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Abstract— Efficient detection of globally optimal surfaces rep-
resenting object boundaries in volumetric datasets is impor-
tant and remains challenging in many medical image analysis
applications. We have developed an optimal surface detection
method that is capable of simultaneously detecting multiple
interacting surfaces, in which the optimality is controlled by
the cost functions designed for individual surfaces and several
geometric constraints defining the surface smoothness and in-
terrelations. The method solves the surface detection problems
by transforming them into computing minimum s-t cuts in the
derived edge-weighted directed graphs. The proposed algorithm
has low-order polynomial complexity and is computationally
efficient. The method has been validated on over 100 computer
generated volumetric images and 96 CT-scanned datasets of
different-sized plexiglas tubes, yielding highly accurate results
(mean signed error of the measured inner- and outer-diameters
of the plexiglas tubes was0.21 ± 3.20%). Our approach can be
readily extended to higher dimensional image segmentation.

I. I NTRODUCTION

The task of identifying globally optimal three-dimensional
surfaces representing object boundaries is important in au-
tomated segmentation of volumetric medical images. Many
computer methods have been developed for optimal segmenta-
tion of 2-D medical image data. 2-D edge-based segmentation
utilizing graph-searching principles has become one of the
best understood and most utilized medical image segmentation
tools. However, previous attempts [1]–[3] for extending the
graph-based segmentation methods to higher dimensions had
either made them computationally intractable or traded their
ability to achieve global optimums for efficiency.

Recently, Wu and Chen introduced a method ford-D (d ≥
3) optimal hypersurface detection that made true optimal sur-
face segmentation in volumetric images practical [4], [5].By
modeling the problem as a directed geometric hypergraph, the
method transformed the segmentation problem into computing
the minimums-t cut of a graph, which simplifies the problem
and consequently solves it in polynomial time.

While the single optimal surface detection can be modeled
by a 3-D geometric hypergraph [4], our novel method attempts
to approach the simultaneous detection ofk (k ≥ 2) interacting
surfaces by modeling the problem in a 4-D geometric hyper-
graph, where the fourth dimension consists of a set of special
edges that model the interrelations between pairs of the desired

surfaces. We show that the apparently daunting consequence
of combinatorial explosion can be avoided by transforming the
problems into computing minimums-t cuts in similar ways as
in [4]. As an extension to the original single surface detection
algorithm, the new approach not only guarantees the optimality
quality of the output surfaces based on the cost functions used,
but is flexible and computationally efficient as well.

II. PROBLEM MODELING

A. Single Surface Detection

A volumetric dataset can be viewed as a 3-D matrix
I(x,y, z). Without loss of generality (WLOG), the desired
surface is considered terrain-like and oriented as shown in
Figure 1(a). LetX, Y andZ denote the image sizes inx, y

andz directions, respectively. A requirement is that the desired
surface intersects with exactly one voxel of eachcolumn
parallel to thez-axis. By defining a cost function, a cost
value is computed and associated with each voxelI(x, y, z)
of I, denotedc(x, y, z). Generally, the cost value is inversely
related to the likelihood that the desired surface would contain
the voxelI(x, y, z). An optimal surface is the one with the
minimum total sum of voxel costs among all feasible surfaces
that can be defined in the 3-D volume. The feasibility of a
surface is constrained by the application-specificsmoothness
parameters, ∆x and ∆y, guaranteeing surface continuity in
3-D. More precisely, IfI(x, y, z) andI(x + 1, y, z′) are two
voxels on a feasible surface, then|z − z′| ≤ ∆x. Likewise,
if I(x, y, z) andI(x, y + 1, z′) are two voxels on a feasible
surface, then|z − z′| ≤ ∆y.

