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Abstract. This paper presents a general graph-theoretic technique for
simultaneously segmenting multiple closed surfaces in volumetric im-
ages, which employs a novel graph-construction scheme based on tri-
angulated surface meshes obtained from a topological presegmentation.
The method utilizes an efficient graph-cut algorithm that guarantees
global optimality of the solution under given cost functions and geomet-
ric constraints. The method’s applicability to difficult biomedical image
analysis problems was demonstrated in a case study of co-segmenting
the bone and cartilage surfaces in 3-D magnetic resonance (MR) im-
ages of human ankles. The results of our automated segmentation were
validated against manual tracings in 55 randomly selected image slices.
Highly accurate segmentation results were obtained, with signed surface
positioning errors for the bone and cartilage surfaces being 0.02±0.11mm
and 0.17 ± 0.12mm, respectively.

1 Introduction

Optimal segmentation of surfaces representing object boundaries in volumetric
datasets is important and challenging for many medical image analysis appli-
cations. Recently, we proposed an efficient algorithm for d-D (d ≥ 3) optimal
hyper-surface detection with hard smoothness constraints, making globally op-
timal surface segmentation in volumetric images practical [1, 2]. By modeling
the problem with a geometric graph, the method transforms the segmentation
problem into computing the minimum s-t graph cut that is well-studied in graph
theory, and makes the problem solvable in a low-order polynomial time. The so-
lution is guaranteed to be globally optimal in the considered region by theoretical
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(a) Coronal view (b) Sagittal view

Fig. 1. Two sample slices of a 3-D MR image of human ankle

proofs [1]. We have also developed a multi-surface segmentation algorithm [3].
However, these methods were both limited to segmenting height-field or cylin-
drical surfaces in regular grids.

In this paper, we present a non-trivial extension of our previous work. We
focus on the problem of segmenting optimal multiple closed surfaces in 3-D. The
new method for multiple surfaces segmentation is motivated by the need to
accurately segment cartilage layers in diseased joints. In this application, the ar-
ticular cartilage and corresponding subchondral bone surfaces can be imaged by
3-D high-resolution MRI (Fig. 1). However, no segmentation method exists that
would allow a rapid, accurate, and reproducible segmentation for quantitative
evaluation of articular cartilage.

The main contribution of our work is that it extends the optimal graph-
searching techniques to closed surfaces, while the backbone of our approach –
graph-cuts – is radically different from traditional graph searching. Consequently,
many existing problems that were tackled using graph-searching in a slice-by-
slice manner can be migrated to our new framework with little or no change to
the underlying objective function formulation.

2 Methods

The proposed method allows segmenting multiple inter-related surfaces in vol-
umetric images and facilitates subsequent quantitative analysis. We will utilize
the bone–cartilage segmentation task to help make the method description intu-
itively clear. The general strategy of our method is to achieve the final segmen-
tation in two stages. The initial stage provides approximate segmentation of the
three-dimensional object (in our case, of the bone), and the final segmentation
is achieved by accurate and simultaneous segmentation of its multiple surfaces
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of interest. The outputs of the algorithm are triangulated meshes that are ready
for visualization and quantitative measurement.

The method consists of the following three main steps:

1. Bone surface presegmentation. A level set based algorithm is used. Start-
ing from several seed-spheres, the method uses the image-derived edge and
regional information to evolve a smooth surface toward the bone bound-
ary. The presegmented surface serves as an initialization to the subsequent
segmentation.

2. Mesh generation and optimization. The presegmentation results in an im-
plicit surface that is the zero level set of a 4-D function embedded in a
volumetric digital grid. An isosurfacing algorithm (e.g., marching cubes) is
used to convert the implicit surface into an explicit triangulated mesh. The
mesh is optimized by removing or merging isolated and redundant triangles.
The resolution of the mesh can be increased or decreased using progressive
level of detail approaches when necessary.

3. Co-segmentation of the cartilage and bone surfaces. The mesh generated by
the second step is used to initialize a graph in a narrow-band around the
presegmented bone surface. A novel multi-surfaces graph search algorithm is
used to simultaneously obtain the precise positions of the bone and cartilage
surfaces based on two cost functions separately designed for the two surfaces
while considering specific geometric constraints.

Since the mesh manipulation step involves largely standard techniques in
graphics, only the first and third steps are described in detail.

