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Abstract— Efficient detection of globally optimal surfaces rep- surfaces. We show that the apparently daunting consequence
resenting object boundaries in volumetric datasets is impor- of combinatorial explosion can be avoided by transformirgg t

tant and remains challenging in many medical image analysis |, oplems into computing minimum cuts in similar ways as
applications. We have developed an optimal surface detection .

method that is capable of simultaneously detecting multiple in [4]. As an extension to the original single surface deect

interacting surfaces, in which the optimality is controlled by algorithm, the new approach not only guarantees the ogtymal
the cost functions designed for individual surfaces and several quality of the output surfaces based on the cost functioad,us

geometric constraints defining the surface smoothness and in- put is flexible and computationally efficient as well.
terrelations. The method solves the surface detection problems

by transforming them into computing minimum s-¢ cuts in the Il. PROBLEM MODELING
derived edge-weighted directed graphs. The proposed algorithm .
has low-order polynomial complexity and is computationally A- Single Surface Detection

efficient. The method has been validated on over 100 computer A volumetric dataset can be viewed as a 3-D matrix
generated volumetric images and 96 CT-scanned datasets OfI(x y,z). Without loss of generality (WLOG), the desired

different-sized plexiglas tubes, yielding highly accurate results f . idered t in-lik d oriented h .
(mean signed error of the measured inner- and outer-diameters SUfface IS considered terrain-ike and oriented as shown in

of the plexiglas tubes was0.21 + 3.20%). Our approach can be Figure 1(a). LetX, Y and Z denote the image sizes ¥ y
readily extended to higher dimensional image segmentation. andz directions, respectively. A requirement is that the desire

surface intersects with exactly one voxel of eamiumn
parallel to thez-axis. By defining a cost function, a cost
The task of identifying globally optimal three-dimensibnayalue is computed and associated with each vaxel, y, z)
surfaces representing object boundaries is important in &4 7, denoted:(x, y, z). Generally, the cost value is inversely
tomated segmentation of volumetric medical images. Mamg|ated to the likelihood that the desired surface wouldaion
computer methods have been developed for optimal segmenfa- voxelZ(z,y, z). An optimal surface is the one with the
tion of 2-D medical image data. 2-D edge-based segmentati@fhimum total sum of voxel costs among all feasible surfaces
utilizing graph-searching principles has become one of tigat can be defined in the 3-D volume. The feasibility of a
best understood and most utilized medical image segmentatsyrface is constrained by the application-specfipothness
tools. However, previous attempts [1]{3] for extending thparameters, A, and A, guaranteeing surface continuity in
graph-based segmentation methods to higher dimensions Bad. More precisely, IfZ(x,y,z) andZ(z + 1,y,2’) are two
either made them Computationally intractable or tradedr th@oxe|s on a feasible surface, th¢.r|_ Z/‘ < A,. Likewise,

ability to achieve global optimums for efficiency. if Z(x,y,2) andZ(z,y + 1,2') are two voxels on a feasible
Recently, Wu and Chen introduced a methodddD (d >  surface, therz — 2/| < Ay.

3) optimal hypersurface detection that made true optimal sur A weighted directed graptG = (V,E) is constructed

face segmentation in volumetric images practical [4], BY. according toZ as follows. Every vertexV (z,y,z) € V

modeling the problem as a directed geometric hypergragh, {&presents one and only one vos&l:, y, z) € Z, whose cost
method transformed the segmentation problem into comgutip,(;:, 4/, =) is assigned according to:

the minimums-t cut of a graph, which simplifies the problem
and consequently solves it in polynomial time.

