Abstract—Technology trends are making it more and more difficult to observe and record the large amount of data generated by high speed links. Traffic sampling techniques provide a simple alternative that reduces the volume of data collected. Unfortunately, existing sampling techniques largely hide any temporal relationship in the recorded data.

Our proposed method, “FastCARS” naturally captures statistics for packets that are 1, 2 or more steps away. It has the following properties: (a) it provides accurate measurements of full trace’s statistics, (b) it is simple and can be easily implemented, (c) it captures correlations between successive packets, as well as packets that are further apart, and (d) it is scalable and flexible such that it can be easily adjusted to take into account prior knowledge about characteristics of particular traces.

We also propose several new tools for network data mining that use the information provided by FastCARS. The experimental results on multiple, real-world datasets (233Mb in total), show that the proposed FastCARS sampling method and these new data mining tools are effective. With these tools, we show that the independence assumption of packet arrival is not correct, and packet trains may not be the only cause of dependence among arrivals.

Index Terms—Traffic analysis, sampling

I. INTRODUCTION

The ability to monitor and characterize network traffic has proven to be critical to the design and operation of today’s networks. However, as links have gotten faster and faster, it has become more difficult to observe key traffic characteristics or record packet data in real-time. Already, most network monitors rely on sampling techniques [1][2] to provide measurement of high speed links. The ability of these sampling techniques to support different observations will prove crucial to the development of tomorrow’s networks.

Today’s sampling techniques are targeted towards enabling tasks such as usage-based billing, capacity planning and network research. These techniques can typically answer questions about the traffic such as: What is the distribution of packet sizes on this link? What destinations are popular? How long are typical connections? or What applications contribute the most traffic? However, a significant weakness of existing schemes is that they do not answer questions about the temporal correlation of the traffic. For example, some interesting traffic characteristics include: How is the arrival time of packet n related to packet (n + 1) or (n + 2)? Is there correlation among arrivals? In the past, analysis of such packet content characteristics [3] and arrival correlation [4], using full (unsampled) packet traces, have led to the discovery of important phenomena such as “packet trains”, which is defined as a set of sequential packets that have the same source/destination IP addresses and port numbers, and self-similar traffic pattern. Clearly, such traffic characteristics are critical to the design of routers, routing algorithms and caching techniques. It is necessary that these kinds of analysis should be possible on sampled data, rather than on full trace.

We would like a sampling method that is Informative and Efficient. It should provide sufficient information for accurate estimates of both average and temporally correlated statistics. It should also be simple and require low computation when implemented on routers. To achieve these objectives, we propose a new method, Fast, Correlation-Aware Sampling (FastCARS), to do sampling and data mining on router traffic. We show that our method can support the traditional uses of network sampling (provide interarrival time distribution), as well as statistics about packets separated at different steps which can be used for further data mining on the sampled traffic. In particular, we use FastCARS to explore the independence of interarrival time. We show that packet interarrival times are not independent and packet train may not be the only cause of dependence among arrivals.

This paper is organized as follows. We summarize previous work in Section II. Section III describes our technique. Section IV presents results from using our sampling. Finally, we present our conclusions in Section V.

II. RELATED WORK

Network sampling has played an important role in network measurements for the past decade. In order to describe the desirable properties of a sampling technique, we begin by defining the term step.

Definition 1: We call the separation between samples steps. A n-step histogram is a histogram of measurements obtained from pairs of sampled packets that are n-steps away (separated by (n − 1) packets). Histograms of different steps provide aggregated statistics which reveal short and long term correlations (referred as temporal correlation). Given a histogram of samples from a distribution f, f can be represented approximately by the sample frequency from the histogram.

