}

∆; · `AΣc;Σt
authenticate : ∃α::Prin.Iam(α) option@w Lemma C.6

∆; · `A∪{a}Σc;Σt
SOME {α = a; iam[a] : Iam(α)} : ∃α::Prin.Iam(α) option@w

∆, Φ̂; · `A∪{a}Σc;Σt
SOME {α = a; iam[a] : Iam(α)} : ∃α::Prin.Iam(α) option@w Lemma C.15

Case:

authenticate;A 7→Σc;Σt;Φ
w NONE;A

∆; · `AΣc;Σt
authenticate : ∃α::Prin.Iam(α) option@w Lemma C.6

∆; · `AΣc;Σt
NONE : ∃α::Prin.Iam(α) option@w
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Case:

acquire[A′];A 7→w NONE;A

∆; · `AΣc;Σt
acquire[A′] : ∃α::Prf(A′).unit option@w Lemma C.6

∆; · `AΣc;Σt
NONE : ∃α::Prf(A′).unit option@w

∆, Φ̂; · `AΣc;Σt
NONE : ∃α::Prf(A′).unit option@w Lemma C.15

Case:

Φ̂w `Σc A′′ ⇐ Prf(A′)

acquire[A′];A 7→w SOME {α = A′′; 〈〉 : unit};A

∆; · `AΣc;Σt
acquire[A′] : ∃α::Prf(A′).unit option@w Lemma C.6

Φ̂w `Σc A′′ ⇐ Prf(A′) Premiss
∆, Φ̂ `Σc A′′ ⇐ Prf(A′) Lemma C.14
∆, Φ̂; · `AΣc;Σt

SOME {α = A′′; 〈〉 : unit} : ∃α::Prf(A′).unit option@w
Case:

m;A 7→w m′;A′

c[A1, . . . , An](m);A 7→w c[A1, . . . , An](m′);A′

∆; · `AΣc;Σt
c[A1, . . . , An](m) : A@w Assumption

Σt(c) = ∀〈α1:K1, . . . , αn:Kn〉(A′ → A′′),
∀k ∈ [1..n].∆ `Σc Ak ⇐ [α1/K1] . . . [αk−1/Kk−1]Kk

∆; · `AΣc;Σt
m : [A1/α1] . . . [An/αn]A′@w Lemma C.6

A = [A1/α1] . . . [An/αn]A′′

∆, Φ̂; · `A
′

Σc;Σt
m′ : [A1/α1] . . . [An/αn]A′@w I.H.

∀k ∈ [1..n].∆, Φ̂ `Σc Ak ⇐ [α1/K1] . . . [αk−1/Kk−1]Kk Lemma C.14

∆, Φ̂; · `A
′

Σc;Σt
c[A1, . . . , An](m′) : A@w

Case:

Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉A → A′@w ∀i ∈ [0..n− 1] · `Σc Ai+1 ⇐ [A1/α1] . . . [Ai/αi]Ki+1 m1 valA

c[A1, . . . , An](m1);A 7→Σc;Σt;Φ
w m2;A

∆; · `AΣc;Σt
c[A1, . . . , An](m1) : A@w Assumption

A = [A1/α1] . . . [An/αn]A′′

∆; · `AΣc;Σt
m2 : A@w Assumption about API consistency

∆, Φ̂; · `AΣc;Σt
m2 : A@w Lemma C.15

Case:

m;A 7→w m′;A′

inl m;A 7→w inl m′;A′

∆; · `AΣc;Σt
inl m : A@w Assumption

∆; · `AΣc;Σt
m : A′@w,

A = A′ + A′′ Lemma C.6
m;A 7→w m′;A′ Premiss
∆, Φ̂; · `A

′
Σc;Σt

m′ : A′@w I.H.
∆, Φ̂; · `A

′
Σc;Σt

inl m′ : A′ + A′′@w
Case:

m;A 7→w m′;A′

inr m;A 7→w inr m′;A′

∆; · `AΣc;Σt
inr m : A@w Assumption

∆; · `AΣc;Σt
m : A′@w,

A = A′′ + A′ Lemma C.6
m;A 7→w m′;A′ Premiss
∆, Φ̂; · `A

′
Σc;Σt

m′ : A′@w I.H.
∆, Φ̂; · `A

′
Σc;Σt

inr m′ : A′′ + A′@w
Case:

m;A 7→w m′;A′

case m of x.(m1 |m2);A 7→w case m′
of x.(m1 |m2);A′
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∆; · `AΣc;Σt
case m of x.(m1 |m2) : A@w Assumption

∆; · `AΣc;Σt
m : A1 + A2@w,

∆; x:Ai@w `AΣc;Σt
mi : A@w, i ∈ [1..2] Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m : A1 + A2@w I.H.