While the single optimal surface detection can be modeledw(z,y, z) = {
by a 3-D geometric hypergraph [4], our novel method attempts
to approach the simultaneous detectior ¢k > 2) interacting For each(zx, y) pair satisfyingd <z < X and0 <y <Y,
surfaces by modeling the problem in a 4-D geometric hypehe vertex subse{V(z,y,z) : 0 < z < Z} is called the
graph, where the fourth dimension consists of a set of sbedia, y)-column of G, denoted byC'ol(z, y). Along each column
edges that model the interrelations between pairs of theedies Col(z, y), every verteXV (x,y, z) (z > 0) has a directed edge

I. INTRODUCTION

c(x,y, 2) if 2=0

C(x7yﬂz)_c(xayvz_1) |f Z>0 (1)



Col(x+1,y) defines their relations using two parametefs, > 0 and
Col(x,y) §* > 0, representing the surfaceparation constraints. The
/i/ ideas are illustrated by examples as follows.

: : In many practical problems, the surfaces are expected not

Ax to intersect or overlap. For instance, the inner and owsué

: walls should be non-crossing, and the distance between them

should be within some expected range in medical images.

Suppose that for the two surfac€s and S, being detected,

(b) the prior knowledge require$, being below S;. Let the

Fig. 1. The single surface detection problem. (a) The surta@ntation. minimum distances’ between them be 2 voxel units, and

(b) Two adjacent columns of the constructed directed geombsgpergraph. the maximum distancé® be 5 voxel units. Let the 3-D

Edges shown in dashed lines are optional. graphs used for the search 6f and S, be G; and G5,
respectively, and leCol; (z,y) and Cols(x,y) denote two
corresponding columns i6¥; and G». For vertexVi (z,y, z)

to the vertex (z,y, z—1), denoted bY V(2. 2), V(,9: 2= in Cof, (2, ) with = > 6%, a directed edge i, connecting

1)). ) o Vi(z,y, z) to Va(z,y,z — &%) is constructed. While for each
The smoothness constraints along theand y-directions \qrtex Valz,y,z) with z < Z — §', a directed edge irf,

are enforce_zd in the following way. WLOG, th_e 4'”8ighb°EonnectingV2(x,y7z) to Vi(z,y, z + 0') is introduced. This
adjacer)cy is assumed. The copstructlon dgscrlbed bglow €@Rstruction is applied to every pair of corresponding nole
be eas_|ly extended to other adjacency settings. Consider ap G, and G». Due to the separation constraints, i.8s
two adjacent columng/ol(z,y) andCol(x +1,y) as shown s ot |easts’ voxel units belows,, each vertexV; (z, v, z)
in Figure 1(b). Along thex-direction and for any0 < = < \jth , < 4! cannot be on surfacs;. Otherwise, no vertex
X — 1, a directed edge is constructed from each vertgx ¢y, (z,4) could be on surface,. Likewise, each vertex
V(w,y,z) € Col(z,y) (resp.,V(z +1,y,2) € Col(z +1,9))  y,(z,y,2) with z > Z — & cannot belong to surfacss.
to vertexV'(z + 1, y, max(0, z — Ax)) € Col(z +1,y) (resp., Hence, for each colum@ol; (z,y) € G4, it is safe to remove
V(z,y, max(0, 2~ Ax)) € Col(z,y)). The same construction 5| verticesV; (z, y, 2) with z < §' and their incident edges in
is done for they-direction. _ _ E1. Meanwhile, we need to reassign a caist, y, 6') of voxel
Sometimes the targe_t surfaﬁ’es re_qu.|red to bevraparound I(z,y,6') to vertex Vi(z,y, ') and add a directed edge in
along thex- (or y-) direction. This is common when We £ connectingV; (z,y, 6') to Va(z,y,0). Note then thezero-
are to detect a cylindrical surface, which is required to tﬁfane (i.e., the set of vertices with = 0) of G, consists of
unfolded to a terrain-like surface using cylindrical cdoete vertices Vi (z,y, z) with z = &', which forms a feasible
transform [6] before applying our algorithm (or the tragiital g, face inG,. To ensure that, a set of directed edgeinis
graph-searching algorithms [1][3]). Then the first and lagiroduced to make the zero-plane Gf strongly connected.

rows along the unfolding plane should satisfy the smoothneghiie for each columrCols(z, y) € G, we safely eliminate
constraints as well. In the-wraparound case, each vertexy| vertices Vs(z,y, 2) with = > Z — &' and their incident

V(0,y,2) (resp.,V(X — 1,y,z)) also connects td/ (X — edges inks.

