Resolving Inter-Domain Policy Disputes

Cheng Tien Ee, Byung-Gon Chun
Department of Computer Science
University of California, Berkeley

Berkeley, CA 94720, USA

{ct-ee, bgchuny@cs.berkeley.edu

Kaushik Lakshminarayanan
Department of Computer Science and
Engineering
Indian Institute of Technology Madras
Chennai 600036, India
klkaushik@gmail.com

ABSTRACT

The Border Gateway Protocol (BGP) allows each autonomous
system (AS) to select routes to destinations based on se-
mantically rich and locally determined policies. This au-
tonomously exercised policy freedom can cause instability,
where unresolvable policy-based disputes in the network re-
sult in interdomain route oscillations. Several recent works
have established that such instabilities can only be elimi-
nated by enforcing a globally accepted preference ordering
on routes (such as shortest path). To resolve this conflict
between policy autonomy and system stability, we propose
a distributed mechanism that enforces a preference ordering
only when disputes resulting in oscillations exist. This pre-
serves policy freedom when possible, and imposes stability
when required.

Categories and Subject Descriptors

C.2.6 [Communication Networks]: Internetworking

General Terms
Algorithms, Design, Theory

Keywords

Inter-domain routing, BGP, convergence, policy disputes

1. INTRODUCTION
The Border Gateway Protocol (BGP) [12] establishes con-

nectivity between the independent networks, called autonomous

systems (ASes), that together form the Internet. BGP com-
putes routes by a series of local decisions based on each
ASes’ individual routing policies. These policies are seman-
tically rich in order to accommodate the complex rules that
govern route choices in today’s commercial Internet, such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’07, August 27-31, 2007, Kyoto, Japan.

Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

Vijay Ramachandran
Department of Computer Science
Colgate University

. Hamilton, NY 13346
vijayr@cs.colgate.edu

Scott Shenker

International Computer Science Institute (ICSI) &

University of California, Berkeley
Berkeley, CA 94704

shenker@icsi.berkeley.edu

business relationships and traffic engineering. However, this
expressiveness in routing-policy configuration, coupled with
ASes’ freedom in implementing their policies autonomously,
can cause instability in interdomain routing manifesting in
the form of persistent route oscillations [17].

The problem of understanding and preventing policy-induced

routing anomalies has been the subject of much recent study.
While some work characterized these anomalies using global
models [7,8,14], other research proved that global and lo-
cal constraints on policies could guarantee routing stability.
The good and bad news from this literature can be summa-
rized as follows:

Good news: If the AS graph has an underlying business
hierarchy and local policies obey sensible constraints arising
from this hierarchy, then routing converges [5,10].

Bad news: If ASes have complete freedom to filter routes
(that is, exclude routes from consideration) then the only
policies that are a priori guaranteed to converge are gener-
alizations of shortest-path routing [2].

Thus, there are two choices: we can hope that natural
business arrangements provide a stabilizing hierarchy, or we
can remove all policy autonomy (but not filtering autonomy)
by imposing some generalized form of shortest-path routing.

This paper advocates a “third way”. Rather than rely
on the vagaries of the marketplace to define a suitable hi-
erarchy, or eliminate policy autonomy because of its poten-
tial to induce route oscillations, we propose a simple ex-
tension to BGP that constrains policy choices only after an
oscillation is detected. Oscillations can be characterized by
the presence of dispute wheels in the network [8], and our
method provably finds and breaks dispute wheels, including
those involving non-strict preferences. We tag each route
advertisement with a precedence value, where a lower value
corresponds to higher precedence. This goes at the top of
the BGP decision process: available routes are chosen first
based on their advertised precedence, with ties broken using
the usual BGP decision process. The precedence attribute
changes only in the presence of a persistent oscillation; if
there is no oscillation, we effectively use only the normal
BGP decision process. Since configuration is not constrained
unless absolutely necessary, ASes’ freedom to decide on local
policies is preserved.

We first review related work in §2 and then define and
discuss dispute wheels in §3. The precedence metric is de-



scribed next and its ability to prevent dispute wheels proven
in §4. §5 and 6 describe how this theoretical result can be
put into practice. We evaluate the resulting algorithm in §7
and discuss several issues in §8 before concluding in §9.

2. RELATED WORK

Varadhan et.al. [17] were the first to discuss the possibil-
ity of persistent route oscillations in BGP. The cause was
not the policy configuration of one AS alone; they occurred
because of interaction between the policies of several ASes.
These anomalies occurred without any misconfiguration and
were difficult to diagnose and resolve since ASes tend to keep
routing policies private.

Griffin et.al. [8] introduced the Stable Paths Problem (SPP)
as a formal model for BGP (and policy routing with path-
vector protocols, in general). Using their framework, they
were able to give a sufficient condition for protocol conver-
gence, namely, the absence of dispute wheels. These struc-
tures characterize the conflicting policies of the nodes in-
volved in a route oscillation (see the formal definition in
84). Unfortunately, the only known method to check for
dispute wheels requires examining all the routing policies in
a network, which is presently an impractical task. In ad-
dition, Griffin et.al. showed that the problem of detecting
whether stable routing exists, given all the policies in the
network, is NP-complete. Worse yet, they showed that the
existence of a stable solution does not automatically imply
that a routing protocol can find it.

Gao and Rexford [5] showed that Internet economics could
naturally guarantee route stability. A hierarchical business
structure underlying the AS graph, along with policies that
matched the various business agreements between ASes, is
sufficient for protocol convergence. In this structure, it is as-
sumed that relationships between ASes are either customer-
provider, i.e., one AS purchases connectivity from another,
or peer-peer, i.e., two ASes mutually agree to transit traf-
fic. No customer-provider cycles are allowed (i.e., no AS,
through a chain of providers, is an indirect customer of it-
self), and additional rules exist on how to set route pref-
erences and when routes can be shared with other ASes.
These assumptions capture the structure and economics of
today’s commercial Internet, although violations of these as-
sumptions due to complex agreements, business mergers, or
misconfigurations can still induce route oscillation. These
positive results were later confirmed by Gao et.al. in [4], in
which the combination of an underlying business structure
and economically sensible policies was shown to prevent oc-
currences of dispute wheels, even when backup routing is al-
lowed. Jaggard and Ramachandran [10] generalized this re-
sult but still required some assumption about the AS graph
to prevent oscillations.

Dispute-wheel freeness and an AS business hierarchy are
examples of global constraints, because they require that
some condition is enforced involving the policies of many
ASes at once.! However, policy autonomy is at the heart of
the philosophy that led to BGP, and ISPs will be loathe to
relinquish it. Accordingly, later research attempted to find
local constraints—conditions that could be checked individ-

n this paper, as is standard for BGP discussions, the term
global really means “not purely local”. A global value, for
instance, is not one that necessarily all ASes share, but that
applies to more than one AS.

ually for each AS—that are sufficient for route stability. Un-
fortunately, results here were mostly negative. Sobrinho [14]
and Griffin et.al. [7] proved that any dispute-wheel-free rout-
ing configuration is equivalent to a generalization of lowest-
cost routing. This means that many seemingly sensible poli-
cies — in fact, all purely local policies not driven by some
shared metric — could lead to oscillations. For example, it
was shown that ASes risk oscillations if they use policies that
always prefer routes through one neighbor over another—a
type of policy commonly used today. Feamster et.al. [2] fur-
ther strengthened this result by showing that only general-
izations of lowest-cost routing can guarantee stability while
preserving the ability of ASes to filter routes (that is, to re-
move them from consideration). Overall, the theme of these
results is that the only way to a priori guarantee stability is
to essentially eliminate policy-configuration autonomy.

