MH-iSAM2: Multi-hypothesis iSAM using Bayes Tree and Hypo-tree

Ming Hsiao and Michael Kaess

Abstract—A novel nonlinear incremental optimization algorithm MH-iSAM2 is developed to handle ambiguity in simultaneous localization and mapping (SLAM) problems in a multi-hypothesis fashion. It can output multiple possible solutions for each variable according to the ambiguous inputs, which is expected to greatly enhance the robustness of autonomous systems as a whole. The algorithm consists of two data structures: an extension of the original Bayes tree that allows efficient multi-hypothesis inference, and a Hypo-tree that is designed to explicitly track and associate the hypotheses of each variable as well as all the inference processes for optimization. With our proposed hypothesis pruning strategy, MH-iSAM2 enables fast optimization and avoids the exponential growth of hypotheses. We evaluate MH-iSAM2 using both simulated datasets and real-world experiments, demonstrating its improvements on the robustness and accuracy of SLAM systems.

I. INTRODUCTION

The robustness of simultaneous localization and mapping (SLAM) is crucial to mobile robots. However, it is hard to achieve under common SLAM frameworks, which assume that the back-end (optimizer) always get correct and unbiased information from the front-end (data processing), and outputs only one solution for each unknown variable. As a result, when ambiguities occur (e.g. a feature point is detected to be very similar to more than one landmark, or two loop closure candidates are found but contradict one another), the front-end might not be able to determine which information is correct, and wrong information can be added into the back-end optimization, which can pollute the SLAM system and lead to the failure of the entire robotic system.

It would be desirable for the back-end solver to explicitly account for the ambiguities that cannot be handled by the front-end, and to output all the highly probable solutions. This proposed framework allows the later modules in the robotic system (e.g.: control or planning) to be aware of the temporarily unsolvable ambiguities and therefore is expected to greatly enhance the robustness of the entire robotic system.

Based on the incremental smoothing and mapping using Bayes tree (iSAM2) [11] algorithm, we develop a novel online nonlinear incremental optimizer called MH-iSAM2, which takes multi-mode measurements that model the ambiguities as inputs, and generates multi-hypothesis outputs which are the exact solutions of the most possible results. There are three main parts of the MH-iSAM2 algorithm. The first part is a multi-hypothesis Bayes tree (MHBT) that allows efficient inference among the multi-mode factors (MMF) and multi-hypothesis variables (MHV), which is modified from the original Bayes tree [11]. The second part is a novel data structure called Hypo-tree, which tracks the modes of factors together with the hypotheses of variables and other components in the inference process in the MHBT, and associates them for computations in the optimization. The third part is a pruning algorithm that selects the unwanted hypotheses and prune them in both Hypo-tree and MHBT.

The contributions of this work are:

1. Developing and open-sourcing the novel multi-hypothesis nonlinear incremental SLAM solver MH-iSAM2 (available at: https://bitbucket.org/rpl_cmu/mh-isam2_lib),
2. Modeling different types of ambiguities in SLAM problems in a multi-hypothesis factor graph,
3. Proposing the idea of local hypotheses and using the Hypo-tree as a novel data structure to track all of them,
4. Extending Bayes tree and its inference algorithm to solve the multi-hypothesis SLAM problems efficiently,
5. Designing a pruning algorithm that removes the unwanted hypotheses to maintain efficiency, and
6. Evaluating MH-iSAM2 using simulated datasets as well as demonstrating a real-world application for it.
II. RELATED WORK

Many previous studies focus on solving ambiguity problems either in the front-end, such as RANSAC [6] and JCBB [16], or of a specific type only, such as loop closing [13][2][21][3]. However, none of them can deal with general ambiguities that are unsolvable by the front-end.

