SLAM++: Simultaneous Localisation and Mapping at the Level of Objects

Renato F. Salas-Moreno¹, Richard A. Newcombe², Hauke Strasdat¹, Paul H. J. Kelly¹ and Andrew J. Davison¹

Department of Computing, Imperial College London¹ & CSE, University of Washington²

June 28, 2014

Outline

- Introduction and Motivation
- SLAM++ System
- Object Level Map Representation
- 4 Real-time 3D Object Pose Detection
- 5 Locst Camera Relocalisation

Real-time Dense SLAM



MonoSLAM, 2003

PTAM, 2007

DTAM, 2011

KinectFusion, 2011

3D Representation is Evolving

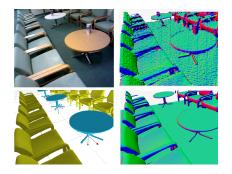
- Increase in density of representation benefiting from increasing processing and memory resources.
- But also increasingly taking account of real-word priors that the world is not a point cloud.

Towards Semantic Worlds

To recap

- Maps initially represented by keypoints.
- Density increased towards full dense surfaces.
- World still meaningless: e.g. Keypoint or surface patch on a keyboard same as in monitor as far as interaction is concerned due to limited perception.

SLAM++: A Pure Object-Level SLAM System



CVPR 2013.

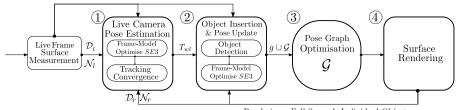
- Brings semantic understading in the loop of SLAM itself.
- SLAM++: SLAM at the level of objects, Salas-Moreno, Newcombe, Strasdat, Kelly, Davison, CVPR 2013.

Mapping Directly at the Object Level

By recognizing objects in the loop, we have advantages:

- Instant semantic understanding enables interaction (robotics, AR).
- Dense representation and full predictive power of KinectFusion for robust tracking but very memory-efficient and scalable.
- Enables the inclusion of domain-level knowledge to deal with incorrect mapping.

System Overview



Renderings: Full Scene & Individual Objects

Real-Time Loop

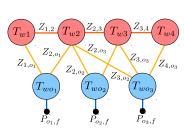
- Main components of the system. Mostly on GPU.
- Begin with live measurement from sensor.
- Objects are detected and placed into a map.
- Map used for camera tracking (localisation).
- World represented by objects as nodes in a graph.
- Map is rendered and compared against new measurements to update pose.

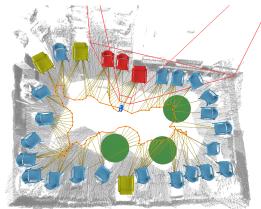
Object Database

Currently a small number of precisely known objects

• Carefully scanned using KinectFusion and manually segmented.

Map Representation

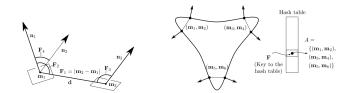




A Pure Graph of Objects

- Large room that has been mapped with objects.
- Camera trajectory in orange and measurements in yellow.

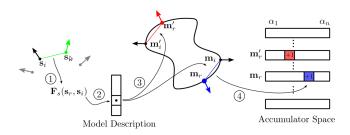
Real-Time Object Detection



From 'Model Globally, Match Locally', Drost et al., CVPR 2010

- Each object is described by a combination of all point pair features, describing the relative angles and distance between points.
- Object features are discretised and grouped into a Hash Table and used as a lookup for runtime queries coming from depth map features.

Real-Time Object Detection



From 'Model Globally, Match Locally', Drost et al., CVPR 2010

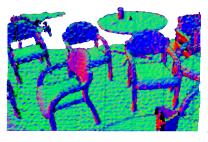
- Feature matches cast votes in accumulator for object pose. The pose with max votes assumed to be a rough estimate of true object pose.
- We have a new efficient parallel implementation on GPU/CPU.
- Still doesn't scale well to a large number of objects.

ICP Refinement

Noisy raw detected poses refined with ICP against object model

- Detections with the previous step are only approximations due to feature discretisation.
- Pose is refined with Iterative Closest Point that minimise a point plane error metric.

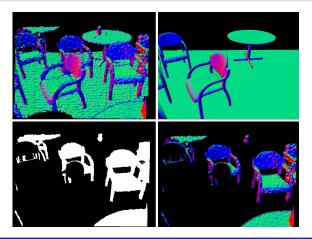
Camera Tracking



We use ICP again, this time to localise the camera

- On the left is the live noisy measurement from the camera.
- On the right is the clean rendered world.
- Assuming the world is static, a misalignment between the Measurement and our Prediction has to be due to camera motion.
- Minimising the alignment error equals to camera pose update.

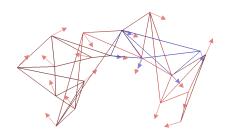
Active Object Search in the SLAM Loop



Mask-out already mapped areas

- Detection samples focused on as-yet-unknown regions.
- Much easier detection of distant or occluded objects.

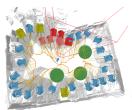
Lost Camera Relocalisation

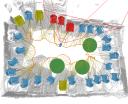


Relocalisation using graph matching

- When the camera is lost, we start mapping again, and when we map at least 3 objects we match the new graph to the main one.
- Each graph is represented as oriented points in a mesh and can be matched with essentially the same code used in object recognition; these graphs are very small typically so this is fast.

Large Loops

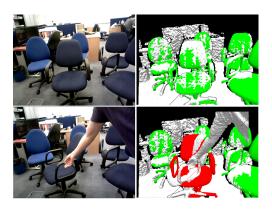




Loop closure detection

- When mapping large areas errors accumulate and is difficult to close loops. Set of red chairs not quite on the same place.
- Loops can be detected using the same graph matching mechanism as relocalisation looking for self-similarity in a graph.

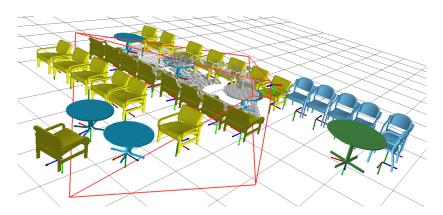
Moved Object Detection



Object Moved While Viewed

 We can also easily detect when an object moves using ICP gating on each object individually.

Whole Room Mapping



Large Room Rapidly Mapped

 Four object types; object-floor constraints but no object-object layout constraints.

Augmented Reality

Context-Aware AR

- Since we know chairs are for sitting and floor for standing we command virtual characters to take a sit or dance.
- Mapped world objects occlude augmentations precisely.
- Other real-world things like people seen in the depth image can also occlude augmentations, but roughly.