Statistics of samples n steps apart are prefixed by the term n-step. For example, interarrival time between back-to-back packets is an instance of 1-step interarrival time. We will show in the following sections that n-step histograms give us information about the traffic characteristics, and reveal temporal correlation between packets. For example, the 1-step histogram is used to estimate packet interarrival time distribution, and the 2-step histogram is used to explore the independence of interarrival times. One important property for a sampling technique is that it be correlation-aware, i.e., it should provide statistics for n-step histograms for arbitrary n.
We categorize the more promising past techniques into four categories: event-driven sampling, random sampling, configured run-length sampling and back-to-back sampling. Each of the existing sampling methods has its merits. However, none of them successfully satisfies all the requirements outlined in Section I. The following definitions describe these techniques.

Definition 2: The deterministic (systematic) event-driven sampling method with sampling period \(p \) (Event\((p) \)) samples packets numbered \(0, p, 2p \) and so on, periodically. Here, the first sampled packet is numbered 0. Events are the objects on which the sampling method is applied. In the case of network traffic, events can be packet arrivals.

Definition 3: The random sampling method is a variant of the event-driven sampling method where its sampling interval is a random variable following a specific distribution.

Definition 4: The configured run-length sampling method \((\text{Conf}(p,q)) \) with sampling period \(p \) and run length \(q \) samples a sequence of \(q \) events in every sampling cycle. If the sampling starts on packet 0, then in the \((k + 1) \)-th sampling cycle \((k \geq 0) \), \(\text{Conf}(p,q) \) will sample packets numbered \(kp, (kp + 1), \ldots, (kp + q - 1) \).

Definition 5: The back-to-back sampling method \(\text{(back-to-back}(p) \) with sampling period \(p \) samples packets numbered \(0, 1, p, (p + 1), 2p, (2p + 1) \) and so on. Note that back-to-back\((p) \) is equivalent to \(\text{Conf}(p,2) \). In general, a back-to-back sampling with sampling period \(p \) and step \(s \) (back-to-back\((p, s) \)) samples packets numbered \(0, s, p, (p + s), 2p, (2p + s) \) and so on.

These different techniques have been evaluated in past work and are used in both past and current products. Claffy et al. [5] evaluated both event-driven and time-driven sampling methods. In this study, the measured statistics were packet interarrival times and packet sizes. To measure interarrival time, the sampling techniques actually performed back-to-back sampling. This study concluded that the event-driven sampling methods perform better than the time-driven methods, and that the performance differences from different selection patterns were small. Today’s routers incorporate sampling techniques similar to those described in [5]. Cisco’s NetFlow monitoring system supports 1 out of \(p \) packets, i.e., Event\((p) \) [1]. Juniper’s routers provide some additional flexibility. They allow administrators to apply packet filters before the sampling is done and to request that a configured run length of packets be collected with each sampling event [2]. The ability to collect a set of packets with each sample enables the evaluation of temporal correlations between transmissions. However, this ability comes at the cost of recording significantly more data.

Event-driven sampling method has great difficulty in measuring traffic characteristics such as packet interarrival time. The problem is that the sampling only gives information about the interarrival time between samples, rather than that between back-to-back packet pairs. In [6], interarrival times of the packets between two adjacent packet samples were assumed be the same, and were estimated by dividing the sampled interarrival time by the number of gaps in between (naive averaging estimation). The estimated distribution biases toward the overall mean of the interarrival time and does not give enough emphasis at the extreme values as we will show later in Figure 3.

Back-to-back sampling can provide a good estimate of interarrival times. However, it only gives us information about packets 1-step away and does not give information about packets separated more steps away which are important if sequential packets are correlated.

Random sampling and configured run-length sampling could provide \(n \)-step histograms. However, their overhead can be high, and for random sampling, the size (number of samples) of the collected histograms are not predictable. In contrast, our proposed technique, FastCARS, is correlation-aware, computational efficient and predictable.

III. PROPOSED METHOD

Our main goal is to provide a sampling method that provides accurate statistical estimation, and is also simple, predictable and capable of capturing temporal correlation. To achieve these objectives, we propose a fast, correlation-aware sampling method (FastCARS).