Most of these results exclude policies with any possibility
of inducing routing anomalies, whether or not they actually
do in a particular network. (This is because determining
whether the network policies will result in oscillations is too
difficult.) In this paper, we present an extension to BGP
that detects oscillations and responds by breaking the corre-
sponding dispute wheel. Griffin and Wilfong also presented
such an algorithm, called SPVP, in [9]. Our protocol differs
in several ways. First, SPVP records the changes in route
choices due to the propagation of a route; this reveals more
private policy information than necessary. Second, our pro-
tocol answers an open question left by [9], in that we present
a minimal-impact solution to resolving disputes: our reso-
lution algorithm is engaged only when an oscillation is de-
tected, and BGP is allowed to function normally otherwise.
Third, SPVP’s update-message size grows with the number
of nodes in an oscillation, while additional fields used by
our protocol scales with the number of resolved disputes en-
countered along a path. This is similar to that in [4,10];
however, those solutions still required a global constraint
and preemptively excluded some oscillation-free policy con-
figurations that our solution does not exclude. Finally, our
protocol eases network troubleshooting by pinpointing the
routers at which policy conflicts occur, carrying the infor-
mation together with routes propagated upstream.

Another class of runtime solution involves diffused com-
putation [1], which uses the observation that, as long as a
change in path results in reception of another with a local
preference value at least as high as that of its current path,
then stability is guaranteed. In this case, an AS is required
to ask any other AS whose path currently traverses it if a
change in path is acceptable. Such a solution would restrict
a provider’s route choices based on inputs from customers,
which is typically not the case in practice.

Finally, we allow ASes to exercise full autonomy unless the
particular set of policies and topology results in an oscilla-
tion, and in that case, and only in that case, AS autonomy is
revoked. What distinguishes this from much of the previous
literature is that it does not place a priori restrictions on
ASes, only post hoc restrictions. This enables a far greater
degree of freedom, and we believe that ASes might be willing
to accept the limitations as the price to pay for stability.

3. DISPUTE WHEELS

We begin by describing the notation used in this paper.
The network is represented as the AS graph G = (V, E),
where each node v € V corresponds to one AS, and each



edge {u,v} € E corresponds to a BGP session between ASes
u and v, meaning that these ASes are physically connected
and share route advertisements. We assume that links be-
tween ASes are reliable FIFO message queues with arbitrary
delays; this accounts for network asynchrony. At most one
link is assumed to exist between ASes, and all the internal
and border routers of an AS are condensed into one node (or
one point of routing-policy control). A path P is a sequence
of nodes vivs - - - v such that {vi,vi+1} € F; we write v € P
if path P traverses node v. Paths can be concatenated with
other nodes or paths; e.g., if P=u---v, Q = v---w, and
{w,d} € E, we may write PQd to represent the path start-
ing at node u, following P to node v, then following @ to
node w, and finally traversing the edge (w,d). We assume
that paths are directed from source to destination.

BGP, at a schematic level, computes routes using the fol-
lowing iterative process: (1) Nodes receive route advertise-
ments from their neighbors, indicating which destinations
are reachable and by what routes; (2) for each destination,
a node chooses the best route from those available, based on
local policy; (3) if the current route to a given destination
has changed, an advertisement is sent to neighboring nodes.
The content of advertisements, or update messages, is also
governed by routing policy; nodes are not required to share
or consider all available routes, i.e. routes may be filtered.
The process begins when a destination advertises itself to its
neighboring ASes; routes to that destination then propagate
through the network as transit nodes choose routes and send
updates. Because route choices are computed independently
for each destination, we will focus our attention on, without
loss of generality, on a single destination node d € V.

We say the network has converged when each AS v € V' is
assigned a path 7(v) to the destination, such that the assign-
ment is stable, consistent and safe. By consistent, we mean
that the paths form a forwarding tree to the destination; if
w(v) = vuP, then 7(u) = uP. By stable, we mean that
m(v) is the “best” available route for each node v, given the
other nodes’ path assignments, where “best” is determined
by node v’s routing policy; that is, if w(v) = vw(u), there is
no other node w such that the path vr(w) is more preferred
at v than 7(v).

Safety is slightly more subtle. By unsafe, we meant that
there is some sequence of route updates that does not con-
verge, in which every node gets a chance to update infinitely
often. Because there are only a finite set of route choices,
such a sequence must be a route oscillation. The sequence
may or may not be dependent on particular delays in receiv-
ing route updates. A configuration is safe if any sequence of
route updates, in which no node is shut out, converges.

Griffin et.al. [8] showed that any such oscillation can be
characterized by a dispute wheel in the network, shown in
Figure 1. The dispute wheel captures the interaction amongst
the routing policies of a set of nodes that are involved in a
route oscillation. Formally, we have the following.

DEerFINITION 3.1. A dispute wheel is a set of nodes po, p1,
...y Pe—1 (assume all subscripts are modulo k) called pivots,
such that
1. at each pivot p;, there exists a spoke path Q; from p; to
the destination;

2. at each pivot p;, there exists a rim path R;y1 to the next
pwot pi+1;

3. each pivot prefers the path p; Riy1pi+1Qi+1d over the path
piQid.

. .
/ ‘?d( >stination . -‘
'
' rim nodes
\ spoke paths \: \/

= direction of available route to destination

Figure 1: A dispute wheel example: elements of the
wheel include spoke paths, and pivot and rim nodes.

Figure 2: A simple dispute wheel: node D is the des-
tination. Shaded boxes show route choices in order
of preference.

Note that the rim and spoke paths are not necessarily dis-
joint. We refer to non-pivot nodes along the rim paths R;
as rim nodes.

Since dispute wheels lie at the heart of BGP policy insta-
bilities, we now walk through an example of BGP dynamics
in the presence of a dispute wheel. Consider the four-node
network shown in Figure 2. In the figure, paths considered
by a node are listed in the shaded box next to that node in
decreasing order of preference. The oscillation is shown in
Figure 3. (i) Assume that the destination node D sends an
initial advertisement to nodes A, B, and C. (ii) Nodes A,
B, and C then choose the direct paths to D and advertise
their choices to nodes C, A, and B, respectively.(iii) Upon
receiving this advertisement, each node prefers the route
through its neighbor, rather than the direct path to D, and
chooses it. Doing so requires advertisement of these new
paths; with the longer paths selected, the direct paths to
D are no longer advertised. (iv) When node A learns that
node B has selected BCD, its preferred choice of ABD is no
longer available; so node A reverts to choosing the direct
path to D. By symmetry, this occurs at nodes B and C as
well. This state is identical to (ii); therefore, the sequence
of route updates repeats, and nodes A, B, and C oscillate
forever between their two route choices.