FastSLAM [14] can handle unknown data association though sampling particles over all possibilities, and [15][7] apply nonparametric methods to deal with ambiguities in data association or loop closing. These approaches in theory model all possibilities, but can only approximate the best solution(s) instead of solving for the exact values. [9] tracks multiple hypotheses of exact solutions as desired. However, it requires additional batch steps for relinearization, and can be improved for SLAM applications, such as tracking the hypothesis of each variable more efficiently (see Sec. IV-A).

There are other back-end solutions that change the topology of the underlying graph [19][20] or self-tuning the distribution parameters [17] during optimization with ambiguity, or add a step before conventional optimizers to choose the best hypothesis [18]. However, none of them can model more than one mode in the final output.

We develop MH-iSAM2 based on iSAM2 [11] instead of other open source solvers [10][12][11] because it allows online nonlinear incremental updates using Bayes tree for efficiency. Most of the advantages of iSAM2 are still preserved in MH-iSAM2, which is further discussed in Sec. VII.

III. MULTI-HYPOTHESES MODELS OF AMBIGUITY

A. From Probability to Hypotheses

From the probabilistic point of view, SLAM can be modeled as a maximum likelihood estimation (MLE) problem:

\[\hat{\Theta} = \arg \max_{\Theta} \prod_k P(z_k|\Theta_k, \Theta) \]

(1)

where \(Z \) is the set of all measurements \(z_k \) that are independent to each other. \(\Theta \) is the set of all variables \(\theta_i \), while \(\Theta_k \subseteq \Theta \) is the subset of variables that directly affect \(z_k \) in the conditional probability \(P(z_k|\Theta_k) \). \(\hat{\Theta} \) is the set of solutions of all variables that maximize \(P(Z|\Theta) \).

Most existing SLAM back-ends assume that every measurement \(z_k \) is sampled from a single Gaussian distribution \(\mathcal{N}(\mu_k, \Sigma_k) \) with mean \(\mu_k \) and covariance \(\Sigma_k \), and the resulting distribution of \(P(Z|\Theta) \) is also a single Gaussian \(\mathcal{N}(\mu_L, \Sigma_L) \). However, this assumption no longer holds for ambiguous measurements because a single Gaussian distribution only has one peak and cannot model more than one mode. A simple extension is to use a Gaussian mixture model (GMM) to represent an ambiguous measurement \(z_r \) with multiple modes \(\hat{z}_{r(i)} \), which can be written as

\[P_M(z_r|\Theta_s) = \sum_{i=0}^{m_r} w_{r(i)} \mathcal{N}(\mu_{r(i)}, \Sigma_{r(i)}) = \sum_{i=0}^{m_r} w_{r(i)} P(z_{r(i)}|\Theta_s) \]

(2)

where \(m_r \) is the number of modes in \(z_r \), and \(w_{r(i)} \) is a weighting for each \(\mathcal{N}(\mu_{r(i)}, \Sigma_{r(i)}) \) which satisfies \(\sum_{i=0}^{m_r} w_{r(i)} = 1 \). The subscript \("(i)" \) indicates each mode \(i \) of \(z_r \). Assuming that every \(z_{r(i)} \) is independent to all others, we can rewrite the MLE problem in Eq. (1) as

\[\hat{\Theta} = \arg \max_{\Theta} \prod_s P(z_s|\Theta_s) \prod_r P_M(z_r|\Theta_r) \]

(3)

to represent SLAM problems with ambiguity, where each index \(s \) corresponds to a single-mode measurement \(z_s \) while index \(r \) corresponds to a multi-mode measurement \(z_r \). Even though we can still solve this MLE problem and get a single estimation \(\hat{\Theta} \) that corresponds to one of the highest peaks of the resulting GMM, the information of all other peaks that result from other combinations of modes is lost.

