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ABSTRACT
In order to develop a robust distributed application, develop-
ers need realistic (overlay) testbeds, simulation tools orem-
ulation testbeds. While overlay testbeds such as PlanetLab
and RON give realistic network conditions, they don’t lend
themselves to repeatability and provide less control over ex-
periments. On the other hand, the current trend in simulation
(which gives repeatability) is to more accurately reproduce
network topologies and scale to a large number of nodes.
Emulation testbeds such as Emulab and ModelNet provide
repeatability and more control, but not realistic network con-
ditions.

We argue that for emulating the Internet, we need to be
able to model the end-to-end characteristics of Internet paths.
To this end, we propose a scheme to model cross-traffic for
any given Internet path. Our approach uses a model of TCP
with n flows to characterize the cross-traffic on the path us-
ing an abstract topological model. We give a systematic
method for predicting the number of flows in a simple case
where all the flows have the same RTT. We go further to pre-
dict the parametern/RTTeff when the flows have different
RTTs. Finally, we show that it is important to predict this
parameter as it effectively captures the cross-traffic behavior
(aggressiveness).

1. INTRODUCTION
The Internet has evolved to such an extent that it has

become difficult to mimic its behavior. Much progress
has been made to infer the Internet topology at both the
AS level and the router level for the purpose of simula-
tion. But unfortunately, distributed application devel-
opers do not have testbeds which satisfy the key proper-
ties of realism and repeatability necessary for develop-
ing and debugging. Network testbeds used in the net-
working and distributed systems communities typically
belong to one of two categories: (a) overlay testbeds
such as PlanetLab [7] and RON [1], which allow the ex-
perimenter to run the experiment over the Internet with
the help of overlay nodes, and (b) emulation testbeds
such as Emulab [11] and ModelNet [12] which allow the
experimenter to run the experiment over a collection
of machines by creating artificial network conditions as

desired by the experimenter.
Recently, there has been some effort towards combin-

ing the benefits of the above mentioned testbeds using
a testbed called Flexlab [9]. Flexlab has three differ-
ent network models to characterize end-to-end Internet
path namely, simple-static, simple-dynamic and Ap-
plication Centric Internet Modeling (ACIM). Simple-
static and simple-dynamic models just take account of
available bandwidth and latency using the measurement
data done statically and dynamically respectively, on
PlanetLab hosts. ACIM tries to model the Internet as
perceived by the application – the application’s traffic
on Emulab is reproduced on PlanetLab and the net-
work conditions experienced by this traffic are in turn
applied in Emulab. This approach does well in achiev-
ing the goal of accuracy. However, this method suffers
from two disadvantages: (1) Since the application’s traf-
fic characteristics are used to get a path model for the
emulator, a transport protocol change in the application
would require developing the path model again, which
defeats the objective of repeatability. (2) The method
as such is a heavy-weight mechanism for getting the
response of an Internet path.

We believe that the inference of path characteris-
tics should be decoupled from the application behav-
ior. But, this leads to a trade-off between accuracy
and flexibility. While developing a model of a path is
hard and might be inaccurate, it gives more flexibil-
ity and repeatability than what is achievable using an
application centric view of the path. It has been ob-
served that creating a general-purpose model for the
Internet or simulating the Internet is impractical [3, 4].
However, often what is required in evaluation testbeds
is the behavior of Internet paths. So, instead of get-
ting a general-purpose model of the entire Internet, we
attempt to develop a course-grained model of Internet
paths alone. Using a combination of measurement and
modeling, we propose a way to model TCP cross-traffic.
Starting from a model which predicts the number of
TCP cross flows given these flows have the same RTT
(using results from [6]), we generalize to flows with arbi-
trary RTTs (but we predict a slightly different parame-
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ter to be described). We further give simulation results
which show that a mixture of n TCP cross-traffic flows
with the same value of n/RTTeff (where RTTeff is the
harmonic mean of the RTTs of the n TCP flows) gives
similar path characteristics of loss rate and throughput.

The paper is organized as follows. We give our model
for TCP flows of same RTT and varying RTTs in Sec-
tion 2 and describe our experimental setup. Then, we
present our results on prediction of the number of flows
(for same RTT) and n/RTTeff (for varying RTT) in
Section 3. We also study the behavior of different num-
bers of flows with the same value of n/RTTeff in Sec-
tion 3. We then look at related work in Section 4 and
give our conclusions and future directions in Section 5.

2. METHODOLOGY
Our goal here is to characterize an Internet path as

succinctly as possible without reducing the fidelity by
much. To do this we take the following approach. Based
on existing behavioral models of TCP, we extract rel-
evant parameters of the traffic we should find out to
model the traffic on an Internet path. Then we derive
an active measurement technique to infer those param-
eters for a given path by injecting end-to-end flows that
compete with cross-traffic that we want to model in the
bottleneck link. Finally we evaluate the technique using
ns-2 simulation and emulation on Emulab.