A weighted directed graphG = (V,E) is constructed
according toI as follows. Every vertexV (x, y, z) ∈ V
represents one and only one voxelI(x, y, z) ∈ I, whose cost
w(x, y, z) is assigned according to:

w(x, y, z) =

{

c(x, y, z) if z = 0
c(x, y, z) − c(x, y, z − 1) if z > 0

(1)

For each(x, y) pair satisfying0 ≤ x < X and0 ≤ y < Y ,
the vertex subset{V (x, y, z) : 0 ≤ z < Z} is called the
(x, y)-column of G, denoted byCol(x, y). Along each column
Col(x, y), every vertexV (x, y, z) (z > 0) has a directed edge



(a) (b)

Fig. 1. The single surface detection problem. (a) The surfaceorientation.
(b) Two adjacent columns of the constructed directed geometric hypergraph.
Edges shown in dashed lines are optional.

to the vertexV (x, y, z−1), denoted by(V (x, y, z), V (x, y, z−
1)).

The smoothness constraints along thex- and y-directions
are enforced in the following way. WLOG, the 4-neighbor
adjacency is assumed. The construction described below can
be easily extended to other adjacency settings. Consider any
two adjacent columns,Col(x, y) andCol(x + 1, y) as shown
in Figure 1(b). Along thex-direction and for any0 ≤ x <
X − 1, a directed edge is constructed from each vertex
V (x, y, z) ∈ Col(x, y) (resp.,V (x + 1, y, z) ∈ Col(x + 1, y))
to vertexV (x + 1, y,max(0, z −∆x)) ∈ Col(x + 1, y) (resp.,
V (x, y,max(0, z−∆x)) ∈ Col(x, y)). The same construction
is done for they-direction.

Sometimes the target surfaceS is required to bewraparound
along thex- (or y-) direction. This is common when we
are to detect a cylindrical surface, which is required to be
unfolded to a terrain-like surface using cylindrical coordinate
transform [6] before applying our algorithm (or the traditional
graph-searching algorithms [1]–[3]). Then the first and last
rows along the unfolding plane should satisfy the smoothness
constraints as well. In thex-wraparound case, each vertex
V (0, y, z) (resp., V (X − 1, y, z)) also connects toV (X −
1, y,max(0, z − ∆x)) (resp.,V (0, y,max(0, z − ∆x))). The
same rule applies to they-wraparound case.

B. Multiple Surface Detection

In simultaneously detectingk (k ≥ 2) distinct but interre-
lated surfaces, the optimality is not only determined by the
inherent costs and smoothness properties of the individual
surfaces, but also confined by their interrelations.

If surface interactions are not considered, thek surfacesSi

can be detected ink separate 3-D digraphsGi = (Vi, Ei)
(i = 1, 2, . . . , k), each of which is constructed in the way
presented above. The vertex costs are computed utilizingk
cost functions (not necessarily distinct), each one of which
is used for the search of one surface. Taking the surface
interrelations into account, another edge setEs needs to be
constructed modeling these interrelations, forming a geometric
digraphG(V,E) in 4-D space withV =

⋃k

i=1
Vi and E =

⋃k

i=1
Ei ∪Es. Constructions ofEs andVs are detailed below.

Note that the surface interactions are specified by their
pairwise relations. For each pair of the surfaces, our approach

defines their relations using two parameters,δl ≥ 0 and
δu ≥ 0, representing the surfaceseparation constraints. The
ideas are illustrated by examples as follows.

In many practical problems, the surfaces are expected not
to intersect or overlap. For instance, the inner and outer tissue
walls should be non-crossing, and the distance between them
should be within some expected range in medical images.
Suppose that for the two surfacesS1 and S2 being detected,
the prior knowledge requiresS2 being belowS1. Let the
minimum distanceδl between them be 2 voxel units, and
the maximum distanceδu be 5 voxel units. Let the 3-D
graphs used for the search ofS1 and S2 be G1 and G2,
respectively, and letCol1(x, y) and Col2(x, y) denote two
corresponding columns inG1 andG2. For vertexV1(x, y, z)
in Col1(x, y) with z > δu, a directed edge inEs connecting
V1(x, y, z) to V2(x, y, z − δu) is constructed. While for each
vertex V2(x, y, z) with z < Z − δl, a directed edge inEs