To preserve all the combinations of modes, we represent the problem differently as a multi-hypothesis MLE problem (MH-MLE):

\[\hat{\Theta}_M = \{ \hat{\Theta}_i | i \in N^t \} \]

(4)

\[\hat{\Theta}_i = \arg \max_{\Theta} \prod_s P(z_s|\Theta_s) \prod_r w_{r(i)} P_M(z_{r(i)}|\Theta_r) \]

(5)

where \(t \) is the total number of multi-mode measurements \(z_r \). Index \(i \) is a \(t \)-dimensional vector whose \(r \)-th element \(i_r \) indicates the choice of mode of \(z_{r(i)} \), and the entire \(i \) vector represents one overall hypothesis \(h_i \) (\(j \) is a scalar index that 1-to-1 associates with \(i \)), which is one of the combinations of all modes (we use “mode” for inputs and “hypothesis” for outputs in this paper). Since only each \(\hat{\Theta}_i \) instead of the joint distribution is of interest, we can regard Eq. (5) as a MLE problem and solve each of them individually. In other words, a MH-MLE problem is actually a set of MLE problems with each corresponds to one \(h_i \) and one \(\hat{\Theta}_i \). So, the entire set \(\Theta_M \) covers all the combinations of all modes of all \(z_r \).

B. Multi-hypothesis Factor Graph (MHFG)

An MH-MLE problem can be represented in a multi-hypothesis factor graph (MHFG), which is an extension of the original factor graph [5] and can be converted into a multi-hypothesis Bayes tree (MHBT) and solved efficiently (see Sec. VII). An MHFG consists of single-mode factors (SMF), multi-mode factors (MMF), and Multi-hypothesis variables (MHV). An SMF corresponds to one \(P(z_s|\Theta_s) \) in Eq. (5) which is the same as a factor in the original factor graph. An MMF models each mode of an ambiguous measurement as an individual Gaussian distribution as described in Eq. (5). Three types of MMFs are defined in Sec. III-C. An MHV \(\hat{\Theta}_p \in \Theta_M \) can represent its multiple values from each hypothesis in an efficient way (see Sec. III-D and IV-A).

C. Multi-mode Factors (MMF)

We define three types of multi-mode factors (MMF) \(f^M \), each with \(m \) modes \((m > 1)\), to model most kinds of discrete ambiguities that cannot be solved by front-ends. Type #1 is the multi-measurement factor, which consists of \(m \) various measurements that are all connected among the same MHVs (see Fig. 2-a). For example, two different visual odometry (VO) estimates can be loosely-coupled in one pose graph for better accuracy. However, when the two estimates are very different, it is very likely that one of them is an outlier and...
Type #2 is the multi-association factor, which contains only one measurement but is connected among m MHVs that are the same type and at least one other MMV (see Fig. 2-b). For example, when a newly observed feature point is very similar to more than one landmark both geometrically and in appearance, the front-end again cannot tell which is the accurate association without any other information.

Type #3 is the Boolean factor, which represents whether a factor should exist or not ($m = 2$). One common application is to model each loop closure candidate in a loop closing ambiguity problem [13][2][21] (see Fig. 2-c).

D. Multi-hypothesis Variables (MHV)

A multi-hypothesis variable (MHV) θ_p contains multiple estimates for one variable, each corresponds to one hypothesis of θ_p. The hypotheses of θ_p are determined by all the MMFs that affect it, which is hard to be tracked since it depends on the topological structure of the MHFG. Therefore, we introduce the Hypo-tree data structure in Sec. [IV] to simplify the hypothesis tracking process.

Another challenge is that there can be causal relationship among MMFs, e.g.: the previous choice of closing a loop or not can affect a later data association, so the hypotheses of the affected θ_p are even harder to track. However, we can still assume that all of the MMFs are independent to each other as defined in MH-MLE without losing generality. Even though each θ_p might contain redundant hypotheses from impossible combinations of modes, it at least preserves all the possible hypotheses, and those redundancies can be removed later through hypotheses pruning (see Sec. [VI]).