A ⊆ A′ Lemma C.8
∆, Φ̂; x:Ai@w `A

′
Σc;Σt

mi : A@w Lemma C.9, Lemma C.15

∆, Φ̂; · `A
′

Σc;Σt
case m of x.(m1 |m2) : A@w

Case:
m;A 7→w m′;A′

{α = A; m : A′};A 7→w {α = A; m′ : A′};A′

∆; · `AΣc;Σt
{α = A1; m : A2} : A@w Assumption

A = ∃α::K.A2,
∆ `Σc A1 ⇐ K,
∆; · `AΣc;Σt

m : [A1/α]A2@w Lemma C.6
m;A 7→w m′;A′ Premiss
∆, Φ̂; · `A

′
Σc;Σt

m′ : [A1/α]A2@w I.H.
∆, Φ̂ `Σc A1 ⇐ K Lemma C.14

∆, Φ̂; · `A
′

Σc;Σt
{α = A1; m

′ : A2} : A@w
Case:

m valA

case inl m of x.(m1 |m2);A 7→w [m/x]m1;A
∆; · `AΣc;Σt

case inl m of x.(m1 |m2) : A@w Assumption
∆; · `AΣc;Σt

inl m : A1 + A2@w,
∆; x:A1 `AΣc;Σt

m1 : A@w Lemma C.6
∆; · `AΣc;Σt

[m/x]m1 : A@w Lemma C.10
∆, Φ̂; · `AΣc;Σt

[m/x]m1 : A@w Lemma C.15
Case:

m valA

case inr m of x.(m1 |m2);A 7→w [m/x]m2;A
∆; · `AΣc;Σt

case inr m of x.(m1 |m2) : A@w Assumption
∆; · `AΣc;Σt

inr m : A1 + A2@w,
∆; x:A2 `AΣc;Σt

m2 : A@w Lemma C.6
∆; · `AΣc;Σt

m : A2@w Lemma C.6
∆; · `AΣc;Σt

[m/x]m2 : A@w Lemma C.10
∆, Φ̂; · `AΣc;Σt

[m/x]m2 : A@w Lemma C.15
Case:

m1;A 7→w m′
1;A′

open {m1, α} = x in m2;A 7→w open {m′
1, α} = x in m2;A′

∆; · `AΣc;Σt
open {m1, α} = x in m2 : A@w Assumption

∆; · `AΣc;Σt
m1 : ∃α::K.A′@w,

∆, α::K; x:A′@w `Σc;Σt m2 : A@w Lemma C.6

∆, Φ̂; · `A
′

Σc;Σt
m′

1 : ∃α::K.A′@w I.H.
A ⊆ A′ Lemma C.8

∆, Φ̂, α::K; x:A′@w `A
′

Σc;Σt
m2 : A@w Lemma C.9, Lemma C.15

∆, Φ̂; · `A
′

Σc;Σt
open {m′

1, α} = x in m2 : A@w
Case:

m valA

open {{α = A′; m : A′′}, α} = x in m;A 7→w [A′/α][m/x]m′;A
∆; · `AΣc;Σt

open {{α = A′; m : A′′}, α} = x in m′ : A@w Assumption
∆; · `AΣc;Σt

{α = A′; m : A′′} : ∃α::K.A′′@w,
∆, α::K; x:A′′ `AΣc;Σt

m′ : A@w Lemma C.6
∆; · `AΣc;Σt

[A/α][m/x]m′ : A@w Lemma C.10

∆, Φ̂; · `AΣc;Σt
[A/α][m/x]m′ : A@w Lemma C.15

Lemma C.12 (Inversion of term typing). All the typing rules for terms and values are invertible.
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Proof. By induction on the typing derivation. In each case, there is a single rule that could have applied.

Lemma C.13 (Validity of mobile values). 1. If ∆; · `Σc;Σt m : A@w, and m valA and ∆ `Σc A mobile, and ∆ `Σc w′ ⇐ Wld, then
∆; · `Σc;Σt m : A@w′

2. If ∆; · `AΣc;Σt
m : A@w, and m valA and ∆ `Σc A mobile, and ∆ `Σc w′ ⇐ Wld, then ∆; · `AΣc;Σt

m : A@w′

Proof. Proofs for the two parts are similar in structure and we illustrate only the first proof here.
We proceed by induction on the derivation of m valA.

Case:
λx:A1.m valA

.

By Inversion Lemma C.12, we get A = A1 → A2. However A1 → A2 is not mobile. So this case does not arise.