We propose to use a combination of multiple deterministic event-driven sampling processes with sampling intervals that are relative prime numbers. For every sampled packet, its header information, such as time stamp on arrival, packet size, source/destination addresses, source/destination ports, and protocol, is stored for subsequent processing.

Definition 6: FastCARS\((p_1, p_2, \ldots, p_n) \) sampling method consists of \(n \) event driven sampling processes, where \(p_1, \ldots, p_n \) are relatively prime numbers. The \(i \)-th process has sampling period \(p_i \), which takes one sample every \(p_i \) events.

Definition 7: FastCARS\((p_1, p_2, \ldots, p_n) \) starts all \(n \) sampling processes at the same time. We can further generalize FastCARS by specifying the starting time of the \(n \) processes. We denoted the generalized FastCARS by GFastCARS\((p_1, p_2, \ldots, p_n, s_1, s_2, \ldots, s_n) \), where packet \(s_i \) is the first packet sampled by the \(i \)-th process. Note that \(\text{Conf}(p,q) \) is a special case of the GFastCARS, i.e., \(\text{Conf}(p,q) = \text{GFastCARS}(p_1, p_2, \ldots, p_n, 0, 1, \ldots, q - 1) \), where \(p_1 = p_2 = \ldots = p_q = p \).

Figure 1 shows how FastCARS works. The shown FastCARS\((3,4) \) method has two sampling processes taking samples at periods of 3 and 4 packet arrivals. The figure also shows that the samples collected are either 1-step, 2-step, or 3-step away from each other, i.e., 1-step, 2-step and 3-step interarrival time histograms are provided.

In general, when the sampling periods are chosen to be relative primes and let \(p_{min} \) be the minimum among the chosen sampling periods, FastCARS guarantees us to have samples of steps ranging from 1 to \(p_{min} \). This provides the predictability on the sampling result, which random sampling can not give us. Therefore, for generalized FastCARS, when \(p_1, \ldots, p_n \) are relatively prime and \(p_{min} \geq s_i \) (i=1 to n), having different starting sampled packets \((s_1, \ldots, s_n) \) don’t make much difference. FastCARS is also tunable in the sense that the sampling intervals can be chosen such that samples of particular steps which are of special interests will occur more often.

FastCARS is a simple generalization of the event-driven sampling which can be efficiently implemented. Event-driven sampling of sampling interval \(p \) can be implemented using a counter to keep track of how many packets to be skipped before taking
Our experiments are done on the packet header traces obtained from the National Laboratory for Applied Network Research (NLANR)\(^1\). The results shown in the following section are mainly from three traces, which we named AIX, COS and IND. Table I summarizes the details of these traces. The trace collectors are located at aggregation points within HPC networks, the vBNS and Internet2 Abilene. Therefore, the network traffic considered in this paper is traffic in which many independently originated flows are multiplexed.

TABLE I
SUMMARY OF TRACES

<table>
<thead>
<tr>
<th>Trace</th>
<th>Location</th>
<th>Collected Time (GMT)</th>
<th>Link Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>AIX/MAE-West Interconnection</td>
<td>Monday August 20 2001 00:47:57</td>
<td>OC12c PoS</td>
</tr>
<tr>
<td>COS</td>
<td>Colorado State University</td>
<td>Monday August 20 2001 00:47:57</td>
<td>OC-3</td>
</tr>
<tr>
<td>IND</td>
<td>QuestPOP at IUPUI (Indianapolis)</td>
<td>Tuesday August 21 2001 22:47:04</td>
<td>OC12c ATM</td>
</tr>
</tbody>
</table>

A. Accuracy of FastCARS: Interarrival Time Distribution

In this section, we show that FastCARS can give accurate estimation of interarrival time distribution.

Figure 3 compares our estimation with the actual interarrival time distribution collected from the full trace (AIX), and also with the results from the event-driven sampling method. Results on traces COS and IND are similar and not shown here.