1,y, max(0, z *_Ax)) (resp.,V(0,y, max(0, 2 — Ax))). The In other situations, we may allow the two interacting sur-
same rule applies to the-wraparound case. faces to cross each other. For these problems, instead of mod
B. Multiple Surface Detection eling the mi_nimum and_ maxim_um distances between th#m,
ando* specify the maximum distances that a surface can vary
In simultaneously detecting (k > 2) distinct but interre- pelow and above the other surface, respectively. Incotipgra
lated surfaces, the optimality is not only determined by thfis case in our example, every vertex(z,y, z) in G, shall
inherent costs and smoothness properties of the individédnnect toVs(z,y, maz(0,z — 6%)) in G; and every vertex
surfaces, but also confined by their interrelations. Va(z,y,z) in Go has an edge t&; (z,y, maz(0,z — 6*)) in
If surface interactions are not considered, theurfacesS; G;. A summary of all these cases is presented in Figure 2.
can be detected ik separate 3-D digraph&; = (V;, E;)
(i = 1,2,...,k), each of which is constructed in the way Il THE ALGORITHM
presented above. The vertex costs are computed utilizing The multiple surface detection problem is formulated as
cost functions (not necessarily distinct), each one of Whi¢omputing a minimums-¢ cut in a graph constructed from
is used for the search of one surface. Taking the surfage Our approach is inspired by Wu and Chen’s algorithms
interrelations into account, another edge fgtneeds to be for the optimal net surface problems [4]. However, instefd o
constructed modeling these interrelations, forming a ggdm searching for one surface, our algorithm concurrently tifies
digraph G(V;, E) in 4-D space withV = |J_, V; and E =  surfaces, which achieve optimality in a more general ggttin
Ule E;UE;. Constructions of/; andV; are detailed below. Furthermore, the time bound of our algorithm is independent
Note that the surface interactions are specified by theif both the smoothness parameters (i, and A, ) and the
pairwise relations. For each pair of the surfaces, our agbro surface separation parameters (i®;,;1 and &%; 11, with

« zero-plane




S — Coly(x,y) Coly(x.

_,E Coly(x.y) Colz(xji Note that the directed edges connecting vertices not on the

zero-plane to the vertices on the zero-plane (shown in diashe
lines in Figure 1 (b) and Figure 2) are optional. The vertioles
G; on the zero-plane form strongly connected component, as

is ensured by the construction, and they are all includedyn a
non-empty closed set a@&. Therefore, removing these edges
does not affect any closed setd@ This gives rise to a very
®) interesting observation: the graph is actually gettingpsémn
Fig. 2. Summary of surface interrelation modelirg, and S, are two (i.€., with less edges) as the smoothness constraintslaxede
desired surfaces’ol; (z, y) andColz(z, y) are two corresponding columns (j.e., A, and/orA, become larger). This behavior is just the

in the constructed graphs. Edges shown in dashed lines &iomalp (a) The . " _ .
non-crossing case. (b) The case with crossing allowed. opposite to the traditional graph-search based algoritfuns
the problem.

B. Computing the Optimal k Surfaces

i €{1,2,...k—1}). Note that, the multiple surface detection Based on Lemma 1, we need to compute a minimum-cost
problem could be infeasible, i.e., osurfaces satisfying the non-empty closed seC™* ’in G which is a well studied problem
geometric constraints exist i The feasibility of the problem i aral hytheor As in [4] t7] [8], we computé” in G b
is easy to determine. Thus, we assume in this section ttHeg ph theory. P L pute y
multiple-surface detection problem is feasible ransforming it into computing a minimug¢ cut in arelated
' graph G . Note that the grapltis; hasO(kn) vertices and
A. The Minimum Closed et O(kn) edges._Therefore, t_he miniml_Jm closed Gjéiin G can
) ) ) ) be computed ifT'(kn, kn) time, hereinl'(kn, kn) is the time
In Section II, the construction of_a weighted directeg, finding a minimums-t cut in an edge-weighted directed
graph G = (V. E) from the volumetric datasel(x.y.z) graph withO(kn) vertices andD(kn) edges.
was described. The grapfi consists ofk disjoint 3-D sub- = the gptimalk surfaces based afr can be recovered in the
graphs{G; = (Vi,E;) : @ = 1,2,....k}, each of which ¢,10ing way. For eachi (i = 1,2, ... , k), recall that the sub-
is dedicated to searching for one surface. The separat%thi is used to search for the target surfate For every
constraints between any two surfaces are enforce@ iy -, - x ando < y <Y, let Bi(z,y) = C* N Coli(z,y).