Any policy-induced oscillation can be characterized by a
dispute wheel; thus, the absence of dispute wheels is suffi-
cient to guarantee that BGP is always safe. However, the
presence of a dispute wheel does not necessarily guarantee an
oscillation; even if there are some initial conditions that will
lead to an oscillation, BGP could non-deterministically con-
verge.Rather than exclude all potentially troublesome policy



M@@ » g&m )g

M G
(iv) (i)

(B(‘D) (ABD)

(A0 [A)

Figure 3: Simple example of dispute wheel oscilla-
tion: The simple local policy enforced at each node
is the import filtering of routes with more than 2
hops.

relationships a priori, the method we describe in the next
section triggers a mechanism to resolve the corresponding
dispute wheel whenever an oscillation is detected.

4. THE PRECEDENCE METRIC

We begin by augmenting BGP’s decision process, prepend-
ing it with an additional step that utilizes a new metric
which we call the precedence metric. We describe this met-
ric below, and show that it eliminates route oscillations due
to dispute wheels.

Each route advertisement is tagged with a global® prece-
dence value that is non-negative: a numerically greater value
translates to a lower precedence. We denote the precedence
value, say v, associated with path P by (P:v). Each AS
maintains a history of observed route advertisements from
its immediate neighbors. In this history, we associate every
route with a local precedence value starting from 0. This lo-
cal precedence value is obtained from the route’s rank, and
is determined via the usual BGP decision process. Thus
the route ranked ith has a local precedence of i-1 and is
preferred over all routes with local precedence greater than
that. Strict ranking is performed, such that no two routes of
equal local precedence exist. In short, the selected route is
first determined using the incoming global precedence value
(since this step occurs before the current BGP decision pro-
cess), followed by its local precedence value.

Suppose the selected route has an incoming global prece-
dence of ¢, and a local precedence value of j. Then, the
outgoing route advertisement is tagged with a global value
of t+j. Thus, a route that is most preferred for all ASes
along its path is tagged with 0 at all hops. Figure 4 gives an
example of this update process. Without loss of generality,
we assume for the rest of this paper that the destination AS
advertises routes with global precedence value of 0.

The increased value advertised by the pivot nodes depends
on the number of paths advertised in parallel by immediate
neighboring pivot nodes. We use Figure 5 to explain this.

2Again, the term global only means that this precedence
value has meaning across more than one AS, not that all
ASes share this precedence value.

()

PAt=1,j=0
PAt=1j=1
P3At=0,j=2

PlAt=0,j=0
PAt=1j=1
PyAt=0,j=2

(P1A:1) (5 (BP3A:2) @ (P A:0) B (BP A:0) @
(P2A:1) (P2A:1)
(P5A:0) (P3A:0)

Figure 4: (a) AS B’s local preference for route

(P3A:0) to destination AS A is ranked third. Ad-
vertisement of this route to AS C will result in the
increasing of its global precedence by 2. (b) AS B
now considers the route (P1A:0) to AS A to be the
most locally preferred. Advertisement of this route
to AS C will not alter its global precedence value.

<~

(o)

@ o
Vd N (Ro,,:an,,) e N
‘g ‘0
(QaiBa) ™, 1QuiB)
N

jof

Figure 5: Multiple paths advertised by neighboring
nodes can cause the global precedence value of a
route to increase by more than 1.

Here, node b has a spoke path @, to destination d. Assuming
that b locally prefers routes advertised by neighboring pivot
node a along Ry, Rb,, ..., Ry, compared to @y, we have
the history state shown in Table 1. Clearly, if the spoke
path is selected, it will be advertised as (bQpd:Bp+m+1).

A non-uniform increase in global precedence values around
the dispute wheel causes the rest of the network, i.e. nodes
not in dispute and not along spoke paths, to lose autonomy.
To correct this, instead of increasing the selected route’s
value by its local precedence, we bound the increase by 1.

Precedence values can take on multiple non-negative val-
ues as opposed to just binary 0 or 1 values. The presence of a
dispute wheel causes routes beyond the nodes in and within
the wheel to be advertised with the same incremented value.
Nodes outside the wheel can still be in dispute, in which case
the global precedence will be incremented again. We next
show that this precedence metric prevents the formation of
dispute wheels.

4.1 Dispute Wheel Elimination

PROPOSITION 4.1. If routes encountered during previous
policy-induced oscillations are stored and the precedence met-
ric is used, then no further policy-induced oscillations can
occur.

PROOF. It is proven in [8] that the absence of dispute
wheels is sufficient for safety, and hence it suffices to show
that the precedence mechanism precludes dispute wheels.
Using proof by contradiction, we begin by assuming that a
dispute wheel exists.

Figure 6 is used to illustrate our proof, in which we con-
sider a single destination d. Nodes po, pi1,...,pr—1 are the
subset of nodes that are in the dispute wheel and have stable
paths to the destination, that is, these are the pivot nodes.



Table 1: History of Node b in Figure 5

Route Global Precedence Local Precedence
RbO aQad Qpg + Ba 0
Ry, aQ.d apy + Ba 1
Ry, aQqd b, + Ba m
Qvd B m+1

/ (Qu: 513‘\‘ l: I/I(qu : 3k1)\
.

0 ",
Di 0)

Figure 6: Dispute wheel illustration and notation
used in our proof.

(Qi:8;) is the tuple consisting of Q;, the spoke path from
source p; to destination d, and 3;, the precedence value as-
sociated with path Q;. The tuple (R;:c;) on the other hand
consists of the rim path R;, which leads from p;y+1 to pi,
and «;, the change in precedence along R;, including node
pit1. In other words, if v is the precedence value for path
Ripit1 Qi+1 d, then ’Y:Oéi—f—ﬂ“_l. We also have r; be the total
number of nodes along R;, including p;4+1 and excluding p;.
This implies

CMZ'S?“Z‘ VZ

Suppose po, p1, - - -, Pk—1 €ach receive route advertisements
from their immediate next hops along Qo, @1, ..., Qr—1 with
global precedence values (o, (1, . . ., Bk—1, respectively. Node
p; then selects the route @Q;, updates the value, and adver-
tises that.

We next assume that the dispute occurs: node p; prefers
path (Ripi+1Qit+1d:ci+Bi+1), over route (Q;d:5;). In Fig-
ure 6, this corresponds to each node picking its immediate
neighbor, in the clockwise direction, as the next hop. In
this proof, we assume that the route advertisements received
and stored as part of the history include those encountered
during oscillations.® Note that we do not need all routes en-
countered during one oscillation period to be stored, merely
one that has higher local precedence than the stable spoke
route. Then, the dispute wheel implies

a+ P < Bo
a1+62 < b
ag—1+Po < Br-1

Summing, we obtain

30ther routes will at most merely increase the precedence
value, and not affect the correctness of the proof.

A

k—1 k-1 k-1
Z o; + Z Bi < Z Bi
i=0 i=0 i=0

k—1
or Zai < 0
i=0

Since, by definition, ag, a1, ..., akx—1 are non-negative, we

have
(073 = 0 VZ

which implies that all nodes po,pi,...,pr—1 locally prefer
routes through Qo, @1, ..., Qr—1 respectively. This means
that if the dispute wheel exists and each R;p;+1Qi+1 is cho-
sen over (;, it must be because of the global precedence
values.