2.1 Bone Surface Presegmentation

The presegmentation algorithm is based on the MetaMorphs deformable shape
and texture model presented in [4]. The method provides a unified gradient-
descent framework for modeling both the boundary and texture information in
an image, and is relatively efficient in computation.

Let Ω denote the image domain, and ∂Ω be the surface represented by the
model, which is the zero level set of a signed distance function φ. φ is positive
in the model interior, denoted Ω+. Instead of directly evolving the function φ,
the deformation of the surface is controlled by a set of uniformly-spaced control
points artificially embedded in the image domain. The motion of the control
points is computed using image-derived information. The deformation at any
voxel location can then be derived using the cubic B-spline based Free Form
Deformation (FFD). As such, the level set function φ can be updated using a
geometric transformation of itself at each descent step. The motion of the control
points is determined by minimizing the weighted combination of two edge-based
cost terms and two region-based cost terms. For more detail of the cost terms
and the model evolution, we refer to reader to [4].

Particularly, in [4], the authors suggested a Gaussian kernel-based nonpara-
metric approach for modeling image pixel (voxel) intensity distributions. This
approach, however, is computationally expensive in 3-D. Considering our
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application domain and taking advantage of the physical properties of the MR
images, voxel intensities in the bone region are approximated by a Rayleigh
distribution:

P (I|b) =
Ie−I2/2b2

b2
, I ≥ 0, b > 0 (1)

with I being the pixel intensity. This distribution has only one free parameter
b, which is estimated using the sample mean µ of voxel intensities inside the
initializing spheres, as:

b = µ

√

2

π
(2)

2.2 Simultaneous Segmentation of Cartilage and Bone Surfaces

After the bone surface is presegmented and converted into a triangulated mesh,
a novel graph-based algorithm is applied to co-optimize the cartilage and bone
surfaces. Note that anatomically, the cartilage only covers certain parts of the
bone surface. To simplify the problem, we assume the cartilage extends the full
surface area of the bone. However, in some areas the “cartilage” surface merges
with the bone, so that the cartilage thickness is effectively zero in those areas.

Preliminaries. A triangulated mesh consists of a set of vertices connected by
edges. We use M(V, E) to denote a mesh with vertex set V and edge set E . Two
vertices are said to be adjacent if they are connected by an edge. Each vertex
has an associated surface normal, which is perpendicular to the surface that the
mesh represents at the vertex.

A graph G(N ,A) is a structure that consists of a set of nodes N and a set
of arcs A. The arc connecting two nodes n1 and n2 is denoted by 〈n1, n2〉. For
undirected arcs, the notations 〈n1, n2〉 and 〈n2, n1〉 are considered equivalent.
For a directed arc, they are considered distinct. The former one denotes the arc
from n1 to n2, and the latter one from n2 to n1. In addition, a geometric graph
is a graph whose nodes have certain geometric positions in space.

Graph Construction. Since the bone and cartilage surfaces are to be seg-
mented simultaneously, two spatially-coincident columns of equidistant nodes
are constructed along the normal at each vertex of the triangular mesh obtained
from the presegmentation (Fig. 2). The number of nodes in each column is de-
termined by the required resolution, and the extent of each column depends on
the width of the region where the cartilage and bone surfaces are expected –
a narrow-band around the presegmented surface. A set of arcs is carefully con-
structed between the nodes to ensure the geometric constraints, including the
smoothness constraint, which controls the stiffness of the output surfaces, and
the surface separation constraint, which defines the relative positioning and the
distance range of the two surfaces.

Suppose there are N vertices on the mesh, and let vi be one of them (i ∈
{0, . . . , N − 1}). The two columns of nodes constructed along the normal at
vi are denoted by K0(vi) ≡ {n0

0i, . . . , n
K−1
0i } and K1(vi) ≡ {n0

1i, . . . , n
K−1
1i },
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Fig. 2. Graph construction

respectively, where K is the number of nodes in each column. The collection of
columns

⋃

Ks(vi) with s = 0, 1 and i = 1, . . . , N − 1 constitutes the node set N .
Next, assuming that each column K0(vi) intersects with the bone surface at

exactly one node, denoted n∗
0i, and each column K1(vi) intersects with the car-

tilage surface at exactly one node n∗
1i, the collections of nodes N ∗

0 ≡ {n∗
0i : i =

0, . . . , N − 1} and N ∗
1 ≡ {n∗

1i : i = 0, . . . , N − 1} will represent discretizations
of the bone surface and the cartilage surface, respectively. In this way, the seg-
mentation problem is converted to a graph search problem, in which the node
sets N ∗

0 and N 1
1 are to be identified.

