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ABSTRACT
How do we find a natural clustering of a real world point
set, which contains an unknown number of clusters with
different shapes, and which may be contaminated by noise?
Most clustering algorithms were designed with certain as-
sumptions (Gaussianity), they often require the user to give
input parameters, and they are sensitive to noise. In this pa-
per, we propose a robust framework for determining a nat-
ural clustering of a given data set, based on the minimum
description length (MDL) principle. The proposed frame-
work, Robust Information-theoretic Clustering (RIC), is or-
thogonal to any known clustering algorithm: given a pre-
liminary clustering, RIC purifies these clusters from noise,
and adjusts the clusterings such that it simultaneously de-
termines the most natural amount and shape (subspace) of
the clusters. Our RIC method can be combined with any
clustering technique ranging from K-means and K-medoids
to advanced methods such as spectral clustering. In fact,
RIC is even able to purify and improve an initial coarse
clustering, even if we start with very simple methods such
as grid-based space partitioning. Moreover, RIC scales well
with the data set size. Extensive experiments on synthetic
and real world data sets validate the proposed RIC frame-
work.
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Data Mining
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(a) ‘good’ (b) ‘bad’

Figure 1: A fictitious dataset, (a) with a good clus-
tering of one Gaussian cluster, one sub-space clus-
ter, and noise; and (b) a bad clustering.

1. INTRODUCTION
The problem of clustering has attracted a huge volume

of attention for several decades, with multiple books [11,
20], surveys [13] and papers (X-means [16], G-means [10],
CLARANS [15], CURE [9], CLIQUE [2], BIRCH [22], DB-
SCAN [7], to name a few). Recent interest in clustering has
been on finding clusters that have non-Gaussian correlations
in subspaces of the attributes, e. g. [5, 19, 1]. Finding corre-
lation clusters has diverse applications ranging from spatial
databases to bio-informatics. The hard part of clustering is
to decide what is a good group of clusters, and which data
points to label as outliers and thus ignore from clustering.

For example, in Figure 1, we show a fictitious set of points
in 2-d. Figure 1(a) shows a grouping of points that most hu-
mans would agree is ’good’: a Gaussian-like cluster at the
left, a line-like cluster at the right, and a few noise points
(’outliers’) scattered throughout. However, typical cluster-
ing algorithms, like K-means may produce a clustering like
the one in Figure 1(b): a bad number of clusters (five, in
this example), with Gaussian-like shapes, fooled by a few
outliers. There are two questions we try to answer in this
work:

Q1: goodness How can we quantify the ’goodness’ of a
grouping? We would like a function that will give a
good score to the grouping of Figure 1(a) and a bad
score to the one of Figure 1(b).

Q2: efficiency How can we write an algorithm that will
produce good groupings, efficiently and without get-
ting distracted by outliers.



The overview and contributions, of this paper, are exactly
the answers to the above two questions: For the first, we
propose to envision the problem of clustering as a com-
pression problem and use information-theoretic arguments.
The grouping of Figure 1(a) is ’good’, because it can suc-
cinctly describe the given dataset, with few exceptions: The
points of the left cluster can be described by their (short)
distances from the cluster center; the points on the right
line-like cluster can be described by just one coordinate (the
location on the line), instead of two; the remaining outliers
each need two coordinates, with near-random (and thus un-
compressible) values. Our proposal is to measure the good-
ness of a grouping as the Volume after Compression (VAC):
that is, record the bytes to describe the number of clus-
ters k; the bytes to record their type (Gaussian, line-like,
or something else, from a fixed vocabulary of distributions);
the bytes to describe the parameters of each distribution
(e.g., mean, variance, covariance, slope, intercept) and then
the location of each point, compressed according to the dis-
tribution it belongs to.

Notice that the VAC criterion does not specify how to find
a good grouping; it can only say which of two groupings is
better. This brings us to the next contribution of this pa-
per: We propose to start from a sub-optimal grouping (e.g.,
using K-means, with some arbitrary k). Then, we propose
to use two novel algorithms:

• Robust fitting (RF), instead of the fragile PCA, to find
low-dimensionality sub-space clusters and

• Cluster merging (CM), to stitch promising clusters to-
gether.