IV. HYPOTHESES TRACKING IN HYPO-TREE

A. Overall and Local Hypotheses

Because of the independence assumption (see Sec. [III]), when multiple MMFs exists in one MHFG, the number n_t of the overall hypotheses $h^{t(1)} = \{ h_j^{(1)} \}_{0 \leq j < n_t}$ of the entire system is $n_t = \prod_{r=1}^t m_r$, where m_r is the number of modes of each MMF f_r^M, and t is the total number of MMFs. Even though n_t grows exponentially to t and has to be pruned (see Sec. [VI]) to maintain a tractable size, the number of local hypotheses $h^{(r)} = \{ h_j^{(r)} \}_{0 \leq j < n_r}$ of each MHV θ_p can be less than n_t (see Fig. [3]). As a result, we track $h^{(r)}$ of each θ_p instead of $h^{t(1)}$ to improve efficiency.

However, $h^{(r)}$ of each θ_p can change as more measurements (SMFs or MMFs) are added into the system. For example, as shown in Fig. [4-a], if a loop closure is added into the system. For example, as shown in Fig. [4-a], if a loop closure is added into the system.

B. Construction of Hypo-tree

To handle both the growing of $h^{t(1)}$ and the expansion of $h^{t(1)}$ efficiently, we propose the Hypo-tree data structure (see Fig. [3]c and [4]c). It consists of several Hypo-layers L_r, each results from one MMF f_r^M following the temporal ordering $r = 0, \ldots, t$ and contains several Hypo-nodes $N_r^{(r)}(j = 0, \ldots, n_r)$ that represent local hypotheses $h_{[j]}^{(r)}$. Starting from L_0 that contains only one Hypo-node $N_0^{(0)}$, whenever a new MMF f_{r+1}^M is observed, a new Hypo-layer L_{r+1} will be created, and n_{r+1} new Hypo-nodes $N_{[j]}^{(r+1)}$ will be generated in L_{r+1} as the children of each $N_r^{(r)}$ in L_r. Therefore, the total number of Hypo-nodes in L_{t+1} is $n_{t+1} = n_t m_{t+1}$. Due to this incremental construction procedure, the topologies of previous layers L_0, \ldots, L_t never change.
for a MHFG. A MHBT stores multi-hypothesis conditional inference. A. Multi-hypothesis Bayes Tree (MHBT)

The corresponding MHBT and Hypo-tree are constructed from the MHFG and associated with each other (the MHCD $\gamma_i^{\{r\}}$ in each clique C_q is associated with the Hypo-layer L_r that is colored the same as the shadow of C_q). Hypo-tree is used to not only find the correspondences among the modes of MMFs f^{ϕ}, and the hypotheses of MHVs θ^{ϕ}, MHJDs ϕ^{ϕ}, MHMDs ω^{ϕ}, and MHCDs γ^{ϕ}, but also determine the output hypotheses of δ^{ϕ}_{θ}, δ^{ϕ}_{ϕ}, and δ^{ϕ}_{ω}. For example: i) Linearization of the SMF between q_r and p_r, ii) Linearization of the MMF f^{ϕ}, iii) Forming the MHCD ϕ^{ϕ} of clique C_{13}, iv) Retraction of δ^{ϕ}_{θ} of θ_{13} in C_4, v) Retraction of δ^{ϕ}_{ω} of ω_{13} in C_4. The above process is repeated from leaves to root completing one iteration of inference, and several iterations are needed before convergence for a nonlinear SLAM problem.

C. Association and Correspondence

Every new MHV θ_p is associated with the latest Hypo-layer L_r, once added into the system, which can be denoted as $\theta_p^{\{r\}}$. Also, each value of $\theta_p^{\{r\}}$ (denoted as $\theta_p^{\{r\}}$) is associated with each Hypo-node $N_r^{\{r\}}$ (or local hypothesis $h_r^{\{r\}}$) in L_r, for $0 \leq j < n_r$. When the local hypotheses of $\theta_r^{\{r\}}$ have to be expanded (e.g. the example in Sec. [V-A]), we only have to update the association of $\theta_p^{\{r\}}$ to a different Hypo-layer $L_{r'}$, which can be denoted as $\theta_p^{\{r'\}} \rightarrow \theta_p^{\{r''\}}$, and expand the number of values in $\theta_p^{\{r''\}}$ accordingly.