Case:
m1 valA m2 valA

〈m1, m2〉 valA
mi valA, i ∈ {1, 2} Premiss
A = A1 ×A2, ∆; · `AΣc;Σt

mi : Ai@w Lemma C.12
∆ `Σc Ai mobile Lemma C.16
∆; · `AΣc;Σt

mi : Ai@w′ I.H.
∆; · `AΣc;Σt

〈m1, m2〉 : A1 ×A2@w′

Case: 〈〉 valA
A = unit Lemma C.12
∆; · `AΣc;Σt

〈〉 : unit@w′

Case:
m valA

inl m valA
A = A1 + A2,
∆; · `AΣc;Σt

m : A1@w Lemma C.12
∆ `Σc A1 + A2 mobile Assumption
∆ `Σc A1 mobile Lemma C.16
∆; · `AΣc;Σt

m : A1@w′ I.H.
∆; · `AΣc;Σt

inl m : A1 + A2@w′

Case:
m valA

inr m valA
A = A1 + A2,
∆; · `AΣc;Σt

m : A2@w Lemma C.12
∆ `Σc A1 + A2 mobile Assumption
∆ `Σc A1 mobile Lemma C.16
∆; · `AΣc;Σt

m : A2@w′ I.H.
∆; · `AΣc;Σt

inr m : A1 + A2@w′

Case:
held m valA
A = A1 at w1,
∆; · `AΣc;Σt

m : A1@w1 Lemma C.12
∆; · `AΣc;Σt

held m : A1 at w1@w′

Case:
a ∈ A

iam[a] valA
A = Iam(a), ∆ `Σc a ⇐ Prin Lemma C.12
∆; · `AΣc;Σt

iam[a] : Iam(a)@w′

Case:
m valA

{α = A1; m : A2} valA
A = ∃α::K.A2, ∆ `Σc A1 ⇐ K,
∆; · `AΣc;Σt

m : [A1/α]A2@w Lemma C.12
∆ `Σc [A1/α]A2 mobile Lemma C.17
∆; · `AΣc;Σt

m : [A1/α]A2@w′ I.H.
∆; · `AΣc;Σt

{A1 = α; m : A2} : ∃α::K.A2@w′

Lemma C.14 (Constructor kinding weakening). If ∆ `Σc A ⇐ K, then ∆, α::K′ `Σc A ⇐ K.

Proof. By induction on derivation of ∆ `Σc A ⇐ K.

Lemma C.15 (Term typing weakening). 1. If ∆; Γ `Σc;Σt m : A@w then ∆, α::K; Γ `Σc;Σt m : A@w.
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⊃ imp : Πα::Prop.Πβ::Prop.Prop
∧ conj : Πα::Prop.Πβ::Prop.Prop
〈〉 says : Πα::Prin.Πβ::Prop.Prop
∀x:prin allp : Πα::Πβ::Prin.Prop.Prop
∀x:db allr : Πα::Πβ::Db.Prop.Prop

impI : Πα::Prop.Πβ::Prop.(Prf(α) → Prf(β)) → Prf(α ⊃ β)
impE : Πα::Prop.Πβ::Prop.Prf(α ⊃ β) → Prf(α) → Prf(β)
conjI : Πα::Prop.Πβ::Prop.Prf(α) → Prf(β) → Prf(α ∧ β)
conjE1 : Πα::Prop.Πβ::Prop.Prf(α ∧ β) → Prf(α)
conjE2 : Πα::Prop.Πβ::Prop.Prf(α ∧ β) → Prf(β)
allpI : Πα::Prin→ Prop.(Πκ::Prin.Prf((α κ))) → Prf(∀pα)
allrI : Πα::Db→ Prop.(Πδ::Db.Prf((α δ))) → Prf(∀rα)
allpE : Πα::Prin→ Prop.Πκ::Prin.Prf(∀pα) → Prf((α κ))
allrE : Πα::Db→ Prop.Πδ::Db.Prf(∀pα) → Prf((α δ))
saysI : Πα::Prop.Πκ::Prin.κ Affirms α → Prf(〈κ〉α)
truaff : Πα::Prop.Πκ::Prin.Prf(α) → κ Affirms α
saysE : Πα::Prop.Πβ::Prop.Πκ::Prin.Prf(〈κ〉α) → (Prf(α) → κ Affirms β) → κ Affirms β

Figure 10. Σc{logic}: The static signature encoding the authorization logic. The propositional connectives are shown to the left of
constants. We write Πα::K1.K2 as K1→K2 whenever α is not free in K2.