edges between the corresponding sub-graphs. Actually, ¥gnote byV;(z,y, 2*) the vertex inB;(z, y) with the largest

goal of such a construction is to guarantee that: z-coordinate. Then, voxel(z,y, 2*) is on thei-th optimal
1) Any feasiblek surfaces irZ correspond to a non-emptysurface S;. In this way, the minimum closed sét* of G
closed set inG with the same total cost. defines the optimat surfaces{S;,S5,...,S;} in Z.
2) Any non-empty closed set 7 defines feasiblek To sum up, we have the following theorem.
surfaces irZ with the same total cost. Theorem 1. The optimal k£ surfaces in a 3-D image
A closed set C in a directed graph is a set of vertices sucf(x,y,z) with n voxels can be computed ifi(kn, kn) time.
that all successors of any vertex @nare also contained id Finally, the outline of the algorithm is:

[7], [8]. The cost of a closed set, denoted byw(C), is the o Inputs:k, Ay, Ay, 8!, §* and the cost function(s).

total cost of vertices ii€’. Note that the closed sétin a graph  « ConstructG (= Ule G;) according to Section II.

can be empty (with a cost zero). « TransformG into G, as mentioned above.
Recall the graph constructed in Section Il. Note that in any « Compute the minimuns-¢ cut of G;.

G;, If Vi(z,y,2) is in a closed sef of G, then all vertices « Recover thek optimal surfaces.

“below” it on Col;(z,y) are inC. We denote the set of these

vertices byB?(z,y), i.e., B (z,y) = {Vi(z,y,7') : 2/ < z}.

The cost of B (z,y) equals the cost of voxel(z,y,2). In A Data

general, we are able to prove the following lemma, showing To validate the correctness of the modeling techniques, we

that computing the optimat surfaces inZ is equivalent to tested our method on a set of computer-generated phantoms

finding a non-empty closed sét of the minimum cost inG  of various sizes and surface positioning. Computer phasitom

IV. EXPERIMENTS

(the proof is omitted due to the space limitation). contained two or more surfaces with variable shapes and
Lemma 1: A non-empty closed sé&t* of the minimum cost mutual positions, and the surfaces did not intersect. The
in G specifies the optimat surfaces inZ. datasets were blurred and superimposed with slight Gaussia

However, if a closed sef* of the minimum cost (called noise to make the problem more realistic. Figures 3 and 4
minimum closed set) in G is empty, C* gives little useful provide examples of the utilized phantoms. Phantom sizes
information onG for defining the optimalk surfaces inZ. ranged froml6 x 16 x 16 to 256 x 256 x 256 voxels.

This problem can be easily solved by performingamslation To design a surface detection cost function that would
operation onG as introduced in [4]. After the translation, webe appropriate for CT image data, a physical phantom was
can simply find a minimum closed sét in G, andC* is a imaged by multi-detector CT and analyzed using our surface
minimum non-empty closed set inG before the translation. detection method. The phantom contains six plexiglas tubes