We used the 1-step histogram collected by FastCARS to estimate the interarrival time distribution. We investigate the effects of different number of processes and different sampling intervals on FastCARS. Choosing (10,11) and (100,101,111) as sampling intervals in our experiments is for the convenience of analysis. As mentioned in Section III, relatively prime sampling intervals guarantee us the 1-step histogram. The estimation of interarrival time using samples from event-driven sampling is done by the naive averaging estimation (Section II). It can be seen that the estimations from FastCARS samples are very close to the actual distribution, and as expected, those from event-driven sampling bias toward the distribution mean.

Our comparison is fair, allowing the same count of samples. For example, FastCARS(10,11) takes 713435 samples on trace AIX, and it is compared with Event(5), which takes 747407 samples. Even with slightly more samples, Event(5) still performs badly.

\(^1\)http://moat.nlanh.net/Traces/Traces/
B. Testing the Independence Hypothesis of Packet Arrivals

The hypothesis that packet arrivals are independent facilitates tasks such as traffic analysis and modelling. However, is this assumption realistic? A connection usually sends a flow of packets and the transmission times and contents of these packets are not independent. Do these packets make the independence hypothesis false? Are there other dependences among packets? In this section, we show how the histograms gathered from FastCARS can answer these questions.

We use the 1-step and 2-step histograms collected by FastCARS to check the independence hypothesis of packet arrivals. The idea is as follows. The distribution of the 2-step interarrival time will be similar to the convolution of the 1-step interarrival time distribution, if the (1-step) packet interarrival time is independent. In other words, the 2-step histogram should be similar to the convolution of the 1-step histogram, if the independence hypothesis of the packet arrivals holds. In the remainder of this paper, we refer to this test of independence as convolution test.

More formally, we need some definitions. Let \(f_1(\cdot) \) be the probability mass function of the 1-step interarrival time distribution. Then, \(f_2(\cdot) \) be the probability mass function of the 2-step interarrival time distribution (time is discretized into milli-seconds). For 3 consecutive packet arrivals \((x_1, x_2, x_3) \), let \(T_1 \) and \(T_2 \) be the random variable of the interarrival time between \(x_1 \) and \(x_2 \), \(x_2 \) and \(x_3 \). Then, \(T_1 \) and \(T_2 \) follows \(f_1(\cdot) \). Let \(D \) be the random variable of the 2-step interarrival time between \(x_1 \) and \(x_3 \), and \(D \) follows \(f_2(\cdot) \).

Definition 8: Convoluted Test - If the packet (1-step) interarrival times are independent, then the probability distribution of 2-step interarrival time \(D \) is the convolution of the 1-step interarrival time distribution \((T_1 \ or \ T_2) \). This is due to

\[
f_2(t) = Pr(D = d) = Pr(T_1 + T_2 = d) = \sum_{t=0}^{d} Pr(T_1 = t, T_2 = d-t) \]

\[
= \sum_{t=0}^{d} Pr(T_1 = t)Pr(T_2 = d-t) = f_1 \otimes f_1,
\]

where \(Pr(E) \) denotes the probability of an event \(E \), and \(\otimes \) is the convolution.

Figure 4 compares the 2-step histogram and the convolution of the 1-step histogram, both obtained from FastCARS(10,11), with the actual 2-step histogram collected from full trace AIX. Results on traces COS and IND are similar and not shown here. The histograms are normalized before doing convolution and comparison. We use the quantile-quantile plot (QQ-plot) of the two histograms as a visualization of the similarity between two histograms, and is actually related to the Kolmogorov-Smirnov test of similarity of two distributions [7]. The fit of the QQ-plot to the 45-degree line demonstrates the goodness of fit between two histograms.

The QQ-plot in Figure 4(a.2) goes along the 45° line indicates that FastCARS gives accurate 2-step interarrival time distributions. The big deviation from the 45° line shown in Figure 4(b.2) indicates that the actual 2-step histogram is different from the convolution of the 1-step histogram. Therefore, by the convolution test, successive interarrival times are not independent.