Thus, for the dispute wheel to form, we will require

a1+ 6 < Bica Vi
or Br—1 < Br—2 < < Bo < Pr-1

which is not possible. Therefore, by contradiction, no dis-
pute wheel can exist. [

PROPOSITION 4.2. If there are non-zero precedence values
advertised once the protocol converges, this must mean that
dispute wheels exist.

PrOOF. Assume that the destination node advertises routes
with precedence value 0, and that the network has con-
verged. Thus, a non-zero value advertised somewhere means
that there exists some node v with an incoming set S of
routes of precedence value 0, |S| > 0, and an advertised
route vP, P€S, with positive precedence value. If this hap-
pens, then P must not be the most locally preferred route;
suppose that route is Q). The precedence value of ( must be
positive, otherwise v would have chosen it. This means there
must be some node w along @ that increases its precedence
value; w is similar to v, in that it must have some other path
Q' with positive global precedence, causing it to choose Q.
Thus, we can repeat this process at w and subsequent sim-
ilar nodes. As the destination node is never encountered,
because it always advertises routes with precedence value
0, we must ultimately encounter a node already traversed.
The resulting cycle of nodes naturally form a dispute wheel
that has been resolved using the precedence mechanism. []

COROLLARY 4.3. From Propositions 4.1 and 4.2, global
precedence values greater than that advertised by the desti-
nation exist when routing converges if and only if dispute
wheels causing oscillations exist.

COROLLARY 4.4. A route traversing resolved disputes can-
not advertise the same global precedence at all hops.

PROOF. Assume that such a route exists. Since the prece-
dence value advertised by all hops are the same, this implies
that the route selected by each node is its most preferred.
This in turn implies that the destination node must be part
of the dispute wheel, which is a contradiction. []

4.2 Accounting for Non-Strict Preferences
The precedence metric is proven to eliminate dispute-

based oscillations for strict preferences; that is, routes can

be ranked independent of others. In general, preferences



are non-strict, and are encountered for instance in BGP’s
Multi-Exit Discriminators (MEDs) [6]. In this subsection
we propose a minor extension to account for this.

Non-strict preferences results in an incoming route R;
causing route R.s to be selected, where R;#R.s and R.s
is not the previous route selected (Rps). This is an Indepen-
dent Route Ranking (IRR) violation [11]. In terms of strict
preferences, it appears as though the existence of R; results
in the eviction of Ry, from the most locally preferred rank.
Thus, to capture the fact that R, used to be the most pre-
ferred before R; arrived, we create and associate a logical
route Ry, with R;, where Rj, = R,s except that compari-
son of R}, with any other route? should ignore the presence
of R;. This slight tweak is used when computing the local
preference of R.s. Since the goal is to determine if the global
precedence should be incremented, we will be comparing R,
with Rs, ignoring R;. Furthermore, as R;#R.s, we will not
encounter the scenario when R; and R),, are compared. In
the case where R.s becomes unavailable in the future and is
replaced by R;, we evict R,q.

5. FROM THEORY TO PRACTICE

In §4, we showed that usage of the precedence metric,
coupled with the knowledge of routes encountered during
oscillations, can cause the network to converge. The primary
difficulty in implementing the solution is knowing precisely
the relevant set of routes encountered during oscillations and
not others. In this section we describe how this is achieved
in practice. We begin by defining our goals:

One: We distinguish between transient and permanent
oscillations, where the former disappear with the conver-
gence of the network. The association of routes with dis-
putes should be removed if the latter is found to be transient.
Further, changes in network topology affecting resolved dis-
putes should cause the removal of stored state associated
with those disputes.

Two: The solution should not reveal any ISP policies.

Three: Only local information associated with incoming
advertised routes, and no global knowledge, is necessary.

Four: Knowledge of potential pivot nodes should be pro-
vided as feedback by the protocol. The presence of resolved
disputes causes precedence values to increase, thereby pos-
sibly restricting the choices of routes. In general we believe
it is preferable to react by altering the local preferences at a
subset of the pivot nodes so that disputes do not arise in the
first place and route choices become unconstrained. Since
access to the global view is probably unattainable, we seek
an alternative means of identifying the potential pivots.

Our solution consists of a detection and a stable phase
(Figure 7). We give a brief description of the two phases
below, with elaborations in the subsequent subsections.

Detection Phase: Initially, a node locally determines
that it may be a pivot and be involved in a dispute when its
current selected and advertised route is less preferred than
its previous one. By keeping in memory such withdrawn
(also known as infeasible) routes, the precedence value of
the advertised route is incremented. The timeout period for
infeasible routes thus determines the duration of the detec-
tion phase, and is elaborated on in the following section.

Stable Phase: In this phase, incoming and more pre-

4when determining the local precedence value using the cur-
rent BGP decision process

(0] (i)
/%)\ Detection /%\
)

(BD:0 (D:0) (AD:0) » (BCD:0) (D:0) (ABD:0)
. (D:0) (D:0) . (D:0) (D:0)
History History \
CD:0 & CD:0
D:0 (CD:0) D:0 (CAD:0)
D
(iii)
Stable
Key
- (BD:1) (D:0) (AD:1)
History table entries:
D Feasible route (D)
) (D:0) D:0
[ wnteasiste route History
CD:1
D:0 (CD:1)

Figure 7: (i) Dispute wheel formation and elimina-
tion: simple local policy enforced at each node filters
incoming routes with more than 2 hops. (ii) Detec-
tion phase: existence of an expiring, more preferred
route causes the outgoing precedence value to in-
crease. (iii) Stable phase: incoming more preferred
routes have incremented precedence values, causing
the stable, less preferred routes to be selected.

Figure 8: To ensure that the wheel size is measured,
pivot node A updates and propagates the router
counter associated with the more preferred route
Rp that is received from a neighboring node along
the wheel rather than that with the stable route R¢.

ferred but unstable routes have incremented precedence val-
ues, thus resulting in the pivot node thereafter always select-
ing a stable but less preferable route. On the other hand, if
there is no such incoming route, then expiration of infeasible
routes will cease to cause the advertised route’s precedence
to be incremented.

5.1 Detection Phase

In the detection phase, infeasible routes are stored tem-
porarily, resulting in less preferred but more stable routes
being advertised with incremented precedence values. This
mechanism determines if a possible dispute exists and op-
erates locally, without requiring additional information be-
yond the routes received. These memories need only ex-
ist until it can be confirmed whether disputes resulting in
permanent oscillations are present, ensuring that transient
oscillations do not cause unnecessary suppression of routes.

The maximum period of time required for infeasible routes
to be stored is that needed for the effect of a route change
to propagate around the dispute wheel. This is in general
proportional to the number of nodes N4 involved in the dis-
pute, and can be obtained by multiplying Ng by the Mini-
mum Route Advertisement Interval (MRAI). We obtain an



upper bound to this number by propagating a router counter
that is initiated by pivots and incremented by each traversed
node. Pivots begin sending these counters if routing has not
converged and routes with incremented global precedence
values are advertised.