Based on the association, searching for the corresponding values of local hypotheses between variables is simple. The $h_r^{\{r\}}$ of a MHV $\theta_p^{\{r\}}$ that is the ancestor of $h_r^{\{r\}}$ of another $\theta_p^{\{r\}}$ can be found through traversing from $N_r^{\{r\}}$ towards the root till reaching $L_{r'}$ ($r'' < r$). Or, the set of local hypotheses $\{h_{r'}^{\{r\}} \mid 0 \leq j' < n_{r'}\}$ of $\theta_p^{\{r\}}$ that are the descendants of $h_r^{\{r\}}$ of $\theta_p^{\{r\}}$ can be found through traversing from $N_r^{\{r\}}$ towards the leaves till reaching $L_{r'}$ ($r'' > r$). Same method is applied to search for the hypotheses correspondences among other components in the inference process (see Sec. [V]).

V. INFERENCE IN MULTI-HYPOTHESIS BAYES TREE

A. Multi-hypothesis Bayes Tree (MHBT)

Multi-hypothesis Bayes tree (MHBT) is an extension of the original Bayes tree [11] that conducts efficient inference for a MHFG. A MHBT stores multi-hypothesis conditional densities (MHCD) $\gamma_q^{\{r\}}$ in each of its cliques C_q, and applies a multi-hypothesis inference process throughout all the cliques (see Fig. 3) to solve for all the MHVs. A MHBT can be constructed from a MHFG based on an ordering of MHVs. In each clique C_q, the relevant SMFs, MMFs, and all of the multi-hypothesis marginal densities (MHMD) ω_q^{ϕ} that are passed from the children cliques $C_{q'}$ (if any) are combined into a multi-hypothesis joint density (MHJD) ϕ_q^{ϕ}. Then, ϕ_q^{ϕ} is factorized into a MHCD $\gamma_q^{\{r\}}$ and a MHMD ω_q^{ϕ}. Finally, ω_q^{ϕ} is passed to the parent clique $C_{q'}$. Repeating this process from leaves to root completes one iteration of inference, and several iterations are needed before convergence for a nonlinear SLAM problem. Notice that each ϕ_q^{ϕ}, $\gamma_q^{\{r\}}$, and ω_q^{ϕ} is associated with a Hypo-layer L_r for the search of hypotheses correspondences among them (see Sec. [IV-C]).

B. Incremental Update and Reordering

Because of the causality property of the growth of hypotheses, constructing MHBT incrementally from a growing MHFG can achieve better efficiency than batch. As new factors being added into the corresponding MHFG, the top part of the MHBT can be rebuilt without changing the subtrees that are not directly linked with the new factors. Also, the hypotheses of the MHVs in those subtrees can stay changed except for the hypotheses expansion of MHVs during backsubstitution. In our implementation, the updated MHVs in each iteration are reordered based on the CCO-
LAMD algorithm [4] (also applied in [11]). Moreover, since all hypotheses have to share the same ordering, all the edges that represent a mode in each multi-association factor are regarded as connected, and all Boolean factors are regarded as true (connected) in the ordering process.