connectingV2(x, y, z) to V1(x, y, z + δl) is introduced. This
construction is applied to every pair of corresponding columns
of G1 and G2. Due to the separation constraints, i.e.,S2

is at leastδl voxel units belowS1, each vertexV1(x, y, z)
with z < δl cannot be on surfaceS1. Otherwise, no vertex
in Col2(x, y) could be on surfaceS2. Likewise, each vertex
V2(x, y, z) with z ≥ Z − δl cannot belong to surfaceS2.
Hence, for each columnCol1(x, y) ∈ G1, it is safe to remove
all verticesV1(x, y, z) with z < δl and their incident edges in
E1. Meanwhile, we need to reassign a costc(x, y, δl) of voxel
I(x, y, δl) to vertex V1(x, y, δl) and add a directed edge in
Es connectingV1(x, y, δl) to V2(x, y, 0). Note then thezero-
plane (i.e., the set of vertices withz = 0) of G1 consists of
all verticesV1(x, y, z) with z = δl, which forms a feasible
surface inG1. To ensure that, a set of directed edges inEs is
introduced to make the zero-plane ofG1 strongly connected.
While for each columnCol2(x, y) ∈ G2, we safely eliminate
all verticesV2(x, y, z) with z ≥ Z − δl and their incident
edges inE2.

In other situations, we may allow the two interacting sur-
faces to cross each other. For these problems, instead of mod-
eling the minimum and maximum distances between them,δl

andδu specify the maximum distances that a surface can vary
below and above the other surface, respectively. Incorporating
this case in our example, every vertexV1(x, y, z) in G1 shall
connect toV2(x, y,max(0, z − δl)) in G2; and every vertex
V2(x, y, z) in G2 has an edge toV1(x, y,max(0, z − δu)) in
G1. A summary of all these cases is presented in Figure 2.

III. T HE ALGORITHM

The multiple surface detection problem is formulated as
computing a minimums-t cut in a graph constructed from
I. Our approach is inspired by Wu and Chen’s algorithms
for the optimal net surface problems [4]. However, instead of
searching for one surface, our algorithm concurrently identifies
k surfaces, which achieve optimality in a more general setting.
Furthermore, the time bound of our algorithm is independent
of both the smoothness parameters (i.e.,∆x and∆y) and the
surface separation parameters (i.e.,δl

i,i+1 and δu
i,i+1, with



(a) (b)

Fig. 2. Summary of surface interrelation modeling.S1 and S2 are two
desired surfaces.Col1(x, y) andCol2(x, y) are two corresponding columns
in the constructed graphs. Edges shown in dashed lines are optional. (a) The
non-crossing case. (b) The case with crossing allowed.

i ∈ {1, 2, . . . k− 1}). Note that, the multiple surface detection
problem could be infeasible, i.e., nok surfaces satisfying the
geometric constraints exist inI. The feasibility of the problem
is easy to determine. Thus, we assume in this section the
multiple-surface detection problem is feasible.

A. The Minimum Closed Set

In Section II, the construction of a weighted directed
graph G = (V,E) from the volumetric datasetI(x,y, z)
was described. The graphG consists ofk disjoint 3-D sub-
graphs{Gi = (Vi, Ei) : i = 1, 2, . . . , k}, each of which
is dedicated to searching for one surface. The separation
constraints between any two surfaces are enforced inG by
edges between the corresponding sub-graphs. Actually, the
goal of such a construction is to guarantee that:

1) Any feasiblek surfaces inI correspond to a non-empty
closed set inG with the same total cost.

2) Any non-empty closed set inG defines feasiblek
surfaces inI with the same total cost.

A closed set C in a directed graph is a set of vertices such
that all successors of any vertex inC are also contained inC
[7], [8]. The cost of a closed setC, denoted byw(C), is the
total cost of vertices inC. Note that the closed setC in a graph
can be empty (with a cost zero).