s � K

prin � Prin db � Db

Σ � Σc

· � ·
s � K

Σ,a:s � Σc,a::K

Σ � Σc ∀i.si � Ki

Σ, p:(s1, . . . , sn) � Σc, p::K1 → . . . → Kn → Prop

`LΣ ∆ ctx � `Σc ∆ ctx

Σ � Σc

`LΣ · ctx � `Σc · ctx
Σ � Σc `LΣ ∆ ctx � `LΣc

∆ ctx s � K

`LΣ ∆, α : s ctx � `Σc ∆, α::K ctx

∆ `LΣ Φ tctx � `Σc ∆ ctx

Σ � Σc `LΣ ∆ ctx � `Σc ∆ ctx

∆ `LΣ · tctx � `Σc ∆ ctx

∆ `LΣ Φ tctx � `Σc ∆1, ∆2 ctx ∆ `LΣ P prop � ∆1 `Σc A ⇐ Prop α fresh

∆ `LΣ Φ, P true tctx � `Σc ∆1, ∆2, α::Prf(A) ctx

Figure 11. Encoding signatures and contexts

2. If ∆; Γ `Σc;Σt m : A@w then ∆; Γ, x:A′@w′ `Σc;Σt m : A@w.
The same results hold for the relation `AΣc;Σt

.

Lemma C.16 (Inversion of mobility). All rules for ∆ `Σc A mobile are invertible.

Proof. By induction on the derivations of ∆ `Σc A mobile for various A’s.

Lemma C.17 (Substitution for mobility). If ∆, α::K `Σc A mobile, and ∆ `Σc A′ ⇐ K, then [A′/α]∆ `Σc [A′/α]A mobile.

Proof. By induction on the derivation of ∆, α::K `Σc A mobile.

Lemma C.18 (Inversion of SOS rules). All rules defining the operational semantics are invertible.

D. Adequacy of encoding of authorization logic
D.1 The encoding
Figure 10 shows the constructor constants used to encode propositions and proofs from the authorization in the language. Using these
constructors, the various judgment forms of the logic are encoded as constructor kinding judgments in PCML5. We use the judgment form
J1 � J2 to represent the encoding of judgment J1 of logic as the judgment J2 of PCML5.

Lemma D.1 (Correctness of encoding). 1. If Σ � Σc, then Σc ok.
2. If `LΣ ∆ ctx � `Σc ∆ ctx, then Σ � Σc, and `Σc ∆ ctx.
3. If ∆ `LΣ Φ tctx � `Σc ∆ ctx, then Σ � Σc, ∆ `LΣ Φ tctx, and `Σc ∆ ctx.
4. If ∆ `LΣ P prop � ∆ `Σc A ⇐ K, then
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∆ `LΣ P1 prop � ∆ `
Σ+

c
A1 ⇐ Prop ∆ `LΣ P2 prop � ∆ `

Σ+
c

A2 ⇐ Prop

∆ `LΣ P1 ⊃ P2 prop � ∆ `
Σ+

c
((imp A1) A2) ⇐ Prop

(⊃�)

∆ `LΣ P1 prop � ∆ `
Σ+

c
A1 ⇐ Prop ∆ `LΣ P2 prop � ∆ `

Σ+
c

A2 ⇐ Prop

∆ `LΣ P1 ∧ P2 prop � ∆ `
Σ+

c
((conj A1) A2) ⇐ Prop

(∧ �)

s � K ∆ `LΣ P prop � ∆ `
Σ+

c
A1 ⇐ Prop ∆ `LΣ a : s � ∆ `

Σ+
c

A2 ⇐ K

∆ `LΣ 〈a〉P prop � ∆ `
Σ+

c
((says A1) A2) ⇐ Prop

(says�)

s � Prin ∆, α:s `LΣ P prop � ∆, α::Prin `
Σ+

c
A ⇐ Prop

∆ `LΣ ∀α:s.P prop � ∆ `
Σ+

c
(allp λα::Prin.A) ⇐ Prop

(∀p �)

s � Db ∆, α:s `LΣ P prop � ∆, α::Db `
Σ+

c
A ⇐ Prop

∆ `LΣ ∀α:s.P prop � ∆ `
Σ+

c
(allr λα::Db.A) ⇐ Prop

(∀r �)

Figure 12. Encoding propositions

(a) `LΣ ∆ ctx � `Σc ∆ ctx,
(b) ∆ `LΣ P prop

(c) K = Prop, ∆ `Σc A ⇐ K

5. If ∆; Φ `LΣ P true � ∆ `Σc A ⇐ K, then
(a) ∆; Φ `LΣ P true

(b) K = Prf(A′), ∆ `LΣ P prop � ∆ `Σc A′ ⇐ Prop, ∆ `Σc A ⇐ K

6. If ∆; Φ `LΣ a affirms P � ∆ `Σc A ⇐ K, then
(a) ∆; Φ `LΣ a affirms P
(b) K = A1 Affirms A2, ∆ `LΣ P prop � ∆ `Σc A2 ⇐ Prop, ∆ `Σ a : prin � ∆ `Σc A1 ⇐ Prin.
(c) ∆ `Σc A ⇐ K

The strongest subsumption relation for PCML5 kinds under an empty signature Σc is denoted by

�pcml = { Prin, Db, Wld � Type
Prop � Prf

Prop, Prin � Affirm
}?