Apparently, the choices of N ∗
0 and N ∗

1 are not arbitrary. Cost values are
assigned to the graph nodes according to two cost functions constructed specif-
ically for the bone and cartilage surfaces. N ∗

0 and N ∗
1 will correspond to the

set of nodes with the minimum total cost in the graph. Furthermore, several
constraints are imposed on the geometric relations of the nodes in N ∗

0 and N ∗
1 .

These constraints are enforced by the graph arcs, constructed as follow.

– Intra-column arcs Aa: Along each column Ks(vi), every node nk
si has a di-

rected arc to the node nk−1
si , i.e.,

Aa = {〈nk
si, n

k−1
si 〉 : k = 1, . . . ,K − 1;∀i, s} (3)

– Inter-column arcs Ar: The inter-column arcs encode the smoothness con-
straint, which is imposed between each pair of adjacent columns. Two columns
Ks(vi) and Ks(vj) (s ∈ {0, 1}, i 6= j) are said to be adjacent if the two ver-
tices vi and vj are adjacent on the mesh. Suppose one of the sought surfaces

intersects with two adjacent columns Ks(vi) and Ks(vj) at nodes nki

si and

n
kj

sj , respectively. If the surface is smooth, ki and kj should not differ too
much. The smoothness constraint ∆ defines the maximum allowed difference
between ki and kj , i.e., ∆ = max |ki−kj |. Smaller ∆ forces the surface to be
smoother. To encode the smoothness constraint in the graph, the following
directed arcs are constructed:

Ar = {〈nk
si, n

max(0,k−∆)
sj 〉 : ∀s, k; vi, vj adjacent} (4)
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– Inter-surface arcs As: These arcs model the separation constraint between
the two surfaces. Suppose the bone and cartilage surfaces intersect K0(vi)
and K1(vi) at nodes nk0

0i and nk1

1i , respectively. Because the thickness of the

cartilage is within some known range, nk0

0i and nk1

1i are at least δl, and at
most δu nodes apart, i.e., δl ≤ k1 − k0 ≤ δu. The inter-surface arcs are
constructed between columns K0(vi) and K1(vi) for all vi ∈ V as:

As = {〈nk
1i, n

max(0,k−δu)
0i 〉, 〈nk

0i, n
min(K−1,k+δl)
1i 〉 : ∀i, k} (5)

For more than two surfaces, the separation constraint is specified pairwisely.

Cost Functions. The cost functions are crucial for accurate surface localiza-
tion. For this pilot study, relatively simple cost functions are used. Specifically,
the cost function for the bone surface, Cbone, is the negated gradient magnitude
of the Gaussian-smoothed image G,

Cbone = −|∇G| ≡ −
√

G2
x + G2

y + G2
z (6)

where Gx ≡ ∂
∂xG, Gy ≡ ∂

∂y G and Gz ≡ ∂
∂z G are partial derivatives of the

image. The cost function for the cartilage surface is computed as a weighted
combination of the response of a 3-D “sheet filter” [5] and the directional image
gradients. The sheet filter is formulated using the Hessian matrix ∇2G of the
image intensity. Let the eigenvalues of ∇2G be λ0, λ1 and λ2, (λ0 ≥ λ1 ≥ λ2).
The sheet filter is defined as:

Fsheet(G) =

{

|λ2| · ω(λ1, λ2) · ω(λ0, λ2), λ2 < 0,
0, otherwise.

(7)

The function ω is given by:

ω(λa, λb) =











(1 + λa

|λb|
)γ , λb ≤ λa ≤ 0,

(1 − α λa

|λb|
)γ ,

|λb|
α > λa > 0,

0, otherwise,

(8)

where α, γ are parameters. In our experiments, we chose α = 0.25 and γ = 0.5.
In summary, the cost function for cartilage surface is computed as:

Ccartilage =

{

−Fsheet(−G) − τxGx, if Gx > 0,
−Fsheet(−G) otherwise,

(9)

where the value of τx is chosen to be 1.0 in our experiments.
The above cost functions are computed in the image domain. The node costs

are assigned using spatial interpolation based on the positions of the nodes.
Specifically, the costs of nodes nk

0i are assigned according to Cbone, and the costs
of nodes nk

1i are computed from Ccartilage.
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Optimization. Once the graph is constructed and the node costs assigned, we
can use the same technique described in [3] to transform the graph into an s-t
graph Gst that has a source node s and a sink node t, and apply a minimum s-t
cut algorithm to compute the optimal surfaces. The final surfaces will correspond
to the upper envelope of the set of nodes that can be reached from s in Gst, i.e.,
the source set of Gst.