C. Linearization

Each nonlinear factor $f_\mathbf{s}$ (a SMF) or $f^\mathbf{M}$ (a MMF) is linearized with respect to a linearization point of all the relevant MHVs $\Theta_{\mathbf{s}}$ or $\Theta_{\mathbf{r}}$ (see Sec. III-A) if required (fluid relinearization [11] is applied). Consequently, each local hypothesis $h_{[j]}^{(r')}$ of a multi-hypothesis linear factor (MHLF) $l_q^{(r')}$ (from $f_\mathbf{s}$) or $l_c^{(r')}$ (from $f^\mathbf{M}$) is calculated by finding the correspondences among the local hypotheses of $\Theta_{\mathbf{s}}$ or $\Theta_{\mathbf{r}}$, and also the corresponding modes of $f_\mathbf{s}^{(r')}$ and $f^\mathbf{M}^{(r')}$ only (see Fig. 5-b). Notice the associated Hypo-layer $L_{r'}$ of $l_c^{(r')}$ might not be the same as $L_{r'}$, which results from $f^\mathbf{M}$ since some of its relevant MHVs $\theta_{\mathbf{p}}$ might be affected by later MMFs (thus $r' \geq r$). Based on the Gaussian assumption in Eq. 5, each MHLF is a set of Jacobian matrices $A^{(r')} = \{A_{[j]}^{(r')} \mid 0 \leq j < n_{r'}\}$, and each $A_{[j]}^{(r')}$ contains the right-hand-side (RHS) vector as an additional column in practice. Then, their Hessian matrices $L_{\mathbf{s}}^{(r')} = (A_{[j]}^{(r')}\mathbf{S}^\text{O}_{\mathbf{s}}(A_{[j]}^{(r')}))^T$ that represent a mode in each multi-association factor are again in the form of a set of Hessian matrices . Because of the incremental formation algorithm in [11], each MHLF is grouped into $\{r\}$ later MMFs (thus $r^\prime \geq r$). Moreover, since $n_{r'}$ of hypotheses of $\mathbf{\phi}_{\mathbf{s}}$ is determined by the largest number of hypotheses among $\gamma_q^{(r')}$ and all $\delta_{\mathbf{p}}$, which might be greater than $n_{r'}$ of $\theta_{\mathbf{p}}^{(r')}$ and even contain redundant duplicated values. Thus, we first try to merge numerically similar values in $\delta_{\mathbf{p}}$ based on their hypotheses correspondences. Then, if the number $n_{r'}$ of hypotheses of $\delta_{\mathbf{p}}$ is still larger than that of $\theta_{\mathbf{p}}^{(r')}$ after merging, we expand the hypotheses of $\mathbf{\phi}_{\mathbf{s}}^{(r')}$ to match with it ($\theta_{\mathbf{p}}^{(r')} \rightarrow \theta_{\mathbf{p}}^{(\prime\prime\prime)(r')}$, see Fig. 5-b) for retraction.

VI. HYPOTHESES PRUNING

A. Pruning Criteria

The unwanted and unlikely hypotheses (see Sec. III-D and IV-A) are pruned to maintain efficiency right after the elimination step (see Sec. V-D). First, every overall hypothesis $h_{[j]}^{(t)}$ in the latest Hypo-layer L_t with its corresponding squared system error $\mathbf{e}_{[j]}^{(t)}$ larger than its 95% chi-square threshold $\chi^2_{[j]}$ is pruned. If the number n_{R_1} of remaining $h_{[j]}^{(t)}$ is greater than a threshold n_{desire}, we further prune those $h_{[j]}^{(t)}$ with fewer degrees of freedom (DoF) $d_{[j]}^{(t)}$ (defined as “dimension of all factors” — “dimension of all variables”, which is also used to calculate $\chi^2_{[j]}$). Then, if the number n_{R_2} of remaining $h_{[j]}^{(t)}$ is greater than another threshold n_{limit} (e.g. all $d_{[j]}^{(t)}$ are the same), we prune those with lower chi-square probabilities one-by-one until the number n_{R_3} of remaining $h_{[j]}^{(t)}$ is smaller than n_{limit} ($n_{\text{limit}} \geq n_{\text{desire}}$ allows tracking more $h_{[j]}^{(t)}$ when too many of them all seem likely). In practice we use the error $\mathbf{e}_{[j]}^{(t)}$ of the linearized system in each iteration to approximate $\mathbf{e}_{[j]}^{(t)}$, which is calculated in the elimination step (see Sec. V-D) as the bottom right element of the matrix $M_{[j]}^{(t)}$ of the MHCY $\gamma_q^{(t)}$ of the root clique Θ_0. Each DoF $d_{[j]}^{(t)}$ is recorded in two parts as shown in Fig. 6-b.