In the following, we shall use �1 ⊗ �2 to denote the least upper bound of �1 and �2, i.e. the strongest subordination relation weaker
than both �1 and �2.

Lemma D.2 (Transport of canonical forms). Let Σc be a signature and �Σc be the strongest subordination relation for Σc. Let �=�pcml

⊗ �Σc . Let `Σc,� ∆ ctx, ∆ `Σc,� K kind, ∆ `Σc,� K′ kind, and K � K′. Let ∆′ = ∆|�K′ , and Σ′
c = Σc|�K′ . Then,

1. ∆′ `Σ′c,� K kind

2. For any A, ∆ `Σc A ⇐ K iff ∆′ `Σ′c A ⇐ K.
3. For any N , ∆ `Σc N ⇒ K iff ∆′ `Σ′c N ⇒ K.

Proof. The “if” part follows from Weakening. For the other direction, we proceed by a simultaneous induction on the mutually recursive
definitions of the above three judgments. We present the three cases itemwise, showing only the typical cases in each:

1. ∆ `Σc K kind:
Case:

∆ `Σc A ⇐ Prop

∆ `Σc Prf(A) kind

∆ `Σc A ⇐ Prop Premiss
Prf � K′ Assumption
Prop � Prf By definition of �
Prop � K′ Transitivity of �
∆′ `Σ′c A ⇐ Prop I.H.
∆ `Σc Prf(A) kind

2. ∆ `Σc A ⇐ K:
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∆ `LΣ Φ tctx � `Σc ∆1, ∆2 ctx ∆ `LΣ P prop � ∆1 `Σc A ⇐ Prop α fresh

∆; Φ, P true `LΣ P true � ∆1, ∆2, α::Prf(A) `Σc α ⇐ Prf(A)
(hyp�)

∆ `LΣ P1 prop � ∆1 `Σ+
c

A1 ⇐ Prop ∆; Φ, P1 true `LΣ P2 true � ∆1, ∆2, α::Prf(A1) `Σ+
c

A ⇐ Prf(A2)

∆; Φ `LΣ P1 ⊃ P2 true � ∆1, ∆2 `Σ+
c

(impI A1 A2 λα::Prf(A1).A) ⇐ Prf(A1 ⊃ A2)
(⊃ -I �)

∆; Φ `LΣ P1 ⊃ P2 true � ∆ `Σc A ⇐ Prf(A′
1 ⊃ A′

2) ∆; Φ `LΣ P1 true � ∆ `Σc A1 ⇐ Prf(A′
1)

∆; Φ `LΣ P2 true � ∆ `Σc impE A′
1 A′

2 A A1 ⇐ Prf(A′
2)

(⊃ -E �)

∆; Φ `LΣ P1 true � ∆ `Σc A1 ⇐ Prf(A′
1) ∆; Φ `LΣ P2 true � ∆ `Σc A2 ⇐ Prf(A′

2)

∆; Φ `LΣ P1 ∧ P2 true � ∆ `Σc conjI A′
1 A′

2 A1 A2 ⇐ Prf(A′
1 ∧A′

2)
(∧-I �)

∆; Φ `LΣ P1 ∧ P2 true � ∆ `Σc A ⇐ Prf(A1 ∧A2)

∆; Φ `LΣ P1 true � ∆ `Σc conjE1 A1 A2 A ⇐ Prf(A1)
(∧-E1 �)

∆; Φ `LΣ P1 ∧ P2 true � ∆ `Σc A ⇐ Prf(A1 ∧A2)

∆; Φ `LΣ P2 true � ∆ `Σc conjE2 A1 A2 A ⇐ Prf(A2)
(∧-E2 �)

∆, α:prin; Φ `LΣ P true � ∆, α::Prin `Σc A ⇐ Prf(A′)

∆; Φ `LΣ ∀α:prin.P true � ∆ `Σc allpI λα::Prin.A′ λα::Prin.A ⇐ Prf(∀pλα::Prin.A′)
(∀p-I �)