3 Case Study

Osteoarthritis and articular cartilage injuries are very common – one in six
people in the USA is affected by some form of arthritis. The socio-economic
impact of degenerative joint diseases is massive, with an estimated annual cost
of $65 billion in the USA during the 1990’s. As such, there is a huge research
interest in the field of chondro-protective and chondro-restorative treatments.

The proposed method allows segmenting the articular cartilage surface and
the corresponding subchondral bone surface in volumetric MRI images that fa-
cilitates subsequent quantitative analysis. The segmentation is initiated by a
few (normally 3 or less) roughly-placed seed points in the bone region, but is
otherwise fully automated.

Data. The method was tested in 8 high-resolution 3-D MR data sets of human
ankles. The images were acquired using a 1.5T MR scanner, with in plane res-
olution 0.3 × 0.3 mm2 and slice thickness 0.3 mm. The acquisition time was 17
minutes and 14 seconds. Overall, each MR image data set consisted of approxi-
mately 512 × 512 × 150 voxels.

Independent Standard. In the 8 MR images, 55 coronal or sagittal slices
were randomly selected to be manually traced by an expert observer (ortho-
pedic surgeon) and formed the independent standard. The selection of coronal
as well as sagittal slices allows assessing the performance of the inherently 3-D
segmentation method using 2-D manual tracings.

Comparisons with the Independent Standard. Computer segmentation of
the talus bone and the cartilage surfaces was performed in 3-D. Consequently,
the segmented surfaces were available for the entire closed 3-D object. The au-
tomated segmentation method locally failed in 5 of the 55 image slices for which
independent standard was available due to local pre-segmentation errors. The
segmentation accuracy was assessed in the 50 image slices by computing signed,
unsigned, and RMS surface positioning errors. The positioning errors were de-
fined as the shortest distances between the manually traced borders and the
computer-determined surfaces in the coronal and sagittal MR slices for which
the independent standard was available. The errors are reported on a per-slice
basis as mean ± standard deviation.

Reproducibility. To assess the reproducibility of cartilage segmentation, the
method was independently initialized 5 times and the mean and maximum car-
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(a) Presegmented talus surface

(b) Segmented talus and cartilage

Fig. 3. Presegmentation and segmentation. Cartilage surfaces are color-coded, with
darker shadings depicting thicker cartilage
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tilage thicknesses were determined for each of the 8 talus cartilages. The repro-
ducibility was assessed by calculating mean ± standard deviation of differences
between the average values obtained in the 5 reproducibility runs and the indi-
vidual results.

Results. All experiments were performed on a workstation with dual 3.0GHz
processors and 4GB of RAM. For each data set, we used 3 seed-spheres inside the

Table 1. Overall surface positioning accuracy

Signed Error (mm) Unsigned Error (mm) RMS Error (mm)

Bone 0.02 ± 0.11 0.25 ± 0.08 0.03 ± 0.01
Cartilage 0.17 ± 0.12 0.39 ± 0.09 0.04 ± 0.01

(a) Computer (b) Manual

(c) Computer (d) Manual

Fig. 4. Comparison of computer and manual segmentations
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Fig. 5. Bland-Altman plots of cartilage thickness reproducibility

bone region to initialize the presegmentation. To reduce running time, the regions
containing the talus bones were cropped from the original MR images to form
smaller images of approximately 250×250×150 voxels each. The presegmentation
was performed on 2-times downsampled copies of the cropped images, while the
final segmentation was performed on the original full-resolution images.

The parameters used for final segmentations were K = 30, δl = 0, δu = 12
and ∆ = 1. For each data set, the average execution times of the presegmentation
and segmentation stages were about 200 seconds and 70 seconds, respectively.
The overall surface positioning errors of the computer-segmented talus bone and
its cartilage surfaces are shown in Table 1. Examples of computer-segmented
and manually-traced bone and cartilage contours are shown in Fig. 4.