numbered 1 through 6, with nominal inner diameters @hd airway tree segmentation procedures are identical in
1.98, 3.25, 6.40, 6.50, 9.50 and 19.25 mm, respectively. The principle. The segmentation process consisted of thevello
corresponding outer diameters atet5, 6.30, 9.70, 12.60, ing steps: 1) topological pre-segmentation, yielding agpr
15.60 and 25.50 mm, respectively. The phantom was scannddhate spatial locations of the tubes; 2) tube skeletoropati
using Philips Mx8000 4-slice CT scanner with 3 differentrsca3) 3-D image resampling following centerlines of the tubes;
settings (ow dose, regular dose, andhigh dose). Under each 4) tube wall segmentation (using the proposed algorithmy, a
setting, the scans were taken at the 4 distinct angle§®pf 5) quantitative measurement.
5°, 30°, and 90°, rotated in the coronal plane, resulting in
a total of 12 datasets for use in the validation. The regular
dose scanning was intentionally repeated, yielding amothe
datasets used for initial calibration of the cost functidnsall o computer Phantoms
cases, a resolution 6f39 x 0.39 x 0.6 mm? was used, images
consisted of 200-250 slice§]12 x 512 pixels each. Many computer phantoms were analyzed in the early stages
B. The Cost Funciions of the algorithm development. As an example, results are
' presented for phantoms with several surfaces embedded in
Designing a cost function is of paramount importance fQ{ yolumetric image. The surface cross-sections are shown in
any graph based segmentation method. Simple cost functigfigure 3(a). The image was generated so that the surfaces
reﬂecting bl’ightneSS Of the Sought Surfaces were Used in mSist Of Voxe|s of |ower gray Va'ues Compared to the
computer phantoms. In CT images, the cost function needspigckground. As shown, three separate surfaces are embedded
be edge based and needs to incorporate imaging propertieg0fhe image. The lower two surfaces are smoother, while
the CT scanner as well as image properties of the surfacgfe topmost surface is rough. When simultaneously searching
Therefore, the cost functions used for CT image segmentatigr 2 out of the 3 surfaces in the original image, the lowest
utilized a combination of first and second derivatives of 25 rface was fixed by setting the first cost-function to have lo
D gray-level images [9]. We designed an approach in whi¢gRagnitude only at the position of the lowest surface (Figure
plexiglas phantom tubes with known sizes were utilized fej(a): the surface locking details are given in Section VI-A)
cost function design as well as for segmentation accuraglfe second cost function yielded an identical magnitude at
assessment. In the design stage, the known inner and o@lelgraph nodes of the middle and topmost surface positions

diameters of 6 phantom tubes in 4 data sets (24 phantom tukﬁﬁure 3(c)). In this case, the resulting surface detactio
total) served as independent standard for constructingdbe fully controlled by the smoothness constraints.

functions used for CT images. Using the cost functions for

the inner and outer borders, a different set of 12 scans of the

same phantom (72 tubes) was used for accuracy validation ot *_-.

our method under different CT scanning conditions. The same——_—/

cost functions were employed for detection of inner andioute ~ ~——— 7
airway wall surfaces in the pulmonary CT images. @) () © %)

V. RESULTS

C. Performance Indices Fig. 3. Effect of intra-surface smoothness constraints G@ss-section of
The perfomarce o e metfod vas tested in o WeySE SOTR A ) S S e R e e )

First, running times were recorded and compared in : ; N oY T

computer-generated phantoms of varying sizes to gain & basitamed iih smoothness parametes = &y = 5.

understanding of the speed/size relationships. All expenis

were conducted on an AMD Athlon MP 2000+ (1.67GH2%

Dual CPU workstation with 3.5 GB of memory runnin

Microsoft Windows XP. The running-times were measur

The results are shown in Figures 3(d) and (e). In the first

ase, the smoothness parametéss and A, were both set

gtéa 1. The topmost surface apparently does not satisfy these

three times and the results were averaged. criteria and, as expected, the algorithm detected the middl
rface. In the second case, the smoothness parameters were

Second, surface detection accuracy was determined in ph * <0 that both the midd] dt t surf tisfied th
ical phantoms in comparison with the independent standal SO that bo € middie and topmost surtaces satisfied the
straints and had the same cost values. When this happens,

The comparison was conducted by measuring the minor ar’ ; o )
major diametersd,,, andd,,;, of the segmented surfaces int.he algt_'.)nthm will |dent!fy the surface closest to _the zplgng .
the middle1/3 of tube (about 40 slices), then computing thé"e" with z = 0). In this case, since the coordinate origin is

mean=+ standard deviation of the percentage signed differen%the top-left comer, the resulting surface will be thenarst
between nominal diameters and average measured diame?ggace'

7_ , Figure 4 shows the result of a triple-surface detection
d - (dTVL(L J’_ dTﬂZ)/Q' . .