∆; Φ `LΣ ∀α:prin.P true � ∆1, ∆2 `Σc A ⇐ Prf(allp A′) ∆ `LΣ a : prin � ∆1 `Σc A1 ⇐ Prin

∆; Φ `LΣ [a/α]P true � ∆1, ∆2 `Σc allpE A′ A1 A ⇐ Prf(A′ A1)
(∀p-E �)

∆, α:db; Φ `LΣ P true � ∆, α::Db `Σc A ⇐ Prf(A′)

∆; Φ `LΣ ∀α:db.P true � ∆ `Σc allrI λα::Db.A′ λα::Db.A ⇐ Prf(∀pλα::Db.A′)
(∀r-I �)

∆; Φ `LΣ ∀α:db.P true � ∆1, ∆2 `Σc A ⇐ Prf(allr A′) ∆ `LΣ a : db � ∆1 `Σc A1 ⇐ Db

∆; Φ `LΣ [a/α]P true � ∆1, ∆2 `Σc allrE A′ A1 A ⇐ Prf(A′ A1)
(∀r-E �)

∆; Φ `LΣ a affirms P � ∆ `Σc A ⇐ A1 Affirms A2

∆; Φ `LΣ 〈a〉P true � ∆ `Σc saysI A2 A1 A ⇐ Prf(〈A1〉A2)
(says-I �)

∆; Φ `LΣ P true � ∆1, ∆2 `Σc A1 ⇐ Prf(A′
1) ∆ `LΣ a : prin � ∆ `Σc A ⇐ Prin

∆; Φ `LΣ a affirms P � ∆1, ∆2 `Σc truaff A′
1 A A1 ⇐ A Affirms A′

1

(truaff�)

∆; Φ `LΣ 〈a〉P1 true � ∆ `Σc A1 ⇐ Prf(〈A〉A′
1)

∆; Φ, P1 true `LΣ a affirms P2 � ∆, α::Prf(A′
1) `Σc A2 ⇐ A Affirms A′

2

∆; Φ `LΣ a affirms P2 � ∆ `Σc saysE A′
1 A′

2 A A1 (λα::Prf(A′
1).A2) ⇐ A Affirms A′

2

(says-E �)

Figure 13. Encoding proofs and affirmations
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Case:
∆ `Σc N ⇒ K K 6= Πα::K1.K2

∆ `Σc N ⇐ K

K � K′ Assumption
∆′ `Σ′c N ⇒ K I.H.
K 6= Πα::K1.K2 Premiss
∆′ `Σ′c N ⇐ K

Case:
∆, α::K1 `Σc A ⇐ K2

∆ `Σc λα::K1.A ⇐ Πα::K1.K2

|Πα::K1.K2| � |K′| Assumption
|K2| � |K′| |Πα::K1.K2| = |K2|

Subcase: K1 � K′:
(∆, α::K1)|�K′ = ∆|�K′ , α::K1

∆|�K′ , α::K1 `Σ′c A ⇐ K2 I.H.
∆|�K′ `Σ′c λα::K1.A ⇐ Πα::K1.K2

Subcase: K1 6� K′:
(∆, α::K1)|�K′ = ∆|�K′

∆|�K′ `Σ′c A ⇐ K I.H.
∆|�K′ , α::K1 `Σ′c A ⇐ K Weakening
∆|�K′ `Σ′c λα::K1.A ⇐ Πα::K1.K2

3. ∆ `Σc N ⇒ K:
Case:

∆1, α::K, ∆2 `Σc α ⇒ K

K � K′ Assumption
∆′ = ∆1|�K′ , α::K, ∆2|�K′

∆′ `Σc α ⇒ K
Case:

∆ `Σc A ⇐ Type ∆ `Σc w ⇐ Wld

∆ `Σc A at w ⇒ Type

Type � K′ Assumption
Wld � Type Definition of �
Wld � K′ Transitivity of �
∆ `Σc A ⇐ Type Premiss
∆ `Σc w ⇐ Wld Premiss
∆′ `Σ′c A ⇐ Type I.H.
∆′ `Σ′c w ⇐ Wld I.H.
∆′ `Σ′c A at w ⇒ Type

Case:
∆ `Σc A ⇐ K1 ∆ `Σc N ⇒ Πα::K1.K2

∆ `Σc (N A) ⇒ [A/α]K2

|[A/α]K2| � K′ Assumption
|[A/α]K2| = |K2| By induction on structure of kinds
|Πα::K1.K2| = |K2| Definition of | · |
|Πα::K1.K2| � K′

∆ `Σc N ⇒ Πα::K1.K2 Premiss
∆′ `Σ′c N ⇒ Πα::K1.K2 I.H.
∆ `Σc A ⇐ K1 Premiss
∆′ `Σ′c A ⇐ K1 I.H.
∆ `Σc (N A) ⇒ [A/α]K2

Lemma D.3 (Inversion of encoding). 1. All the rules for ∆ `LΣ P prop � ∆ `Σc A ⇐ Prop are invertible.