An important point to note is that the router counter
should not be thought of as being associated with a partic-
ular route, but rather with all routes with the same destina-
tion prefix. With reference to Figure 8, this means that pivot
A uses, updates and propagates the router counter carried
with the more preferred route R g, even though it selects the
stable route R, since (i) the latter could have a precedence
value lower than that of the former, or (ii) the former is an
infeasible route, or (iii) the former has been filtered due to
implemented policies (and not because of loop detection). In
the case where multiple, more preferred routes exist, pivot
A uses the largest counter amongst these routes, since the
goal is not to determine the precise number of nodes in the
wheel, but to provide an upper bound. Rim nodes simply
increment the counter associated with their selected routes.

The router counter is used to determine the period of time
over which the network is deemed to have converged if the
selected route is unchanged. Once this condition is true, the
node enters the stable phase. Finally, we again highlight the
fact that the counter is used primarily as an indication of
the period of time infeasible routes should remain in memory
in order for the network to converge. If convergence occurs
before the total number of nodes in dispute is recorded, then
propagation of the counter stops.

5.2 Stable Phase

In this phase, all infeasible routes would either have ex-
pired and evicted from memory, or have been readvertised
(thereby become feasible again). The reception of a more
preferred route having incremented precedence value causes
pivot nodes to select stable but less preferred routes. Also,
we reset the variable largest router counter encountered dur-
ing the detection phase.

Usage of the precedence metric has the additional benefit
that nodes are aware that they are experiencing policy con-
flicts by observing that their selected and advertised routes
have incremented precedence values. We propose propagat-
ing this knowledge upstream in the form of route numbers,
which are a combination of router, AS and locally generated
sequence number. Route numbers are carried together with
the advertised routes for the purpose of troubleshooting.

5.3 A Simple Example

We next use the previous simple example (Figure 7) to
illustrate the resolution process. Again, since the network
and policies are symmetrical, we focus on a single node B.
We begin with dispute detection; in (ii), the presence of
infeasible (and expiring) route (CD:0) causes the less pre-
ferred route (D:0) to be advertised with precedence value 1.
In this phase, B also begins to propagate the router counter
(Cg), with an initial value of 1 (since it is part of the dis-
pute). When this counter is propagated to A, A selects the
largest counter it received (Cpg), increments and advertises
that. Also, pivots use the largest counters encountered to
determine the timeout period for infeasible routes.

In this simple example, we note that the router counter
does not get propagated beyond the immediate neighboring
pivot. In the detection phase, node B advertises (BD:1),

CR3:1
R1:0

Key

History Table Entries:
p‘ o D Feasible Route
D Infeasible Route

AR;:1
Rs:0
ARy:1

Figure 9: R, denotes a route X terminating at the
destination node D. As before, routes longer than
two hops are filtered. (i) A simple dispute wheel
is first resolved. (ii) Node A is involved in a second
dispute. Depending on the local preference ordering
at B, the first dispute may be eliminated.

which does not need to be readvertised in the next iteration
since B receives (CD:1) thereafter. As the counter is propa-
gated together with route advertisements, this implies that
no further updates to it will take place in the stable phase.

5.4 A Complex Example

In Figure 9(i), we assume that the first dispute, involving
nodes A, B and C, has been resolved, with the pivot nodes
selecting their stable routes. A second dispute is introduced
in (ii), where the disputes intersect at node A4, and R, de-
notes the route X to destination D. We represent destina-
tion D using separate nodes to better show the two disputes.
The network is shown in the converged state, after the sec-
ond dispute, involving nodes A, E and F, has been resolved.
The takeaways from this example are the following:

One: Depending on the network state, the router counter
sent from A can either traverse the two disputes simultane-
ously, or one after another. In either case, it will increase
to a sufficiently high value, bounding the maximum period
required to observe all routes involved in the oscillations.

Two: Depending on the local preference ordering of the
nodes, the initial dispute may or may not continue to exist.
In Figure 9(ii), the ordering at node B is such that AR, is
more preferred than Rz, which in turn is more preferred than
ARy, thus the dispute involving A, B and C is eliminated.
As a result, at steady state (after the expiration of AR:)
nodes B and C' are able to select their most preferred routes.

5.5 A MED Example

A significant problem in BGP today is the occurrence of
oscillations due to MED. MED selection rules are different
from local preferences, AS path lengths, etc. because they
result in non-strict preferences. Figure 10 shows an example
from [6]. Here, link weights in brackets denote MED values
assigned to links from external ASes, whereas weights within



Figure 10: The MED-EVIL example from [6].

Table 2: MED Oscillation in Figure 10

A B
Step Available Advertised Available Advertised
1 D30, C20 AD30 E30 BE30
2 BE30, D30, C20 AC20 E30, AD30 BE30
3 BE30, D30, C20 AC20 E30, AC20 BAC20
4 D30, C20 AD30 E30, AC20 BAC20
5 D30, C20 AD30 E30, AD30 BE30

Repeat from step 2.

AS 1 indicate the link’s iBGP cost. Table 2 shows the se-
quence of routes advertised during an oscillation period.

We observe from Table 2 that the primary issue is the
change in the most preferred route, from D30 to C20, with
the reception of BE30. That is, the cause of D30 being
demoted in rank is brought about by BE30. In order for
the dispute detection to be effective, we create a logically
different, expiring route D30’ that is still the most preferred
(in the absence of BE30). BE30 is associated with D30,
the former is ignored when comparing the latter with other
routes (for instance when determining whether other routes
are more preferred). Subsequently, the selected route AC20
will be advertised with increased precedence. As before, we
note that no additional policies are revealed.

Denoting a stored route by the 3-tuple P:V:{I}, where
{I} refers to the list of incoming routes to be ignored, or the
ignore list, when computing this route’s local precedence,
the sequence of route updates is shown in Table 3. Note
that the ignore list is not sent to neighboring nodes.

5.6 Achievement of Goals

Based on the solution proposed earlier, we next describe
how our goals are met.

1. Handling transient and permanent oscillations:
We say that oscillations are permanent if they are caused
by disputes that do not resolve by themselves. On the other
hand, transient oscillations refer to those that disappear
without usage of our solution, Figure 11 gives an example
of this. Node A first learns of the route Ri;, and propa-

Table 3: MED Oscillation Elimination
A B

Step Available Advertised Available Advertised

1 D30:0:{} AD30:0 E30:0:{} BE30:0
C20:0:{}

2 D30°:0:{ BE30} AC20:1 AD30:0:{} BE30:0
BE30:0:{} E30:0:{}
C20:0:{}
D30:0:{}

3 | D307:0:{BE30}  AC20:1 | AD30:0:{}  BE30:1
BE30:0:{} E30:0:{}
C20:0:{} AC20:1:{}
D30:0:{}

4 D30°:0:{BES30} AC20:1 E30:0:{} BE30:1
BE30:1:{} AC20:1:{}
C20:0:{}
D30:0:{}

AR f

AR1 f ""R‘l--—’SDd
O AR, A ~el___--
B n

Figure 11: Routes preferable for one node may not
be for upstream nodes. R, refers to either R; or Ra.

gates AR to B. Next, A receives the advertisement for R,
which is preferable to Ri, and subsequently advertises that
to B after withdrawing AR;. However, at B, since AR, is
more preferred, it remains in memory before timing out and
evicted. The eventual eviction results in B advertising AR»
with precedence value 0.