) ) experiment. The surfaces in the dataset are 10 voxels apart.
D. Segmentation of Well Surfaces of Plexiglas Tubes The algorithm was set to always identify the lowest surface

The phantom tubes and in vivo airway walls were se@nd select 2 out of the 3 surfaces above it, which was fully
mented using the cost functions described above. The plantoontrolled by the separation constraints.
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Fig. 4. Effect of surface separation constraints. (a) Gsession of the 8 8
original image. (b) The first cost image. (c) The second/thast image. (d) -10 1 2 3 4 5 6 1 2 3 4 5 &
; ; i _ u T _
Results obtained with separation parametdts = 5, 6%, = 15 and 4}, = Tube Number Tube Number
16, 6}y = 25. (d) Results obtained with separation parametiéﬁ =5, @ ()
5%, =15 andd!, = 26, 6%, = 35.

Fig. 6. Signed errors of inner- and outer-diameter measuremanthe
plexiglas tubes. Horizontal axes represent the nominal dennéVertical axes
B. Execution Times represent the signed percent error. Mean etr@D is shown for each sample.
The average execution times of our simultanebtsurface
(k = 2,3) detection algorithm on datasets of different sizes
. VI. DISCUSSION
are shown in Table I.

TABLE | A. Surface Locking

AVERAGE EXECUTION TIMES In the computer phantom experiments reported in Section V-

Image Size k=2 k=3

Image Size k=2 k=3

40 x 40 x 40 1.2 1.7
60 x 60 x 40 3.3 4.8
80 x 80 x 40 6.1 9.4

100 x 100 x 40 16.2 22.3
140 x 140 x 40 85.8 96.1
200 x 200 x 40  376.1 401.3

differently to the width and height of the image. Assumi
that the surface is oriented as shown in Figure 1, the wi
refers to theX - or Y-size of the image, and the height refers
to the Z-size. The results indicate that the execution time has
an approximately linear relationship with the image heigh&
whereas its relationship with the image width is capturecby
low-order polynomial. The accompanying Figure 5(b) reseaf

the same fact from a different angle.
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(b)

r:j%hchieved by changing the graph construction itself: we can

A, we mentioned that the algorithm was set to fix the position
of one surface. We refer to this behavior descriptively as
surface locking, which was achieved in those experiments by
manipulating the cost functions. Actually, with our aldbm,
there is another way to lock the positions of one or more
resulting surfaces or, more generally, force an arbitraril
gﬁecified set of voxels to be part of the final result. This is

make the(z, y)-columns containing the corresponding locked
vertices contain only those vertices, i.e., each of thekenuus

as only one vertex, which corresponds to one locked voxel.
ertainly, the smoothness constraints and surface separat
onstraints must be satisfied.

B. Variable Geometric Constraints

In this paper, we have only considered homogeneous
smoothness and separation constraints, whose valuesrnremai
constant along each graph dimension. In fact, the proposed
algorithm allows variable geometric constraints as wehjolh
can be specified adaptively based on different image con-
text. This flexibility has certain practical implication$n
some problems, for instance, the surface smoothness and
interrelations may vary at different locations. The valéab
geometric constraints can be incorporated into the alyorit
by rearrangements of the graph edges. As a result, the edges

Fig. 5. Average execution times. (a) Triple-surface detectase. Curve ,,,: ; _cast
A corresponds to the testing sets of stzex N x 64, and curves B is for will no Ionger be paraIIeI as they are in the constant-c r

the testing sets of sizé4 x 64 x N, where N varies from 40 to 300. (b) Case. For the variable-constraint setup to become practica