Lemma D.4 (Inversion of canonical forms of kind Prop). If ∆ `
Σ+

c
A ⇐ Prop where Σ � Σc, and `LΣ ∆ ctx � `Σc ∆ ctx, then

the following holds:

1. Either A = imp A1 A2 where ∆ `Σc Ai ⇐ Prop, or,
2. A = conj A1 A2 where ∆ `Σc Ai ⇐ Prop, or,
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3. A = says A1 A2 where ∆ `Σc A1 ⇐ Prin, and ∆ `Σc A2 ⇐ Prop, or,
4. A = allp λα::Prin.A′ where ∆, α::Prin `Σc A′ ⇐ Prop, or,
5. A = allr λα::Prin.A′ where ∆, α::Db `Σc A′ ⇐ Prop

Proof. By induction of derivation of ∆ `
Σ+

c
A ⇐ Prop.

Lemma D.5 (Inversion of canonical forms of kind Prf() and Affirms ). 1. If ∆ `
Σ+

c
A ⇐ Prf(A′) and Σ � Σc and ∆ `LΣ

Φ tctx � `
Σ+

c
∆ ctx, then one of the following holds:

• ∆ = ∆′, α::Prf(A′) and ∆′ `
Σ+

c
A′ ⇐ Prop.

• A = impI A1 A2 λα::Prf(A1).A3, A′ = A1 ⊃ A2. Also ∆, α::Prf(A1) `Σ+
c

A3 ⇐ Prf(A2) and ∆ `
Σ+

c
A1 ⇐ Prop are

derived as strict sub-derivations.
• A = impE A′

1A
′A2A1. Moreover ∆ `

Σ+
c

A2 ⇐ Prf(A′
1 ⊃ A′) and ∆ `

Σ+
c

A1 ⇐ Prf(A′
1) are derived as strict sub-derivations.

• A = conjI A′
1 A′

2 A1 A2 and A′ = A′
1 ∧A′

2. Moreover ∆ `
Σ+

c
A1 ⇐ Prf(A′

1) and ∆ `
Σ+

c
A2 ⇐ Prf(A′

2) are derived as strict
sub-derivations.

• A = conjE1 A′ A′′ A1, and ∆ `
Σ+

c
A1 ⇐ Prf(A′ ∧A′′) is derived as a strict sub-derivation.

• A = conjE2 A′′ A′ A2, and ∆ `
Σ+

c
A2 ⇐ Prf(A′′ ∧A′) is derived as a strict sub-derivation.

• A = allpI λα::Prin.A1 λα::Prin.A2 and A′ = (allp λα::Prin.A1). Moreover ∆, α::Prin `
Σ+

c
A2 ⇐ Prf(A1) is derived as

a strict sub-derivation.
• A = allpE A3 A1 A2 and A′ = (A3 A1). Moreover ∆ `

Σ+
c

A2 ⇐ Prf((allp A3)) and ∆ `
Σ+

c
A1 ⇐ Prin are derived as strict

sub-derivations.
• A = allrI λα::Db.A1 λα::Db.A2 and A′ = (allp λα::Db.A1). Moreover ∆, α::Db `

Σ+
c

A2 ⇐ Prf(A1) is derived as a strict
sub-derivation.

• A = allrE A3 A1 A2 and A′ = (A3 A1). Moreover ∆ `
Σ+

c
A2 ⇐ Prf((allr A3)) and ∆ `

Σ+
c

A1 ⇐ Db are derived as strict
sub-derivations.

• A = saysI A2 A1 A3 and A′ = says A1 A2. Moreover ∆ `
Σ+

c
A3 ⇐ A1 Affirms A2 is derived as a strict sub-derivation.

2. If ∆ `
Σ+

c
A ⇐ A1 Affirms A2 and Σ � Σc and ∆ `LΣ Φ tctx � `

Σ+
c

∆ ctx then one of the following holds:
• A = truaff A2 A1 A3, and ∆ `

Σ+
c

A3 ⇐ Prf(A2) and ∆ `
Σ+

c
A1 ⇐ Prin are derived as strict sub-derivations.

• A = saysE A′
1 A2 A1 A3 λα::Prf(A′

1).A4 and ∆ `
Σ+

c
A3 ⇐ Prf(says A1 A′

1) and ∆ `
Σ+

c
A4 ⇐ A1 Affirms A2 are derived

as strict sub-derivations.