B. Pruning in Both Trees

Once an overall hypothesis $h_{[j]}^{(t)}$ is pruned, we flag the corresponding Hypo-node $N_{[j]}^{(t)}$ as pruned, and no children will be created from $N_{[j]}^{(t)}$ (see Fig. 6-a). Also, after finishing flagging in the last Hypo-layer L_t, we check every unflagged
A. Experimental Settings

We evaluate the accuracy and efficiency of MH-iSAM2 through simulations and a real-world experiment. The algorithm is implemented in C++ and executed on a desktop with an Intel Core i7-4790 processor. Whenever a new observation is added into the system, we run one iteration of update and calculate the most up-to-date estimates of all MHVs.

B. Simulation Results

All three types of ambiguities (see Sec. III-C) are simulated based on the city10000 or Victoria Park dataset by randomly adding wrong measurements into them. The example outputs are shown in Fig. 1. From Fig. 7 we can tell that the speed of MH-iSAM2 is constant to the overall complexity of ambiguity (defined as $\prod_{i=1}^{n_i} m_i$). Moreover, MH-iSAM2 is efficient enough to track up to $n_{\text{limit}} = 30$ hypotheses within less than $30 \times$ of time of the original iSAM2. However, the speed varies in each iteration due to the extra computation for hypothesis handling. Also, since each mode of every type #2 or #3 MMF affects the topology and density of MHFG, it affects the speed as well.

C. Real-world Experiment

A pose graph is constructed by two odometry estimated using two different settings of the fast dense RGB-D odometry in [8] and loop closures detected and registered as in [8]. Following the idea in Sec. III-C each two VO estimates between the same poses are modeled as a type #1 MMF if their difference is too large (e.g. one gets bad estimate), or loosely-coupled as two SMFs otherwise. From the results in Fig. 9 we find that MH-iSAM2 (with 2^n complexity) outperforms the conventional single-mode framework that takes either each VO individually or both of them as input.

D. Discussions

Even though each test case in the analysis only contains one type of MMF, and each tested MMF only contains 2 modes, there is no constraint on the number of modes of each MMF or combinations of their types in the current MH-iSAM2 framework (see Fig. 8). However, MH-iSAM2 can still be improved and extended in several other aspects. First, the type #3 MMF can actually be combined with type #1 or type #2 MMF to represent an additional possibility that all of the existed modes are invalid. Second, since the merging of θ_p does not consider the entire numerical changes until convergence, some of the θ_p might end up containing more hypotheses than needed after being expanded (e.g.: θ_1 in Fig. 5). Third, n_{desire} and n_{limit} should be adjusted online based on the current complexity of ambiguity to avoid losing track of the correct hypotheses. Lastly, even though current MH-iSAM2 framework deals with discrete ambiguity only, modeling the degeneracy and continuous ambiguity in the same framework seems possible yet requires more studies.

VIII. CONCLUSION

We present the novel online incremental nonlinear optimizer MH-iSAM2 to handle the ambiguities in SLAM. Based on the Hypo-tree, MHBT, and the hypothesis pruning algorithm, MH-iSAM2 can take multi-mode measurements as inputs and output multi–hypothesis results efficiently, therefore greatly enhance the robustness of SLAM systems.

In the near future, we plan to explore the possibility of MH-iSAM2 as discussed in Sec. VII-D and combine MH-iSAM2 with control or planning modules to improve the overall robustness of real robotic systems.
REFERENCES