Transient oscillations can also refer to those that are not
due to the resolution of disputes by our solution. In Fig-
ure 9, the dispute on the right eliminates that on the left.
The expiration of route AR; at B allows B to advertise Ra
without incrementing its precedence value. Thus, our solu-
tion does not unnecessarily penalize nodes.

If instead network topology changes, such as link break-
age, occur, adjacent nodes’ states are reset. The resulting
elimination of disputes (if any) is manifested in the with-
drawal of more preferred routes with larger precedence val-
ues. These routes eventually expire and allow the remaining
pivots to select their most preferred routes. Similarly, state
can be reset whenever policy changes occur. Thus, our so-
lution does not permanently suppress any route.

2. Minimal revealing of policies: If the input routes
of a router are known, the precedence of the advertised route
indicates whether the chosen route is the most preferred: if
not, then its value increases. No additional information is
revealed compared to BGP today: given the inputs, a route
is not the most preferred if it is not advertised.

For routes stored in history, all have been previously ad-
vertised before and have been intended to be used for rout-
ing, none have been explicitly propagated for purposes of
eliminating oscillations. Route numbers indicate the routers
having policy conflicts and do not contain any more infor-
mation. Thus, we do not expose any additional ISP policies.

3. No requirement for global knowledge: Dispute
detection operates solely on route advertisements received
from neighbors, and are fully decentralized. No third party
is required to gather and compute optimal routes for all
ISPs. The route numbers are propagated upstream only for
the purposes of troubleshooting, and do not affect nodes
elsewhere, including other parts of the wheel.

4. Identification of potential pivot nodes: Although
it is possible to use some other unique number as the route
number, we believe that inclusion of the router IP or AS
number gives the right amount of visibility to assist in net-
work troubleshooting. If a node is forced to select a less pre-
ferred route, it appends its route number to those already
associated with the selected route, otherwise the existing
numbers are propagated unchanged. Thus, the set of nodes
identified by the list of numbers includes all potential piv-
ots encountered downstream. Although not all pivots along
the wheel can be identified from a single viewpoint, adjust-
ment of just one such node’s preferences is sufficient to break
the dispute, reducing global precedence values and relaxing
constraints on route selection.



(a) y Incoming routes Py:0 and Py:1 (b)
3 P: Global Local asible
AS Path| . Global Local TFeasible ‘Ab Path Precedence | Precedence FC‘N])h"
o Precedence | Precedence i
Py 1 0 true
PRy 1 0 true
P 1 1 true
Py 0 1 true
Py 0 1 true
. - Py 0 1 false
Py 0 1 false
o . 1 po— . .
P, 0 1 false
Py 1 1 true

Outgoing route Py:1

Figure 12: (a) Before and (b) after a history table is
updated. The routes with the lowest global values
are first selected, after which ties are broken using
the BGP decision process of today. Only feasible
routes can be chosen.

1: let current router counter be C,

2: if local routing has converged then

3 for each entry in history table do

4 if not feasible then

5: remove entry

6: for each route R received do

7 if route from neighbor N is filtered then

8 set previous feasible route R, from N infeasible

9 else if different route received from neighbor N then

10: set previous route R, from N infeasible

11: compute R’s local precedence

12: insert R into history table, set feasible

13: else if same route received from neighbor then
14: if previous feasible route R, # R then

15: set R, infeasible

16: else

17: update R’s global precedence value

18: set R feasible

19: else if first route R is received from neighbor then
20: compute R’s local precedence

21: insert R into history table, set feasible

22: select set S of eligible routes

23: select set S’ with lowest global precedence, S’ C S
24: select route R with lowest local precedence, R € S’
25: if local precedence of R # 0 then

26: associate with R the router counter C «— C. + 1
27: return R

Figure 13: Pseudo-code for updating history table
and determination of the selected route for each des-
tination.

6. ROUTER CHANGES

In this section we describe extensions to a BGP router
necessary to implement our solution. We elaborate on the
primary additional components, including the history table,
router counter, and the adaptive convergence window, in
this section.

6.1 History Table

The history table stores routes received from neighbors, as
well as information necessary for dispute detection. Mem-
ory used to store routes may be shared amongst the different
data structures, and is dependent on actual implementation.
Thus, the history table can be thought of as an extension to
other structures. We call a route currently available and ad-
vertised by a neighboring router feasible. Routes that have
recently been withdrawn, but which has not timed out and
hence still present in the history table are called infeasible.

Figure 12 shows an example of a history table being up-
dated, and Figure 13 provides the pseudo-code. Entries in
the table are sorted in order of local precedence, that is, the
ordering is determined using the same rules as the BGP de-

. let incoming route be R;
let associated router counter be C;
let current largest encountered router counter be C.
if R; includes current AS (i.e. loop) then
return
(Note: routes filtered due to policies are still considered.)
C. «— max(C,, C;)

Figure 14: Pseudo-code for updating router counter
for each destination prefix.

cision process in use today. This ordering provides the local
precedence value: the most locally preferred has value 0, the
rest have value 1.

6.2 Router Counter

A router counter is associated with each destination pre-
fix, and is initialized and has a lower bound value of 1.
As shown in the pseudo-code (Figure 14), it is updated
with each incoming route, and cleared whenever routing is
deemed to have converged. The router counter is advertised
together with the associated route only when the router is
in the detection phase (§5.1), and when it advertises a route
with incremented precedence value, that is, when it may be
a pivot node.

6.3 Adaptive Convergence Window

As elaborated in §5, infeasible routes are kept in mem-
ory for a period of time in order to detect disputes. We
call this period of time the convergence window. Assum-
ing that one-hop route propagation delay W is similar to
the Minimum Route Advertisement Interval (MRAI), the
window size should be proportional to the number of nodes
traversed by the router counter value (C;), or WC,.

The convergence window begins with a short duration
(one MRAI), so that networks not containing disputes can
converge relatively quickly. At the end of each convergence
window, any updates to the advertised route implies that
routing has not converged, and the next window is set to be
the size of the current C,. Lastly, the window size is reset
after the network converges.

7. EVALUATION

We next evaluate the performance of our solution, describ-
ing our simulator, methodology as well as the performance
metrics used.

7.1 Simulator

We built an event-based, packet-level and asynchronous
simulator. Route updates are batched, and take place every
Minimum Route Advertisement Interval (MRAI). Figure ??
shows the main steps of the batch update process, whereas
Figures 13 and 14 describe maintenance of the history and
router counters respectively. We set MRAI to 30 seconds,
processing delay jitter to 1 second, and link propagation
delay to 10 milliseconds.

7.2 Metholodgy

To better understand the basic performance of our solu-
tion, we use simple graphs, which consist only of rim, pivot
and destination nodes. Whilst these graphs are not repre-
sentative of a real network in general, they are still useful in
determining properties of a dispute wheel.