2.1 Assumptions
Modeling cross-traffic on an Internet path is not a

trivial task. In this work, we divide the problem into
pieces and tackle parts of it. Here are the assumptions
we make to limit the scope of this work.

• For a given path, there is only one (primary) bot-
tleneck link.

• The traffic on the bottleneck link comprises only
of steady-state TCP flows.

• Traffic is stable during the measurement.

• The loss rate of the bottleneck link is less than 1%
(no timeouts).

• Bottleneck link router uses Random Early Detec-
tion (RED) queue management.

For the rest of this work, we focus on modeling TCP
traffic on the bottleneck link.

2.2 TCP model
We know that TCP throughput can defined as a func-

tion of round trip time and loss rate experienced by the
flow [6].
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where B(p) is the bandwidth consumed by a flow with
expected round trip time E[RTT ] and packet loss event
rate (probability) p. First, we look at the case where
all flows have the same round trip time.

2.2.1 Same RTT

In this case, since all flows experience the same loss
rate and have the same RTT, throughputs of the flows
are equal. Thus the following relations hold, where C
is the bottleneck link capacity and n is the number of
flows.

C = nB(p) (3)

Since we can directly measure the loss rate and RTT
from active measurement, we only need to infer n, the
number of flows. To infer n, we add a single flow from
the source to destination, measure the packet loss rate
p1, and then add a second flow and measure the loss
rate p2. Assuming unchanged aggregate bandwidth, we
see that

(n + 2)B(p2) = (n + 1)B(p1) = C (4)

Using Equation 2, we get

n =
1

√

p2

p1

− 1
(5)

2.2.2 Different RTTs

Here, the cross-traffic flows have different (expected)
RTTs, say τ1, τ2,. . . , τn. We then add flows as done
above to get loss rates p and p′. Here we also mea-
sure the RTTs of the flows; let tij be the RTT of the
ith flow when j of our flows are present. Since we use
RED queue management, the packet loss rates for all
the flows are same. Note that the packet loss rates are
same in the same RTT case even if we use drop-tail
queues. When the RTTs of the cross flows are differ-
ent there is not much sense in predicting the number of
flows as we did in the same RTT case because we do not
know the RTTs of individual flows. Hence, we predict
the parameter n/RTTeff (the effective RTT is the har-
monic mean of the RTTs), which in some sense models
the aggressiveness of the cross-traffic. Intuitively, we
can see that the more the number of flows, the more
aggressive is the cross-traffic. Also, the lesser the RTT
of a flow, the more is the aggressiveness of the flow. We
later present results to show how this parameter is im-
portant in determining the TCP throughput and loss
rate experienced on a path.

Along the lines of Equation 3, for different RTTs we
have,
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which we can write as
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where RTTeff is the harmonic mean of the RTTs of
the cross-traffic flows. Similarly, when we add another
flow, we get
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Thus, from Equations 7 and 8, we have
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2.3 ns-2 setup
We set up a dumbbell topology as in Figure 1. The

speed of the bottleneck link is 50 Mbps and every other
link has the speed of 100 Mbps. We set the latency
of the bottleneck link to 20 ms and provision enough
queue space to fully utilize the bottleneck link. We use
TCP/Sack1 implementation with RED queue manage-
ment.

To generate the cross-traffic on the bottleneck link,
we start a TCP flow from one intermediary node to an-
other node across the bottleneck link. The start time
is randomized and we wait for 10 seconds for stabiliza-
tion. The number of cross-traffic flows is varied across
different simulations. We use slightly different settings
and methods for the same RTT and varying RTT cases.

2.3.1 Same RTT

In the same RTT case, the RTT of every flow is the
same. Thus, the only parameter we have to infer is the
number of cross-traffic flows. The latency for every link
except for the bottleneck link is set to 1 ms. 10 sec-
onds after the start of the cross-traffic, two end-to-end
TCP flows are introduced with a 100 second time gap

Figure 1: Simplified topology

between their start times. We measure the loss rate p1,
the loss rate that the first end-to-end TCP flow experi-
ences while it is in steady state before the introduction
of the second flow, and p2, the loss rate that the first and
second flows experience after the second flow stabilizes.
From p1 and p2, we infer the number of cross-traffic
flows as given by Equation 2.

2.3.2 Different RTTs

Here we simulate the case where the cross-traffic flows
have different RTTs. The link from the cross-traffic end
hosts to bottleneck routers are chosen from a uniform
distribution of 1 ms to 10 ms. 10 seconds after the start
of the cross-traffic, three end-to-end TCP flows are in-
troduced with a 100 second time gap between their start
times. We measure the loss rate p1, the loss rate that
the first end-to-end TCP flow experiences while it is in
steady state before the introduction of the second flow,
and p2, the loss rate that the first flow and the second
flow experience after the second flow stabilizes, and p3,
the loss rate that the three flows experience after the
third flow stabilizes. From p1, p2 and p3, we estimate
n/RTTeff (where RTTeff is the effective RTT) with
the help of Equation 9.

