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ABSTRACT 

 

We propose a fully-automated mitosis event detector using 

hidden conditional random fields for cell populations 

imaged with time-lapse phase contrast microscopy. The 

method consists of two stages that jointly optimize recall and 

precision. First, we apply model-based microscopy image 

preconditioning and volumetric segmentation to identify 

candidate spatiotemporal sub-regions in the input image 

sequence where mitosis potentially occurred. Then, we apply 

a learned hidden conditional random field classifier to 

classify each candidate sequence as mitosis or not.  The 

proposed detection method achieved 95% precision and 

85% recall in very challenging image sequences of 

multipolar-shaped C3H10T1/2 mesenchymal stem cells. The 

superiority of the method was further demonstrated by 

comparisons with conditional random field and support 

vector machine classifiers. Moreover, the proposed method 

does not depend on empirical parameters, ad hoc image 

processing, or cell tracking; and can be straightforwardly 

adapted to different cell types. 

Index Terms— Mitosis, Hidden Conditional Random 

Field, Image Preconditioning, Phase Contrast Microscopy 

 

1. INTRODUCTION 

 

Measurement of the proliferative behaviors of cells in vitro 

is important to many biomedical applications ranging from 

basic biological research to advanced applications, such as 

drug discovery, stem cell manufacturing, and tissue 

engineering. Critical to such measurement is the accurate 

counting and localization of occurrences of mitosis, or cell 

division, in a cell culture. For short-period, small-scale 

studies, it is possible to manually identify incidents of 

mitosis because mitotic cells in culture tend to retract, round 

up, and exhibit intensified surrounding halos under phase 

contrast illumination. However, the need for extended-time 

observation and the proliferation of high-throughput imaging 

have made automated image analysis mandatory. 

Automated mitosis detection methods in prior art can be 

categorized into tracking-based, tracking-free, and hybrid 

approaches. Tracking-based approaches [1] rely on cell 

tracking to determine individual cell trajectories, and then 

identify mitosis based on the temporal progression of cell 

features along their trajectories. The dependency on cell 

tracking is a severe burden because tracking per se is a 

challenging task. Tracking-free approaches alleviate this 

burden and can detect mitosis directly in an image sequence. 

One representative technique was proposed by Li et al [4], 

which applies a cascade classifier to classify volumetric 

sliding windows of an image sequence with 3D Haar-like 

features. Major drawbacks of this approach include the 

requirement of a large amount of training data and the lack 

of location specificity of detection.  Hybrid approaches aim 

to construct a self-contained solution by leveraging the 

advantages of the previous two methods. These approaches 

typically consist of candidate sequence detection, sequence 

feature extraction, and classification as consecutive steps. To 

detect mitosis candidates, earlier methods [5] apply 

thresholding and morphological filtering to extract bright 

halos surrounding potentially mitotic cells in each image, 

and then group the extracted regions in successive images 

based on their spatial relationship. Subsequently, to identify 

mitosis, Eccles et al [5] employed a ring shape detector to 

locate the mother and two daughter cells; Gallardo et al [6] 

adopted a hidden Markov model to classify candidates based 

on temporal patterns of cell shape and appearance features. 

Our method follows the spirit of the hybrid approach. It 

takes a phase contrast microscopy image sequence as input, 

and automatically outputs localized sub-regions in the 

sequence where mitosis occurred. As shown in Fig. 1, the 

algorithm consists of two steps. First, microscopy image 

preconditioning [7] and volumetric segmentation are utilized 

to locate spatiotemporal sub-regions in the input image 

sequence where mitosis potentially occurred. Then, a hidden 

conditional random field classifier [9] is applied to classify 

each candidate sequence as mitosis or not. These two steps 

jointly maximize recall and precision, achieving accurate 

detection. We will present the technical detail of each step in 

the subsequent sections, with emphasis on the second step. 
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Fig. 1. Mitosis Detection Workflow 



 

 

(a) Original Image(a) Original Image (b) Preconditioning(b) Preconditioning

(c) Mitosis Candidate Extraction(c) Mitosis Candidate Extraction (d) Sequence Classification(d) Sequence Classification

x

y
t

  
Fig. 2. Key Steps of the Proposed Method 

 

2. MITOSIS CANDIDATE EXTRACTION 

 

The mitosis candidate extraction step serves the purposes of 

eliminating “easily” negative regions in the image sequence 

where mitosis is unlikely to occur, and extracting temporally 

continuous sub-sequences with potential mitosis to facilitate 

subsequent sequence classification. The algorithm consists 

of two sub-steps. First, we apply the nonnegative mixed-

norm algorithm proposed by Li et al [7] to precondition each 

input image. The algorithm leverages a phase contrast image 

formation model and transforms the input into an ideal 

image with zero background and nonzero foreground 

regions that correspond to potential mitotic cells (Fig. 2(b)). 