To evaluate the effectiveness of our solution in practice, we
use an AS-level network topology constructed using routing



12

@ 10
£ //
£
E 8
£
s o -
g //
S 4
% 4
2
3 2

0

0 1 2 3 4 5 6

Number of rim nodes between consecutive pivots

Figure 15: Simple graphs: 3-pivot network’s conver-
gence time against rim-to-pivot ratio.

table dumps from RouteViews [13]. Route dumps from Jan-
uary 3rd 2007 were used to construct an AS-level network
which consists of 24307 ASes and 56914 inter-AS links. Since
complete policy information is impossible to obtain [3,15],
we sought an alternative method of generating local prefer-
ences. Restricting ourselves to next hop preferences, we note
that a dispute-free configuration can be obtained as long as
the most preferred neighbor lies along a cycle-free path to
the destination. Thus, a shortest-path algorithm will gener-
ate local preferences that can guarantee convergence.

However, inter-domain routing typically does not result in
shortest paths [16], and as we show later, the network con-
vergence time as well as the degree of route exploration (and
hence the number of routes encountered) are dependent on
the ratio of actual versus shortest path lengths (i.e. route in-
flation). Thus, we focus on routing algorithms that provide
approximately the same route inflation. We use a combi-
nation of depth-limited and breadth-first searches to obtain
routing trees: depth-limited search is used whilst within the
limit at each stage, otherwise breadth-first search is used.
In general, increasing the maximum depth at each stage re-
sults in greater route path inflation. The remaining neigh-
bors’ preferences are set in a random fashion. Finally, we
simulated misconfigurations by selecting a subset of routers
and randomly assigning local preferences.

7.3 Maetrics

We use convergence time and memory requirement as met-
rics. We say that a node has converged at a certain time if
its routing table no longer changes thereafter. As for mem-
ory requirements, we look at the ratio of routes stored when
using our solution against normal BGP. This allows compar-
ison across the entire network, taking into account routers
with varying numbers of neighbors.

7.4 Results

Simple graphs: Using simple graphs, we determined
that the convergence time is dependent on the rim-to-pivot
ratio and not the total size of the network. We show rep-
resentative results in Figure 15, where the number of pivot
nodes is 3. Each data point in the figure is obtained from 20
samples; we see that the mean convergence time increases
with this ratio, and there is little deviation in all cases. In
all experiments the networks converged.

RouteView graph: We varied the maximum depth of
each constrained depth-first iteration, obtaining the mean
route length inflation ratios shown in Figure 16. A maxi-

ol f 4
0.7 ’I
o |
0.3 ’
0z r'

0.1

e T
",

Cumulative Fraction

1 12 14 16 1.8 2
Route Length Inflation Ratio

Figure 16: Increase in the maximum depth of
constrained depth-first routing results in inflated
routes.

0.9 oyt
08 A g
07 :
0.6
0.5
0.4
0.3
0.2
01 1 Cd.6
(O ‘ C.d. 6, 10% Misconfig = -
1 1.5 2 25 3
Memory Requirement Ratio

Cumulative Fraction

Shortest path
C.d.2 -

cd. 4

Figure 17: Deviation of path lengths from shortest
increases exploration and hence more results stored.

mum depth of 6 results in route inflation that most closely
match that in the Internet today [16].

Next, we investigated the impact of additional memory
requirements for Precedence by varying route inflation. In
all cases, we verified that usage of Precedence in networks
with no disputes resulted in all nodes selecting their most
preferred next hops: Precedence does not unnecessarily sup-
press routes. For normal BGP, the amount of memory re-
quired at a router is proportional to the number of its neigh-
bors. From Figure 17, we observed that deviation from
the shortest path results in more routes being explored and
hence more being stored before convergence in the case of
Precedence. On average, Precedence requires 50% more
memory for each destination prefix, which can be amortized
across the network by jittering initial prefix advertisements.
Furthermore, actual route exploration in the Internet may
be to a lesser extent since route advertisement will be con-
strained by economic policies.

To investigate policy disputes due to misconfigurations,
we randomly assigned next hop preferences to 10% of the
nodes, verified that dispute wheels do exist (normal BGP
does not converge), and that the networks converged when
Precedence is used. As shown in Figure 17, we required
approximately the same amount of memory as before.

Finally, we looked at the network convergence times (Fig-
ure 18). As we expected, local preferences assigned based
on shortest-paths results in faster convergence. More im-
portantly, convergence time is not significantly affected by



Cumulative Fraction

Shortest path, BGP =———

C.d. 6, BGP

C.d. 6, Pred

_C.d. 6, Pred, 10% Misconfig

1.5 2 25 3 35 4 45
Convergence Time (min)

Figure 18: Usage of the precedence metric does not
delay convergence, even in the presence of miscon-

figurations.
(PIZO)
O o
(Pgll)

Figure 19: Detection of misbehavior can be per-
formed by observing incoming and outgoing routes.
Here, the arrows indicate direction of possible paths
to destination.

usage of Precedence, nor by the presence of misconfigura-
tions (disputes) in the network.

8. DISCUSSION

A major question that naturally arises when considering
entities that act independently to maximize profits is that
of misbehavior. In this section we discuss the detection of
misbehavior, as well as the additional modifications to the
protocol required in order to remove the constraint where
an AS is represented by a single node.

8.1 Misbehavior

Since the global precedence metric can in general restrict
the autonomy of an AS, there may be incentives for not ad-
hering to the general rule. We discuss various ways whereby
ASes can misbehave, and detection methods that rely on
the ability to observe the incoming and outgoing routes.
Clearly, one type of misbehavior is the selection of an avail-
able route with the highest local precedence regardless of its
global value. We describe several scenarios using Figure 19,
focusing on the routes advertised from A.

(P2:0) : there is definite misconduct, since the outgoing
route’s global precedence is less than its incoming’s. This is
true even if A filters P;:0.

(P2:1) : there is no misconduct only if A permanently fil-
ters route P;:0. In this case, route P»:1 is the only incoming
route and therefore also the most locally preferred. Thus,
the outgoing route’s global precedence is not incremented.

(P.:v) : where v>2 for z=1 and x=2. In this case, node
A is artificially increasing the outgoing precedence value.
This has the effect of not allowing upstream ASes to select
a route traversing this AS. While some may construe this
as misbehavior, it may be used as a means of indicating
that certain links are used as backup. For instance, the
destination node can advertise a global precedence value of
1 on backup links, and 0 on normal links.

(a.i) ° (auii) o (a.iii) o
o, Y ©
)

oL
& Wwo. WO o
(bi) T (b.iil)

oN /®»®\ /@ »

()

P N

Figure 20: (a) For disputes with odd numbers of
nodes, M eventually lacks a route if it initially filters
the spoke one. (b) For disputes with even numbers
of nodes, M does not destabilize the network.

From this simple example, we can determine that an AS is
misbehaving if one of these two conditions are satisfied: (1)
an outgoing route has a global precedence value that is less
than its corresponding incoming route, or (2) an outgoing
route has a global precedence value that is greater than its
corresponding incoming route by more than one.

8.2 Adaptive Filtering

Misbehavior that is more difficult to detect involves adap-
tive filtering. Let M be the node representing a misbehav-
ing AS. Clearly, if M is always filtering its spoke path, it
will never become a pivot node, and thus cannot influence
the convergence process. However, M involved in a dispute
can initially accept routes from neighbors along the spoke
and rim. When routing stabilizes and the precedence met-
ric forces selection of the spoke path, M can subsequently
decide to effectively filter that in order to select the locally
preferred path along the rim.