Lemma D.6 (Context conversion). 1. Let Σ be a logic signature. Then there exists a unique Σc s.t. Σ � Σc.
2. Let `LΣ ∆ ctx, and Σ � Σc. Then there exists a unique ∆ s.t. `LΣ ∆ ctx � `Σc ∆ ctx.
3. Let ∆ `LΣ Φ tctx, and `LΣ ∆ ctx � `Σc ∆ ctx. Then there exists ∆′ s.t. ∆ `LΣ Φ tctx � `Σc ∆, ∆′ ctx. Moreover ∆′ is

unique upto the choice of variable names.

Proof. By induction on the derivations of context formation.

Theorem D.7 (Adequacy of encoding). 1. (a) If ∆ `LΣ P prop and Σ � Σc and `LΣ ∆ ctx � `Σc ∆ ctx, then there exists a unique
constructor A such that ∆ `LΣ P prop � ∆ `

Σ+
c

A ⇐ Prop.

(b) Let Σc be a signature such that Σ � Σc. If ∆ `
Σ+

c
A ⇐ Prop and `LΣ ∆ ctx � `Σc ∆ ctx, then there exists a unique P such

that ∆ `LΣ P prop.
2. (a) If ∆; Φ `LΣ P true and Σ � Σc and ∆ `LΣ Φ tctx � `Σc ∆ ctx, then there exist unique (upto α-equivalence) constructors

A1 and A2 such that
i. ∆; Φ `LΣ P true � ∆ `

Σ+
c

A1 ⇐ Prf(A2).

ii. ∆ `LΣ P prop � ∆ `
Σ+

c
A2 ⇐ Prop.

(b) If ∆1, ∆2 `Σ+
c

A1 ⇐ Prf(A2), and Σ � Σc, and `LΣ ∆ ctx � `Σc ∆1 ctx and ∆ `LΣ Φ tctx � `Σc ∆1, ∆2 ctx, then
∃P s.t.

i. ∆; Φ `LΣ P true � ∆1, ∆2 `Σ+
c

A1 ⇐ Prf(A2),

ii. ∆ `LΣ P prop � ∆1 `Σ+
c

A2 ⇐ Prop.

Proof. 1. (a) The existence can be shown by induction on the derivation of ∆ `LΣ P prop. Uniqueness can be established by induction
using Lemma D.3.

(b) We use Lemma D.4 to establish the various constructors that A can be. For each of these options, Lemma D.3 establishes the unique
proposition P .

2. (a) The lemma can be proven by induction on ∆; Φ `LΣ P true. For each of the inference rules in the logic, there is exactly
one conversion rule that applies. Uniqueness upto α-equivalence follows from uniqueness of proposition, database, and, principal
conversions, and from the I.H..

(b) By Lemma D.5, we get the various possible choices for A1 and A2. Here we illustrate the proof steps for a few choices:
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Case: ∆ = ∆′, α::Prf(A2) and ∆′ `
Σ+

c
A2 ⇐ Prop: By Lemma D.6, we get ∆′ = ∆1, ∆2 s.t. `LΣ ∆ ctx � `Σc ∆1 ctx, and

∆ `LΣ Φ tctx � `
Σ+

c
∆1, ∆2 ctx.

Since ∆1, ∆2|Prop� = ∆1, applying Lemma D.2, we get ∆1 `Σ+
c

A2 ⇐ Prop. By adequacy for propositions, we obtain ∆1 `LΣ
P prop � ∆1 `Σ+

c
A2 ⇐ Prop, and applying Rule(hyp�) we get ∆; Φ, P true `LΣ P true � ∆1, ∆2, α::Prf(A2) `Σ+

c

α ⇐ Prf(A2).
Case: A1 = impI A1 A2 λα::Prf(A1)A. and A2 = A1 ⊃ A2, and ∆ `

Σ+
c

A1 ⇐ Prop, and ∆, α::Prf(A1) `Σ+
c

A ⇐ Prf(A2):
By a similar argument as above, we strengthen kinding of A1 to be ∆1 `

Σ+
c

A1 ⇐ Prop where `LΣ ∆ ctx � `Σc

∆1 ctx. By adequacy for propositions, we get ∆ `LΣ P1 prop � ∆1 `
Σ+

c
A1 ⇐ Prop. By I.H. we get ∆; Φ′ `LΣ

P2 true � ∆1, ∆2, α::Prf(A1) `Σ+
c

A ⇐ Prf(A2). By Lemma D.1 we get Φ′ = Φ, P1 true. Rule (⊃ -I �) gives us the
desired result now.
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