We continue fitting and merging, until our VAC criterion
reaches a plateau. The sketch of our algorithm above has a
gradient descent flavor. Notice that we can use any and all
of the known optimization methods, like simulated anneal-
ing, genetic algorithms, and everything else that we want:
our goal is to optimize our VAC criterion, within the user-
acceptable time frame. We propose the gradient-descent ver-
sion, because we believe it strikes a good balance between
speed of computation and cluster quality.

1.1 Contributions
The proposed method, RIC, answers both questions that

we stated earlier: For cluster quality, it uses the information-
theoretic VAC criterion; for searching, it uses the two new
algorithms (Robust Fit, and Cluster Merge). The resulting
method has the following advantages:

1. It is fully automatic, i.e. no difficult or sensitive para-
meters must be selected by the user.

2. It returns a natural partitioning of the data set, thanks
to the intuitive information theoretic principle of max-
imizing the data compression.

3. It can detect clusters beyond Gaussians: clusters in
full-dimensional data space as well as clusters in axis-
parallel subspaces (so called subspace-clusters) and in
arbitrarily oriented subspaces (correlation clusters), and
combinations and mixtures of clusters of all different
types during one single run of the algorithm.

4. It can assign model distribution functions such as uni-
form, Gaussian, Laplacian (etc.) distribution to the
different subspace coordinates and gives thus a de-
tailed description of the cluster content.

5. It is robust against noise. Our Robust Fitting (RF)
method is specifically designed to spot and ignore noise
points.

6. It is space and time efficient, and thus scalable to large
data sets.

To the best of our knowledge, no other clustering method
meets all of the above properties. The rest of the paper is or-
ganized as follows: Section 2 gives a brief survey of the large
previous work. Section 3 describes our proposed framework
and algorithms. Section 4 illustrates our algorithms on real
and synthetic data and Section 5 concludes our paper.

2. SURVEY
As mentioned, clustering has attracted a huge volume of

interest over the past several decades. Recently, there are
several papers focusing on scalable clustering algorithms, e.
g. CLARANS [15], CURE [9], CLIQUE [2], BIRCH [22],
DBSCAN [7] and OPTICS [3]. There are also algorithms
that try to use no user-defined parameters, like X-means
[16] and G-means [10]. However, they all suffer from one
or more of the following drawbacks: they focus on spherical
or Gaussian clusters, and/or they are sensitive to outliers,
and/or they need user-defined thresholds and parameters.

Gaussian clusters: Most algorithms are geared towards
Gaussian, or plain spherical clusters: For example, the well
known K-means algorithm, BIRCH [22] (which is suitable
for spherical clusters), X-means [16] and G-means [10]. These
algorithms tend to be sensitive to outliers, because they try
to optimize the log-likelihood of a Gaussian, which is equiv-
alent to the Euclidean (or Mahalanobis) distance - either
way, an outlier has high impact on the clustering.

Non-Gaussian clusters: Density based clustering meth-
ods, such as DBSCAN and OPTICS can detect clusters
of arbitrary shape and data distribution and are robust
against noise. For DBSCAN the user has to select a density
threshold, and also for OPTICS to derive clusters from the
reachability-plot. K-harmonic means [21] avoids the prob-
lem of outliers, but still needs k. Spectral clustering al-
gorithms [14] perform K-means or similar algorithms after
decomposing the n×n gram matrix of the data (typically us-
ing PCA). Clusters of arbitrary shape in the original space
correspond to Gaussian clusters in the transformed space.
Here also k needs to be selected by the user. Recent in-
terest in clustering has been on finding clusters that have
non-Gaussian correlations in subspaces of the attributes [5,
19, 1]. Finding correlation clusters has diverse applications
ranging from spatial databases to bio-informatics.

Parameter-free methods: A disproportionately small num-
ber of papers has focused on the subtle, but important prob-
lem of choosing k, the number clusters to shoot for. Such
methods include the above mentioned X-means [16] and G-
means [10], which try to balance the (Gaussian) likelihood
error with the model complexity. Both X-means and G-
means are extensions of the K-means algorithm, which can



only find Gaussian clusters and cannot handle correlation
clusters and outliers. Instead, they will force correlation
clusters into un-natural, Gaussian-like clusters.