Recall the graph constructed in Section II. Note that in any
Gi, if Vi(x, y, z) is in a closed setC of G, then all vertices
“below” it on Coli(x, y) are inC. We denote the set of these
vertices byBz

i (x, y), i.e., Bz
i (x, y) = {Vi(x, y, z′) : z′ ≤ z}.

The cost ofBz
i (x, y) equals the cost of voxelI(x, y, z). In

general, we are able to prove the following lemma, showing
that computing the optimalk surfaces inI is equivalent to
finding a non-empty closed setC∗ of the minimum cost inG
(the proof is omitted due to the space limitation).

Lemma 1: A non-empty closed setC∗ of the minimum cost
in G specifies the optimalk surfaces inI.

However, if a closed setC∗ of the minimum cost (called
minimum closed set) in G is empty, C∗ gives little useful
information onG for defining the optimalk surfaces inI.
This problem can be easily solved by performing atranslation
operation onG as introduced in [4]. After the translation, we
can simply find a minimum closed setC∗ in G, andC∗ is a
minimum non-empty closed set inG before the translation.

Note that the directed edges connecting vertices not on the
zero-plane to the vertices on the zero-plane (shown in dashed
lines in Figure 1 (b) and Figure 2) are optional. The verticesof
Gi on the zero-plane form astrongly connected component, as
is ensured by the construction, and they are all included in any
non-empty closed set ofG. Therefore, removing these edges
does not affect any closed set inG. This gives rise to a very
interesting observation: the graph is actually getting simpler
(i.e., with less edges) as the smoothness constraints are relaxed
(i.e., ∆x and/or∆y become larger). This behavior is just the
opposite to the traditional graph-search based algorithmsfor
the problem.

B. Computing the Optimal k Surfaces

Based on Lemma 1, we need to compute a minimum-cost
non-empty closed setC∗ in G, which is a well studied problem
in graph theory. As in [4], [7], [8], we computeC∗ in G by
transforming it into computing a minimums-t cut in arelated
graphGst. Note that the graphGst hasO(kn) vertices and
O(kn) edges. Therefore, the minimum closed setC∗ in G can
be computed inT (kn, kn) time, hereinT (kn, kn) is the time
for finding a minimums-t cut in an edge-weighted directed
graph withO(kn) vertices andO(kn) edges.

The optimalk surfaces based onC∗ can be recovered in the
following way. For eachi (i = 1, 2, . . . , k), recall that the sub-
graphGi is used to search for the target surfaceSi. For every
0 ≤ x < X and 0 ≤ y < Y , let Bi(x, y) = C∗ ∩ Coli(x, y).
Denote byVi(x, y, z∗) the vertex inBi(x, y) with the largest
z-coordinate. Then, voxelI(x, y, z∗) is on the i-th optimal
surfaceS∗

i . In this way, the minimum closed setC∗ of G
defines the optimalk surfaces{S∗

1 , S∗

2 , . . . , S∗

k} in I.
To sum up, we have the following theorem.
Theorem 1: The optimal k surfaces in a 3-D image

I(x,y, z) with n voxels can be computed inT (kn, kn) time.
Finally, the outline of the algorithm is:
• Inputs:k, ∆x, ∆y, δl, δu and the cost function(s).
• ConstructG (=

⋃k

i=1
Gi) according to Section II.

• TransformG into Gst as mentioned above.
• Compute the minimums-t cut of Gst.
• Recover thek optimal surfaces.

IV. EXPERIMENTS

A. Data

To validate the correctness of the modeling techniques, we
tested our method on a set of computer-generated phantoms
of various sizes and surface positioning. Computer phantoms
contained two or more surfaces with variable shapes and
mutual positions, and the surfaces did not intersect. The
datasets were blurred and superimposed with slight Gaussian
noise to make the problem more realistic. Figures 3 and 4
provide examples of the utilized phantoms. Phantom sizes
ranged from16 × 16 × 16 to 256 × 256 × 256 voxels.