The image formation model is defined by an effective point 

spread function (or EPSF): 
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where ( )  is a Dirac delta function, and ,  are scaling 

factors. The EPSF approximates the imaging function of 

phase contrast optics, which accounts for the formation of 

halo effects around imaged cells. The ideal image is 

obtained by solving a linear inverse problem using an 

efficient multiplicative-update algorithm. We refer the 

interested readers to [7] for more details on the algorithm. 

After preconditioning, 3D seeded region growing is 

applied to the transformed image sequences to extract 

spatiotemporal sub-regions that correspond to candidate 

mitosis sequences (Fig. 2(c)). The algorithm relies on two 

automatically-determined thresholds: a seeding threshold 

computed by Otsu’s optimal thresholding algorithm is used 

to detect seeds; and a lower threshold determined by Rosin’s 

unimodal thresholding algorithm [8] is used as the stopping 

criterion of region growing. 

3. SEQUENCE CLASSIFICATION 
 

The core of the sequence classification step is the hidden 

conditional random field (HCRF) classifier. We briefly 

review the basics of HCRF and two closely related models. 

3.1. Hidden Conditional Random Fields 

Generative dynamic Bayesian network models, in particular 

the hidden Markov model (HMM), are widely used for 

labeling sequential data. A limitation of such models is that 

observations are assumed to be independent given the values 

of hidden variables (i.e., labels), which makes them 

unsuitable for incorporating long range dependencies 

between observations and their labels. This limitation leads 

to the introduction of discriminative models for sequence 

labeling, most notably the conditional random field (CRF) 

model [10]. A CRF model specifies the probabilities of 

possible label sequences given an observation sequence. The 

conditional dependency of each label on the observation 

sequence is specified through an arbitrary number of feature 

functions, and these feature functions can access the entire 

input sequence at any time during inference. These 

flexibilities enabled CRF to outperform HMM and become 

immensely popular for natural language part-of-speech 

tagging and biological sequence analysis.  

A drawback of CRF is that it assumes the label sequence 

to be fully observable, and thus all frames in every training 

sequence must be fully labeled. This makes it inconvenient 

for sequence classification tasks in which each sequence is 

to be assigned a single label. To mitigate this drawback, 

Quattoni et al [9] proposed a hidden(-state) CRF model. 

HCRFs use intermediate hidden states to model the latent 

structure of the input domain, and infer a single label for an 

input sequence.  This allows us to use training sequences not 

explicitly labeled frame-by-frame.  

Mathematically, HCRFs deal with the problem of 

predicting a label y given an observation sequence 

1 2{ , ,..., }Tx x xX , where y  is a member of a set Y  of all 

possible labels. Each observation
ix is represented by a 

feature vector ( ) d

ix R . For each sequence, we also 

assume a vector of hidden variables 1 2{ , ,..., }Th h hh , 

which are not observed in the training examples. A graphical 

representation of the HCRF model is shown in Fig. 3.  

 
Fig. 3. Graphical Model of HCRF 

Given the definitions of the label y , the sequence of 

observations X , the hidden variables h  and the model 

parameters , the HCRF model can be defined by: 
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Here 
1L is the set of node features, 

2L is the set of edge 

features, 
1,lf , 

2,lf are functions defining the features in the 

model, and 
1,l ,

2,l are the components of  , corresponding 

to node and edge parameters. The first type of feature 

function
1f  depends on a single hidden variable value in the 

model, while 
2f  can depend on a pair of values.  

The model parameters can be learned from training 

examples by optimizing the objective function [10]: 
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where m  is the total number of training sequences. The first 

term in the objective function is the data log-likelihood. The 

second term is the log of a Gaussian prior with variance 2 . 

A gradient ascent algorithm can be used to search for the 

optimal model parameter * arg max ( )L


  .  

Given an unseen test sequence X , the best corresponding 

label *y  can be computed by 

                  
* *arg max ( | , )

y

y p y  X                              (5) 

In both HCRF and CRF models, we can incorporate long 

range dependencies controlled by a window size w. The 

parameter defines the amount of past and future observations 

to be used when predicting the state at time t (w = 0 

indicates only the current observation is used). 

 

3.2. Features for Classification 

We extracted three different kinds of features from each 

frame of a candidate mitosis sequence:  

 Intensity Histogram (IH, 5D), which describes the 

global distribution of pixel intensities; 

 Histogram of Oriented Gradients (HoG, 144D), 

which captures the edge or gradient structure that is 

characteristic of local shapes [11]; and  

 Gist (180D), which represents texture features that 

preserve local structural information [12]. 

 

4. EXPERIMENTAL RESULTS 

 

The proposed method was validated in five challenging 

phase contrast image sequences of C3H10T1/2 mouse 

mesenchymal stem cell populations. The cells were observed 

under a Zeiss Axiovert 135TV inverted microscope, using a 

5X, 0.15 N.A. objective lens with phase contrast optics. 