2.4 Emulab setup
Our goal with Emulab is to replicate our results from

the simulator, while being one step closer to reality. As
such, our Emulab setup mimics our ns-2 setup, within
the practical constraints of Emulab. Some differences
are:

• The number of nodes available in Emulab is lim-
ited. Thus, our dumbbell topology includes ex-
actly 2 competing node pairs. To emulate more
than 2 TCP cross flows, we need to start multiple
connections per node.

• The shortest latency supported in Emulab is 5ms.
That is what we use for our short-latency links.

• Emulab does not support the queue-limitmethod
of sizing queues. The default queue size provided
is 50 slots, which is what we use in our experi-
ment. Queue sizes may be specified in slots or
bytes; queues may be sized up to 100 slots or 1
megabyte.

Further, to generate TCP flows, we use iperf in Em-
ulab (this would correspond to Agent/FTP in ns-2). For
tracing, we run tcpdump on the source node of our in-
troduced TCP flow. This corresponds to monitoring
transmission and reception events at the node Host 1
in Figure 1. To parse the tcpdump output, compute
TCP metrics, etc., wireshark and tcptrace are used.
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3. EVALUATION
In this section, we present our results for both the

same RTT case and the varying RTT case. First, we
compare our predictions of the number of flows in the
former case and n/RTTeff in the latter case with actual
values. Then, as an argument of how useful the predic-
tion of n/RTTeff is, we give results of TCP throughput
and loss rate experienced on the path by varying n and
RTTeff .

3.1 ns-2 simulation

3.1.1 Same RTT

In this subsection, we briefly look at the results for
the same RTT case before moving on the next section
where we generalize our predictions to accommodate
varying RTTs. Figure 2 shows how the packet loss rate
varies with the number of cross-traffic flows. By curve-
fitting, we find that the packet loss rate varies quadrat-
ically with the number of cross-traffic flows for small
numbers of flows (here ∼ 50) as has been observed in [5,
8]. Note that the loss rate exceeds 2% beyond 50 flows.
This quadratic behavior validates Equation 5 that we
use for predicting the number of TCP flows in the same
RTT case.
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Figure 2: Quadratic behavior of TCP loss rate

Figure 3 shows the prediction of the number of flows.
We see that the accuracy of our prediction is high for
a small number of flows (< 13), above which the pre-
diction is not as accurate and the error range increases.
Nevertheless, our prediction still gives the number of
flows within a factor of 1.5 for most flows. We do not
include the results for n (number of flows) greater than
25, as the prediction sometimes gives an error of more
than a factor of 2.

3.1.2 Different RTTs

For different RTTs, we use Equation 9 to predict
n/RTTeff . As described in the previous section, we add
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3 flows at regular time intervals to predict this value.
Since marginal differences in bandwidth consumed and
observed packet losses affect our prediction, we use the
median of the 3 predictions obtained using Equation 9
to predict n/RTTeff . Figure 4 shows our prediction
of n/RTTeff for different numbers of flows. We have
removed from the graph those points that gave nega-
tive values of prediction. However, we observe that we
can get better predictions if we use more of our flows
to predict. We see that our prediction closely follows
the actual values of n/RTTeff for up to 30 flows and
even beyond that, we are able to get fairly accurate
estimates.

Although we have seen that we have been able to
predict this magic parameter of n/RTTeff , we have not
yet seen how this parameter is useful in modeling an
Internet path. In the next subsection, we shall see how
this parameter models the aggressiveness of the cross-
traffic and thus gives rise to similar path characteristics
of TCP throughput and loss rate.

3.1.3 The n/RTTeff parameter
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After giving methods to predict the number of flows
in the same RTT case and more importantly, n/RTTeff

when there are many TCP cross flows of different RTTs,
we now see in these sections how this parameter effec-
tively models the cross-traffic and how aggressive it is.
We saw an intuitive argument for why this parameter
is useful in modeling the aggressiveness of TCP cross-
traffic in Section 2.2.2.
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In this experiment, we set the propagation delay of
our path to 52 ms and vary the propagation delay of
all other paths from 44 ms to 94 ms and measure the
throughput and loss rate of our flow. Figure 5 shows the
variation of TCP throughput with n/RTTeff . Each of
the curves shows the variation of throughput with this
parameter for different values of n (number of cross
flows) for given fixedf propagation delay (D) of the
cross flows. We notice that for a particular value of
n/RTTeff (say k), the TCP throughput for our flow is
similar for different combinations of n′ and RTT ′

eff (or
D) that also yield n′/RTT ′

eff = k. Another observation
is that the TCP throughput curve is hyperbolic which
can be seen by substituting p ∝ n2 in Equation 2. Fig-
ure 6 shows a similar graph of how loss rate varies with
the above defined parameter. We not only see strikingly
similar loss rates for different n’s and RTT s that have
the same value of the parameter, but also the quadratic
behavior of loss rate versus n (p ∝ n2).