To design a surface detection cost function that would
be appropriate for CT image data, a physical phantom was
imaged by multi-detector CT and analyzed using our surface
detection method. The phantom contains six plexiglas tubes,



numbered 1 through 6, with nominal inner diameters of
1.98, 3.25, 6.40, 6.50, 9.50 and19.25 mm, respectively. The
corresponding outer diameters are4.45, 6.30, 9.70, 12.60,
15.60 and25.50 mm, respectively. The phantom was scanned
using Philips Mx8000 4-slice CT scanner with 3 different scan
settings (low dose, regular dose, andhigh dose). Under each
setting, the scans were taken at the 4 distinct angles of0◦,
5◦, 30◦, and 90◦, rotated in the coronal plane, resulting in
a total of 12 datasets for use in the validation. The regular
dose scanning was intentionally repeated, yielding another 4
datasets used for initial calibration of the cost functions. In all
cases, a resolution of0.39×0.39×0.6 mm3 was used, images
consisted of 200-250 slices,512 × 512 pixels each.

B. The Cost Functions

Designing a cost function is of paramount importance for
any graph based segmentation method. Simple cost functions
reflecting brightness of the sought surfaces were used in the
computer phantoms. In CT images, the cost function needs to
be edge based and needs to incorporate imaging properties of
the CT scanner as well as image properties of the surfaces.
Therefore, the cost functions used for CT image segmentation
utilized a combination of first and second derivatives of 2-
D gray-level images [9]. We designed an approach in which
plexiglas phantom tubes with known sizes were utilized for
cost function design as well as for segmentation accuracy
assessment. In the design stage, the known inner and outer
diameters of 6 phantom tubes in 4 data sets (24 phantom tubes
total) served as independent standard for constructing thecost
functions used for CT images. Using the cost functions for
the inner and outer borders, a different set of 12 scans of the
same phantom (72 tubes) was used for accuracy validation of
our method under different CT scanning conditions. The same
cost functions were employed for detection of inner and outer
airway wall surfaces in the pulmonary CT images.

C. Performance Indices

The performance of the method was tested in two ways.
First, running times were recorded and compared in 50
computer-generated phantoms of varying sizes to gain a basic
understanding of the speed/size relationships. All experiments
were conducted on an AMD Athlon MP 2000+ (1.67GHz)
Dual CPU workstation with 3.5 GB of memory running
Microsoft Windows XP. The running-times were measured
three times and the results were averaged.

Second, surface detection accuracy was determined in phys-
ical phantoms in comparison with the independent standard.
The comparison was conducted by measuring the minor and
major diameters,dma and dmi, of the segmented surfaces in
the middle1/3 of tube (about 40 slices), then computing the
mean± standard deviation of the percentage signed difference
between nominal diameters and average measured diameters
d̄ = (dma + dmi)/2.

D. Segmentation of Wall Surfaces of Plexiglas Tubes

The phantom tubes and in vivo airway walls were seg-
mented using the cost functions described above. The phantom

and airway tree segmentation procedures are identical in
principle. The segmentation process consisted of the follow-
ing steps: 1) topological pre-segmentation, yielding approx-
imate spatial locations of the tubes; 2) tube skeletonization;
3) 3-D image resampling following centerlines of the tubes;
4) tube wall segmentation (using the proposed algorithm), and
5) quantitative measurement.

V. RESULTS

A. Computer Phantoms

Many computer phantoms were analyzed in the early stages
of the algorithm development. As an example, results are
presented for phantoms with several surfaces embedded in
a volumetric image. The surface cross-sections are shown in
Figure 3(a). The image was generated so that the surfaces
consist of voxels of lower gray values compared to the
background. As shown, three separate surfaces are embedded
in the image. The lower two surfaces are smoother, while
the topmost surface is rough. When simultaneously searching
for 2 out of the 3 surfaces in the original image, the lowest
surface was fixed by setting the first cost-function to have low
magnitude only at the position of the lowest surface (Figure
3(a); the surface locking details are given in Section VI-A).
The second cost function yielded an identical magnitude at
all graph nodes of the middle and topmost surface positions
(Figure 3(c)). In this case, the resulting surface detection is
fully controlled by the smoothness constraints.