Images were acquired every 5 minutes for 120 hours using a 

12-bit Qimaging Retiga EXi Fast 1394 CCD camera at 

500ms exposure with a gain of 1.01. Each image consists of 

1392×1040 pixels with a resolution of 19 μm/pixel. The 

relatively low resolution was chosen in order to image a 

large cell population in the limited field of view. 

 

4.1. Performance of HCRF Classification 

 

With preconditioning and volumetric region growing, we 

extracted candidate mitosis sequences in each input 

sequence. This step achieved 100% recall of detection with 

low precision. To improve precision, we used HCRF to 

refine the detection results. To train the HCRF model, we 

manually labeled all mitosis candidates in one sequence. The 

remaining four sequences were used for validation. 

We trained HCRF models with IH, HoG, and Gist 

features and different window sizes. To choose the best 

configuration of features and window size, we plotted the 

ROC curve of each model and compared the area under 

curve (AUC) values. The results showed that the model 

trained with Gist features and w = 2 consistently 

outperformed the others with the best AUC value of 0.92. 

The ROC curves for the model using Gist features and a 

window size of 2 for four test sequences are shown in Fig. 4. 

 

 
Fig. 4. ROC of HCRF with Gist Feature and w = 2 

 

4.2. Comparison to CRF and SVM 

 

To demonstrate the superiority of HCRF for sequence 

classification, we compared its performance to the CRF 

model trained with fully-labeled sequences. Moreover, to 

show the advantage of integrating temporal information, we 

compare its performance to a frame-by-frame classification 

approach using a support vector machine (SVM) classifier. 

 

4.2.1. Conditional Random Field  

To utilize CRF for sequence classification, it is first applied 

to label the full sequence. For training, we divided each 

mitosis sequence into four phases (Fig. 5), and assigned 



 

 

labels 1 to 4 to each frame accordingly. Then, a candidate 

sequence is classified as mitosis if the number of frames 

assigned with labels 2 and 3 is greater than a threshold. 

 

 
Fig. 5. Label for mitosis sequence 

 

By varying the threshold, we obtained the ROC curves for 

CRF models trained with different features and window 

sizes. We found that CRF with Gist features and a window 

size of 2 achieve the best AUC of 0.78.  

 

4.2.2. Support Vector Machine 

The support vector machine (SVM) is a binary classifier that 

constructs a linear decision boundary (hyperplane) to 

optimally separate two classes [13]. We implemented a 

mitotic cell detector using SVM with a radial basis function 

(RBF) kernel. The detector was applied independently to 

each frame of a candidate sequence. 

Corresponding to the training strategy for CRF, we 

labeled the frames that belong to phases 2 and 3 of a mitosis 

sequence as positive samples, and the others frames as 

negative samples. A candidate sequence is classified as 

mitosis if the number of frames assigned to be mitotic 

exceeds a certain threshold. 

With cross-validation, we selected the best parameters for 

the SVM models trained with different features. By 

comparing the ROC curves for the trained models, we found 

that Gist outperformed the other features with the best AUC 

of 0.77, followed by HoG with 0.54, and IH with 0.47.  

 

4.2.3. Overall Comparison 

Finally, to compare the overall classification performances 

of HCRF, CRF and SVM with Gist features, we utilize the 

balanced F score as a complementary metric to AUC. The F 

score is defined as follows: 

  
2 Precision Recall

F
Precision Recall

 



                        

We separately computed the AUC and the best achievable F 

score for each sequence with each classifier. The results 

indicate that the HCRF classifier consistently outperformed 

both CRF and SVM, with a best-case performance of 95% 

precision and 85% recall (F = 0.90). 

 

Table 1. Comparison of HCRF, CRF and SVM with Gist 

Seq. AUC Maximum F Score 

HCRF CRF SVM HCRF CRF SVM 

1 0.92 0.78 0.77 0.90 0.84 0.80 

2 0.93 0.73 0.71 0.87 0.83 0.77 

3 0.91 0.73 0.70 0.86 0.84 0.81 

4 0.86 0.62 0.55 0.87 0.75 0.80 

5. CONCLUSION 

 

We proposed a fully-automated mitosis event detection 

method using hidden conditional random fields for cells 

imaged with phase contrast microscopy. The method 

consists of two stages, mitosis candidate extraction and 

sequence classification, which jointly maximize recall and 

precision. By experimentally comparing HCRF, CRF and 

SVM classifiers using intensity histogram, HoG and Gist 

features, we found that the HCRF model with Gist features 

achieved the best sequence classification performance. The 

method achieved 95% precision and 85% recall in very 

challenging phase contrast microscopy image sequences of 

C3H10T1/2 mesenchymal stem cell populations. 
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