3.2 Emulab
We are facing a number of implementation challenges

with Emulab. Currently, our setup is at a stage where
we have been able to run preliminary experiments on
Emulab. However:

• Changing queue sizes on Emulab has proven to
be difficult, so we are currently using the default
queue size of 50 slots, which is very low and re-
stricts our link latencies to very low values. The
maximum supported queue size of 100 slots is also
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Figure 6: TCP loss rate vs n/RTTeff

low. Emulab does not support the queue-limit

method of adjusting queue sizes.

• For simple tasks like verifying the absence of time-
outs, measuring packet loss event rates, it should
be sufficient to parse netstat output. However,
netstat on Emulab machines inaccurately reports
a number of important statistics, such as FastRe-
transmits and Timeout.

• When cross-traffic is low and achieved bandwidth
is high, tcpdump drops a significant number of
packets.

Preliminary observations from Emulab:

• When multiple flows of the same RTT are present,
bandwidth is only approximately fairly allocated.

• Unlike in ns-2 where every packet is ACKed, in
Emulab, only every other packet gets ACKed.

• Unlike in ns-2, in Emulab packets can arrive out-
of-order.

• Per-flow throughput seems to vary over the dura-
tion of an experimental run.

4. RELATED WORK
PlanetLab [2], Emulab [11], and Flexlab [9], all are

different approaches to achieve the same goal as us – a
testbed environment for evaluating new distributed ap-
plications. As discussed previously, each approach has
its unique advantages and disadvantages. PlanetLab,
being an overlay testbed, exposes applications to real-
istic network conditions. However, those conditions are
not replayable; experimenters do not have root access
to the nodes they use, and in practice, nodes are fre-
quently overloaded. Emulab addresses all of these lim-
itations, but does so by trading off reliability. Flexlab
attempts to find a middle ground. Using measurements
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of PlanetLab network conditions, it allows the experi-
menter to construct one of various possible path models
(simple-static, simple-dynamic or ACIM, in increasing
order of sophistication). These path models can then
be used to shape traffic generated by the experimenter’s
application, which is run on Emulab.

Flexlab’s accuracy and repeatability seem to be at
odds with each other. The most sophisticated path
model, ACIM, accurately predicts the network’s response
to workload offered by an application. However, it is
tied to the specific details of that particular applica-
tion. This impacts repeatability – if a later version of
the application generates a different traffic pattern, the
previous ACIM model will no longer be applicable, and
Flexlab will have to take new measurements of network
conditions on PlanetLab.

Our objective is to develop an accurate path model
that is not tied to an individual application. A fully
general path model would be able to model arbitrary
cross-traffic. In this work, we focus on certain restricted
classes of cross-traffic, e.g. long-running timeout-free
TCP flows in steady state. This allows us to pick up on
established work on TCP modeling [6].

Padhye et al [6] relate bandwidth achieved by a sin-
gle TCP flow to its observed packet loss event rate.
Our path models are also based on observed packet loss
rate, but additionally need to consider conditions where
multiple flows are present (of which we are one). [5],
and more recently [8], study the behavior of multiple
competing TCP flows. While they do study the behav-
ior of individual connections, they also focus on aggre-
gate properties of the network, and their end goal is
not to build a path model for an Emulab-like system.
[8] analyzes variation in packet loss rates with number
of competing flows, and observes that TCP fairness de-
grades as the number of competing flows increases. [5]
studies various aggregate and per-connection metrics of
TCP performance when a number of competing flows
are present. They are particularly interested in very
large numbers of concurrent connections (multiple hun-
dreds).

5. CONCLUSION AND FUTURE WORK
Starting with the simple case of predicting the num-

ber of flows when the RTTs of all competing flows are
equal, we gave a model-based method for inferring cross-
traffic characteristics using the parameter n/RTTeff.
We also gave simulation results of how this parameter
effectively models the cross-traffic behavior and its im-
pact on path characteristics.

One caveat about the practicality of our approach is
that we have assumed that there are no short-lived flows
like Web traffic and UDP traffic. Also, we have assumed
that all flows have low loss rates (and no timeouts) and
that these flows are all in steady state (past the slow

start phase). Extending our model to incorporate some
of these features would be an interesting part of future
work. We also need to make our prediction mechanism
more robust to minor fluctuations in aggregate band-
width achieved and loss rates. Last but not least, we
have to validate our techniques using measurement and
emulation.
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