Two scenarios can occur as illustrated in Figure 20. In
part (a), the total number of pivot nodes in dispute is an
odd number. The selection of a next hop that is more locally
preferred but having a higher global precedence value even-
tually results in M not having a valid route. Subsequent
removal of the filter causes the system to oscillate again.

In part (b), an even number of pivot nodes can cause the
system to settle in a stable state even if M misbehaves. In
this case, M is able to use the path it locally prefers.

In general it is difficult to determine the number of pivot
nodes in dispute, and thus also if the implementation of
adaptive filtering in M can result in oscillations (which ulti-
mately does not benefit M). To provide better control of the
situation, we next propose a method to detect the various
types of misbehaviors discussed above.

8.3 Misbehavior Detection

Most ASes are comprised of multiple routers and thus the
usual assumption that an AS can be modeled by a single
router does not hold. For instance, in Figure 21(i), router
A selects, as it should, the less preferred route (Rp:0) and
advertises (ARo:1) to B, which then chooses (R2:1). If we
logically collapse A and B into a single node and aggregate
their inputs, we see that even though the routers are behav-
ing correctly, the output should have been (...Rg:1) instead.

We propose a slight tweak to the protocol only within an
AS: when an ingress router (i.e. A in the example) adver-
tises a route to an internal peer, it appends the route’s global



(1) B’s history table A’s history table
[Rgtl] [Rll]
[ARol] [RUO]

[BRy:1]

o @ [ARp:1] @ [Ro:0]

[a1] | jiru

(11) B’s history table A’s history table
[Rz:l] [Rll]
[AR:0,1] [Ro:0]

_ @ [R0:0]

‘[Rl:l]

[BARy:1] O [ARy:0,1]
>\ B

[R2:1] *

Figure 21: Tagging routes with both ingress and
egress precedence values causes a multiple-router
AS’ behavior to be similar to that of a single router.

precedence when received (the ingress value) and after up-
dates (the egress value). Upon reception of that route, B
uses the ingress value to determine the selected route. The
egress value is then updated, and is lower-bounded by the
previous egress value. Advertisements to neighboring ASes
carry only the egress value. Figure 21(ii) shows the same
network with the tweaked protocol. Here, correct behav-
ior will cause A to advertise (ARy:0), and B to advertise
(BARy:1). On the other hand, if A misbehaves and selects
(R1:1), the output will clearly be incorrect.

With the slightly modified protocol, the conditions de-
scribed in §8.1 can be used to detect the occurrence of adap-
tive filtering. For a dispute to occur, a less preferred route
(say Rip) must have been advertised before the more pre-
ferred one is selected. Thus, R;, must have been observed
before, but not thereafter. A monitoring mechanism can
be designed based on this as follows: we detect routes that
should have been selected but aren’t. These are then hashed
and stored. Since the monitor is maintained by a third-
party, hashing of the inputs provide anonymity. Output of
any of the stored routes in the future signals reuse of those
routes, and therefore adaptive filtering.

9. CONCLUSION

This paper tries to reconcile two desirable, but seemingly
incompatible, goals. On the one hand, it is a business reality
that ASes would like to set policies according to their own
specialized needs — whether these arise out of business, or
traffic engineering, or other concerns — and they would like
to keep these policies private. On the other hand, every AS
would like to have a stable Internet, where routes didn’t os-
cillate. Unfortunately, recent theoretical results make clear
that to ensure a priori, without knowing the policies be-
forehand or relying on assumptions about the structure of
business relationships, that routing will be stable, ASes must
be deprived of essentially all policy autonomy. In this pa-
per we no longer require an a priori guarantee, but instead
seek to remove policy-induced oscillations when they arise.
This allows us to preserve policy freedom when possible, and
impose stability when required.

10. REFERENCES

[1] J. A. Cobb, M. G. Gouda, and R. Musunuri. A
Stabilizing Solution to the Stable Paths Problem. In
Sympostum on Self-Stabilizing Systems,
Springer-Verlag LNCS, pages 169-183. ACM Press,
2003.

[2] N. Feamster, R. Johari, and H. Balakrishnan.
Implications of Autonomy for the Expressiveness of
Policy Routing. In SIGCOMM ’05: Proceedings of the
2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, New York, NY, USA, 2005. ACM
Press.

[3] L. Gao. On inferring autonomous system relationships
in the internet. IEEE/ACM Trans. Netw.,
9(6):733-745, 2001.

[4] L. Gao, T. G. Griffin, and J. Rexford. Inherently Safe
Backup Routing with BGP. In Proceedings of IEEE
INFOCOM 2001. IEEE Computer Society, IEEE
Press, April 2001.

[5] L. Gao and J. Rexford. Stable Internet Routing
Without Global Coordination. IEEE/ACM
Transactions on Networking, 9(6):681-692, 2001.

[6] T. Griffin and G. T. Wilfong. Analysis of the MED
Oscillation Problem in BGP. In ICNP "02:
Proceedings of the 10th IEEE International
Conference on Network Protocols, pages 90-99,
Washington, DC, USA, 2002. IEEE Computer Society.

[7] T. G. Griffin, A. D. Jaggard, and V. Ramachandran.
Design Principles of Policy Languages for Path Vector
Protocols. In SIGCOMM ’03: Proceedings of the 2008
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, pages 61-72, New York, NY, USA,
2003. ACM Press.

[8] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The
Stable Paths Problem and Interdomain Routing.
ACM/IEEE Transactions on Networking,
10(2):232-243, April 2002.

[9] T. G. Griffin and G. Wilfong. A Safe Path Vector
Protocol. In Proceedings of IEEE INFOCOM 2000.
IEEE Communications Society, IEEE Press, March
2000.

[10] A. D. Jaggard and V. Ramachandran. Robustness of
Class-Based Path-Vector Systems. In Proceedings of
ICNP’04, pages 84-93. IEEE Computer Society, IEEE
Press, October 2004.

[11] A. D. Jaggard and V. Ramachandran. Robust
Path-Vector Routing Despite Inconsistent Route
Preferences. In Proceedings of ICNP’06. IEEE
Computer Society, IEEE Press, November 2006.

[12] Y. Rekhter, T. Li, and e. Susan Hares. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, January
2006.

[13] University of Oregon RouteViews Project.
http://www.routeviews.org.

[14] J. L. Sobrinho. An Algebraic Theory of Dynamic
Network Routing. ACM/IEEE Transactions on
Networking, 13(5):1160-1173, October 2005.

[15] L. Subramanian, S. Agarwal, J. Rexford, and R. H.
Katz. Characterizing the internet hierarchy from
multiple vantage points. In Proc. of IEEE INFOCOM
2002, New York, NY, Jun 2002.

[16] H. Tangmunarunkit, R. Govindan, S. Shenker, and
D. Estrin. The impact of routing policy on internet
paths. In Proc. of IEEE INFOCOM 2001, Anchorage,
AK, Apr 2001.

[17] K. Varadhan, R. Govindan, and D. Estrin. Persistent
Route Oscillations in Inter-domain Routing. Computer
Networks, 32(1):1-16, March 2000.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