As the number of steps increase, packet arrivals should be less dependent on each other. For example, packets 2 steps away are expected to be more independent of one another, and as a result, the sum of two 3-step interarrival times should be a good estimation of a 6-step interarrival time. This suggests that the convolution of 3-step histogram should be similar to the 6-step histogram.

Figure 5 shows the results on comparing the actual 6-step histogram from full trace (AIX) to (a) the sampled 6-step histogram and (b) the convolution of the sampled 3-step histogram. The 6-step interarrival time histogram from FastCARS is still a good estimation for actual 6-step interarrival time distribution (Figure 5(a)). In Figure 5(b.2), the actual 6-step histogram fits well with the convolution of the 3-step histogram (better than that of Figure 4(b.2)). This shows that, as expected, the dependence of packet arrival time diminishes as the separation between packets increases.

C. Dependence Assumption and “Packet Train” Phenomenon

A sequence of packets with same source, destination IP addresses and port numbers forms a “packet train”. It is known that the packet train phenomenon exists in network traffic [8]. Packets within a packet train are not expected to act independently, and may affects traffic characteristics. It may cause the independence hypothesis of packet arrivals to be incorrect.

Is it true that packet trains are the main reason that the independence assumption of packet arrivals is false? We test this hypothesis by removing consecutive packets in the same flow (packet trains) from the full trace, and then check whether (1-step) interarrival time histogram of the resulting trace set has the independence property. The independence check is done using our convolution test.

Figure 6 shows the result of the convolution test on AIX trace, after packet trains are removed. The 1-step and 2-step
In this paper, we present FastCARS, a fast, correlation-aware sampling method for network data mining, which is (1) accurate in providing traffic statistics, (2) simple and scalable for implementation, (3) correlation-aware in the sense that it easily captures information about n-step histograms and, therefore, reveals short and long term correlation among packet arrivals, and (4) non-bursty which evenly spreads the sampling efforts over time.

Using the information obtained from FastCARS, we also provide several new tools for network data mining, namely, the n-step histograms (Section II, definition 1), and the convolution test (Section IV-B, definition 8).

In addition, FastCARS and our tools enable the following observations on real-world traffic traces:

1) FastCARS preserves traffic characteristics and accurately estimates the interarrival time distribution.
2) The assumption of independent arrivals is not correct.
3) Packet trains are not the sole cause of the failure of the independence hypothesis of packet arrival.

FastCARS can also be used in other areas that demand accurate, efficient, and correlation-aware sampling techniques. For example, FastCARS could be used to compare synthetic traces from traffic generators to real-world data. This would ensure that the traffic generators created traces that have the appropriate temporal correlations as well as the normally tested long-term aggregate distributions.

Fig. 5. Dependence of Interarrival Time (Trace AIX) The actual 6-step interarrival time histogram is compared to (a) the sampled 6-step interarrival time histogram, and (b) the convoluted 3-step interarrival time histogram. Correlation coefficients of the QQ-plot in (b.2): 0.99681, is closer to 1, compared to that of Figure 4(b.2): 0.99368, which indicates a better fit and less dependence between packets 3 steps away.

Fig. 6. Packet Train and Dependence of Interarrival Time (AIX Trace, with packet trains removed) The number of packets removed is 155863, out of the total 3737038 packets. Histograms are collected using FastCARS(10,11). The discrepancy in (b) remains significant (correlation coefficient: 0.99783) compared to Figure 4(b.2). This suggests that packet train may not be the sole cause of the failure of the independence hypothesis of packet arrival.

To summarize, we have shown in this section how we could use the information provided by FastCARS on several data mining applications. In particular, we explored the independence hypothesis of packet arrivals and the packet train phenomenon. We proposed the convolution test for testing dependence of packet arrivals. From our experiments, we can make several observations:

Observation 1: The assumption of independent arrivals is not correct.

Observation 2: Packet trains are not the sole cause of the failure of the independence hypothesis of packet arrival.

V. Conclusions

REFERENCES