(a) (b) (c) (d) (e)

Fig. 3. Effect of intra-surface smoothness constraints. (a)Cross-section of
the original image. (b) The first cost image. (c) The second costimage. (d)
Results obtained with smoothness parameters∆x = ∆y = 1. (e) Results
obtained with smoothness parameters∆x = ∆y = 5.

The results are shown in Figures 3(d) and (e). In the first
case, the smoothness parameters∆x and ∆y were both set
to 1. The topmost surface apparently does not satisfy these
criteria and, as expected, the algorithm detected the middle
surface. In the second case, the smoothness parameters were
set so that both the middle and topmost surfaces satisfied the
constraints and had the same cost values. When this happens,
the algorithm will identify the surface closest to the zero-plane
(i.e., with z = 0). In this case, since the coordinate origin is
at the top-left corner, the resulting surface will be the topmost
surface.

Figure 4 shows the result of a triple-surface detection
experiment. The surfaces in the dataset are 10 voxels apart.
The algorithm was set to always identify the lowest surface
and select 2 out of the 3 surfaces above it, which was fully
controlled by the separation constraints.



(a) (b) (c) (d) (e)

Fig. 4. Effect of surface separation constraints. (a) Cross-section of the
original image. (b) The first cost image. (c) The second/third cost image. (d)
Results obtained with separation parametersδl

12
= 5, δu

12
= 15 and δl

13
=

16, δu

13
= 25. (d) Results obtained with separation parametersδl

12
= 5,

δu

12
= 15 andδl

13
= 26, δu

13
= 35.

B. Execution Times

The average execution times of our simultaneousk-surface
(k = 2, 3) detection algorithm on datasets of different sizes
are shown in Table I.

TABLE I

AVERAGE EXECUTION TIMES

Image Size k = 2 k = 3 Image Size k = 2 k = 3
40 × 40 × 40 1.2 1.7 100 × 100 × 40 16.2 22.3
60 × 60 × 40 3.3 4.8 140 × 140 × 40 85.8 96.1
80 × 80 × 40 6.1 9.4 200 × 200 × 40 376.1 401.3

As shown in Figure 5(a), the speed of our method relates
differently to the width and height of the image. Assuming
that the surface is oriented as shown in Figure 1, the width
refers to theX- or Y -size of the image, and the height refers
to theZ-size. The results indicate that the execution time has
an approximately linear relationship with the image height,
whereas its relationship with the image width is captured bya
low-order polynomial. The accompanying Figure 5(b) reveals
the same fact from a different angle.
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Fig. 5. Average execution times. (a) Triple-surface detection case. Curve
A corresponds to the testing sets of size64 × N × 64, and curves B is for
the testing sets of size64 × 64 × N , whereN varies from 40 to 300. (b)
Double-surface detection case. Testing sets are of sizesM × M × 40 and
M × M × 60, whereM varies from 20 to 200.

C. Accuracy Assessment in Physical Phantom Tubes

Errors of the computer segmented and measured diameters
are presented in Figure 6. The overall signed errors for the
inner and outer borders are1.27±4.08% and−0.85±1.23%,
respectively. In general, the cost functions, which were trained
on standard-dose CT images of phantoms, tend to overestimate
the inner diameters and underestimate the outer ones in high-
dose phantom CT images although the errors stay small.

1 2 3 4 5 6
−10

−5

0

5

10

Tube Number

P
er

ce
nt

ag
e 

E
rr

or
 (

%
)

Measured Inner Diameters

(a)

1 2 3 4 5 6

−2

0

2

Tube Number

P
er

ce
nt

ag
e 

E
rr

or
 (

%
)

Measured Outer Diameters

(b)

Fig. 6. Signed errors of inner- and outer-diameter measurements of the
plexiglas tubes. Horizontal axes represent the nominal diameters. Vertical axes
represent the signed percent error. Mean error± SD is shown for each sample.