The mean cartilage thickness measurements achieved a signed error of 0.08±
0.07mm, and an unsigned error of 0.09 ± 0.06mm. The corresponding measure-
ments of maximum cartilage thicknesses have signed and unsigned errors of
0.01 ± 0.19mm and 0.16 ± 0.10mm, respectively. All border positioning errors
show subvoxel accuracy (voxel size 0.3 × 0.3 × 0.3 mm3).

In the reproducibility experiment, the initializing spheres were modified from
the original settings by adding up to 10% of random perturbations to their radii
and 2 to 5 voxels of random translations to each coordinate of their positions.
The Bland-Altman plots of the signed differences between each individual mea-
surement and the average measurements are shown in Fig. 5 demonstrating that
repeated measurement of cartilage thickness is unbiased and reproducible.

4 Discussion and Conclusion

Traditional techniques such as manual segmentation and gradient based edge
detection are not suitable for automated, accurate, reproducible detection of
the cartilage and subchondral bone surfaces in thin congruent cartilage layers.
The objective of this study was to provide a proof of concept that the cartilage
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and subchondral bone surfaces can be accurately detected simultaneously in
3-D, using a novel segmentation method, and perform its pilot validation in
comparison with an independent standard.

Properties of the Method. The graph-based segmentations utilized hard ge-
ometric constraints, which are intuitive and easily controllable. The definition of
the smoothness constraint, however, requires that the edges in the surface mesh
be as equidistant as possible. This could be achieved by using sophisticated mesh
optimization algorithms. An alternative and simpler way is to make the smooth-
ness constraint vary between graph columns by modulating it according to the
corresponding edge length. When the mesh is dense enough, however, the effect
of unequal edge length could be ignored for our application. Therefore, neither
approach was used in the reported experiments. A drawback of the presented
graph-search approach is its dependence on presegmentation, which is crucial for
obtaining good final results. However, a one-shot approach using either numerical
or discrete mathematical tools alone could be difficult to design, computationally
inefficient and may not yield a satisfactory outcome. In addition, its reliance on
surface normals makes the method suffer from surface self-intersections. How-
ever, this problem is avoidable by detecting spatially intersecting node columns
and pruning the affected nodes during the graph-construction.

The employed presegmentation method uses free form deformation, with
which one can use large step size for surface evolution. Moreover, in practice,
the number of control points required for the FFD is usually much fewer than
the number of image voxels. These make the method computationally efficient.

Overall, the method was shown to be highly reproducible in our experiments.
However, the initialization of the presegmentation is quite strategic. As a rule of
thumb, the seed-spheres should be roughly centered at the maxima of the “shape
image” in the bone interior. Automatic initialization methods can be designed
following this strategy.

Cartilage Segmentation. A variety of 2-D image segmentation techniques
have been utilized on articular cartilage images in the past, including manual
segmentation, seed point and region growing algorithms, fully automated 2-D
shape recognition, interpolated B-splines, B-spline snakes, and directional gra-
dient vector flow snakes [6,7,8]. All of these techniques have limitations as they
require an accurate initialization. Manual surface segmentation is both labor
intensive and prone to error and is influenced by subjective judgment of the
operator leading to inter-observer variability. Moreover, the accuracy and repro-
ducibility of existing fully automated and semi-automated algorithms in noisy
images of cartilage layers are often suboptimal. This poses particular problems
in thin highly congruent, curved cartilage layers, which require subvoxel mea-
surement accuracy. Previous studies utilizing computer-assisted techniques suffer
from measurement errors of up to 100% or exclude large areas of the joint sur-
face. As a result there has been a return to manual segmentation techniques
with the focus being on the development of time saving devices such as touch
screen interactive segmentation. The reported 3-D approach addresses a number
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of the existing challenges and carries a substantial promise for the future utility
of automated quantitative analysis of cartilage in 3-D.

Conclusion. A novel method for simultaneously segmenting multiple closed
surfaces was demonstrated. The method utilizes an efficient graph-based algo-
rithm that produces optimal solutions according to certain cost functions and
geometric constraints. The proposed method achieved highly accurate results in
segmenting cartilage and bone surfaces in MR images of human ankles. Although
this paper concentrated on closed surfaces, the presented method can segment
surfaces of other topologies according to different initializing meshes.
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