Double-surface detection case. Testing sets are of diZes M x 40 and key problem must be solved and still remains challenginw ho
M x M x 60, where M varies from 20 to 200.

to automatically adjust the geometric constraints as rekede
Some machine learning approaches may be applied, which

C. Accuracy Assessment in Physical Phantom Tubes will be a future research topic.

Errors of the computer segmented and measured diameters o
are presented in Figure 6. The overall signed errors for tfre Advantages and Limitations
inner and outer borders ate27 +4.08% and —0.85+1.23%, The algorithm efficiently detects the globally optimal sur-
respectively. In general, the cost functions, which weatngd faces in the entire region-of-interest (ROI), enablinghtyg
on standard-dose CT images of phantoms, tend to overestimatcurate image segmentation that is an prerequisite abieli
the inner diameters and underestimate the outer ones in highantitative image analyses. Its ability to encode theriate
dose phantom CT images although the errors stay small. lations of any number of surfaces is unprecedented.



Unlike the level set driven techniques [10], [11], the algdseen developed and validated in computer generated and
rithm cannot handle topology changes. An example of suctphysical phantom images. The method is efficient and robust.
limitation is the inability to directly segment branchingoular The resulting surfaces are globally optimal with respect to
structures. However, as pointed out in [12], topology fléitib the employed objective functions. The surface smoothnads a
is not always desired. Another apparent limitation is that $eparation parameters provide a flexible means for modeling
can only detect those surfaces that can be “unfolded” to farious inherent properties and interrelations of the rddsi
terrain-like, including cylindrical or tubular surfacesnd this surfaces. The method is readily extensible to higher dimen-
unfolding process must be invertible. Closed surfaced) sisc sions.
spherical ones, are not subjects of our algorithm sinceether

is no perfectly invertible method to unfold them. ACKNOWLEDGMENT

] The authors thank Dr. Juerg Tschirren for providing experi-

D. Implementation and Improvements mental data and algorithm testing environment. CT imaging
Since the segmentation problem has been transformed intas performed under guidance of Drs. Eric A. Hoffman

solving a minimums-¢ cut in directed geometric hypergraphsand Geoffrey McLennan. The research was supported, in
the performance of the approach crucially hinges on the mipart, by NIH NHLBI grants R01-HL64368, R01-HL63373,

imum s-t cut algorithm being used. Our implementation used01-HL071809, NSF Grant CCR-9988468 and a grant from

the minimums-¢ cut algorithm reported in [13]. For otherthe Computing and Information Technology Center at the
implementation issues, we refer the reader to our earliek wdJniversity of Texas — Pan American, Edinburg, Texas, USA.

[5]. To enable real-time application, further improvenseocan

be made by adopting more sophisticated m#t cut/max
flow algorithms (for example, see [14]). Another option is tolll
parallelize the algorithm. The multi-scale approach comiyo
used in image processing provides yet another alternative t
speed up our method. [2]

E. Application to In Vivo Medical Data

To demonstrate the utility of our method in quantitative(3)
analysis of human pulmonary CT images, the algorithm was
incorporated into an automated system for pulmonary airw
segmentation [15], and applied to concurrently segmenting
the inner and outer wall surfaces of intrathoracic airways
imaged by multi-detector CT. The time for segmenting ang
entire airway-tree (32 cylindrical segments) ihE x 512 x
550 dataset was approximately 6 minutes. Preliminary results
revealed higher accuracy and 3-D consistency compareato ttg;]
traditional 2-D dynamic programming methods [5].

(11]

(12]

(13]

Fig. 7. Segmented inner and outer walls of human pulmonary g&waaged
with multi-detector CT. (a) The transversal and sagittaksfsections of an
airway segment. (b) 3-D view of the analyzed airway segment.
[14]
VII. CONCLUSION [15]

A polynomial-time algorithm for simultaneously detecting
multiple mutually related surfaces in volumetric images ha
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