VI. D ISCUSSION

A. Surface Locking

In the computer phantom experiments reported in Section V-
A, we mentioned that the algorithm was set to fix the position
of one surface. We refer to this behavior descriptively as
surface locking, which was achieved in those experiments by
manipulating the cost functions. Actually, with our algorithm,
there is another way to lock the positions of one or more
resulting surfaces or, more generally, force an arbitrarily
specified set of voxels to be part of the final result. This is
achieved by changing the graph construction itself: we can
make the(x, y)-columns containing the corresponding locked
vertices contain only those vertices, i.e., each of these columns
has only one vertex, which corresponds to one locked voxel.
Certainly, the smoothness constraints and surface separation
constraints must be satisfied.

B. Variable Geometric Constraints

In this paper, we have only considered homogeneous
smoothness and separation constraints, whose values remain
constant along each graph dimension. In fact, the proposed
algorithm allows variable geometric constraints as well, which
can be specified adaptively based on different image con-
text. This flexibility has certain practical implications.In
some problems, for instance, the surface smoothness and
interrelations may vary at different locations. The variable
geometric constraints can be incorporated into the algorithm
by rearrangements of the graph edges. As a result, the edges
will no longer be parallel as they are in the constant-constraint
case. For the variable-constraint setup to become practical, a
key problem must be solved and still remains challenging: how
to automatically adjust the geometric constraints as needed.
Some machine learning approaches may be applied, which
will be a future research topic.

C. Advantages and Limitations

The algorithm efficiently detects the globally optimal sur-
faces in the entire region-of-interest (ROI), enabling highly
accurate image segmentation that is an prerequisite of reliable
quantitative image analyses. Its ability to encode the interre-
lations of any number of surfaces is unprecedented.



Unlike the level set driven techniques [10], [11], the algo-
rithm cannot handle topology changes. An example of such a
limitation is the inability to directly segment branching tubular
structures. However, as pointed out in [12], topology flexibility
is not always desired. Another apparent limitation is that it
can only detect those surfaces that can be “unfolded” to be
terrain-like, including cylindrical or tubular surfaces,and this
unfolding process must be invertible. Closed surfaces, such as
spherical ones, are not subjects of our algorithm since there
is no perfectly invertible method to unfold them.

D. Implementation and Improvements

Since the segmentation problem has been transformed into
solving a minimums-t cut in directed geometric hypergraphs,
the performance of the approach crucially hinges on the min-
imum s-t cut algorithm being used. Our implementation used
the minimums-t cut algorithm reported in [13]. For other
implementation issues, we refer the reader to our earlier work
[5]. To enable real-time application, further improvements can
be made by adopting more sophisticated mins-t cut/max
flow algorithms (for example, see [14]). Another option is to
parallelize the algorithm. The multi-scale approach commonly
used in image processing provides yet another alternative to
speed up our method.

E. Application to In Vivo Medical Data

To demonstrate the utility of our method in quantitative
analysis of human pulmonary CT images, the algorithm was
incorporated into an automated system for pulmonary airway
segmentation [15], and applied to concurrently segmenting
the inner and outer wall surfaces of intrathoracic airways
imaged by multi-detector CT. The time for segmenting an
entire airway-tree (32 cylindrical segments) in a512× 512×
550 dataset was approximately 6 minutes. Preliminary results
revealed higher accuracy and 3-D consistency compared to the
traditional 2-D dynamic programming methods [5].

(a) (b)

Fig. 7. Segmented inner and outer walls of human pulmonary airways imaged
with multi-detector CT. (a) The transversal and sagittal cross-sections of an
airway segment. (b) 3-D view of the analyzed airway segment.

VII. C ONCLUSION

A polynomial-time algorithm for simultaneously detecting
multiple mutually related surfaces in volumetric images has

been developed and validated in computer generated and
physical phantom images. The method is efficient and robust.
The resulting surfaces are globally optimal with respect to
the employed objective functions. The surface smoothness and
separation parameters provide a flexible means for modeling
various inherent properties and interrelations of the desired
surfaces. The method is readily extensible to higher dimen-
sions.
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