In our opinion, the most intuitive criterion is based on infor-
mation theory and compression. There is a family of closely
related ideas, such as the Information Bottleneck Method
[18], which is used by Slonim and Tishby for clustering terms
and documents [17]. Based on information theory they de-
rive a suitable distance function for co-clustering, but the
number of clusters still needs to be specified in advance by
the user.

There are numerous information theoretic criterions for
model selection, such as the Akaike Information Criterion
(AIC), the Bayesian Information Criterion (BIC), and Min-
imum Description Language (MDL) [8]. Among them, MDL
is the inspiration behind our VAC criterion, because MDL
also envisions the size of total, lossless compression as a
measure of goodness. The idea behind AIC, BIC and MDL
is to penalize model complexity, in addition to deviations
from the cluster centers. However, MDL is a general frame-
work, and it does not specify which distributions to shoot
for (Gaussian, uniform, or Laplacian), nor how to search
for a good fit. In fact, all four methods (BIC, G-means,
X-means and RIC) are near-identical for the specific setting
of noise-free mixture of Gaussians. The difference is that
our RIC can also handle noise, as well as additional data
distributions (uniform, etc.).

PCA: Principal Component Analysis (PCA) is a powerful
method for dimensionality reduction, and is optimal under
the Euclidean norm. PCA assumes a Gaussian data distrib-
ution and identifies the best hyper-plane to project the data
onto, so that the Euclidean projection error is minimized.
That is, PCA finds global correlation structures of a data
set [12]. Recent work have extended PCA to identify local
correlation structures that are linear [5] or nonlinear [19],
however, some method-specific parameters such as neigh-
borhood size or the dimensionality of microclusters, are still
required. It is desirable to have a method that is efficient
and robust to outliers, minimizing the need of pre-specified
parameters.

3. PROPOSED METHOD
The quality of a clustering usually depends on noise in

the data set, wrong algorithm parameters (e.g., number of
clusters), or limitations on the method used (e.g., unable
to detect correlation clusters), and resulting in a un-natural
partition of the data set. Given an intial clustering of a data
set, how do we systematically adjust the clustering, over-
come the influence of noise, recognize correlation patterns
for cluster formation, and to eventually obtain a natural
clustering?

In this section, we introduce our proposed framework,
RIC, for refining a clustering and discovering a most natural
clustering of a data set. In particular, we propose a novel
criterion, VAC, for determining the goodness of a cluster,
and propose algorithms for:

• (M1) robust estimation of the correlation structure of
a cluster in the presense of noise,

• (M2) identification and separation of noise using VAC,
and

• (M3) construction of natural correlation clusters by a
merging procedure guided by VAC.

The proposed algorithms and the criterion VAC are de-
scribed in details in the following subsections. Table 1 gives
a list of symbols used in this paper.

Symbol Definition

V AC Volume After Compression
RF Robust Fit
CM Cluster Merge
RIC Robust Information-based Clustering
n The number of points in the data set.
d The dimensionality of the data set.
C The clusters of a data set, C={Ci | i =

1, . . . , k}.
C A cluster of data points, C = Ccore ∪

Cout.
Ccore The set of core points in C.
Cout The set of noise points (outliers) in C.
~x A data point in S.
xi The i-th attribute of the data point ~x.
~µ A cluster center of cluster S.
~µR A robust cluster center of cluster S.

Σ (Σi) The covariance matrix of points in clus-
ter C (or Ci).

ΣC The conventional version of Σ (from av-
eraging).

ΣR The robust version of Σ (from taking
medians).

V (or Vi) The candidate direction matrix derived
from Σ (or Σi).

V AC(C) The VAC value of points in cluster C.
Small VAC value indicates that C is a
good cluster.

saveCost(Ci, Cj) The improvement on the VAC value of
the overall clustering if Ci and Cj are
merged.

Table 1: Table of Symbols and Acronyms

3.1 Goodness Criterion: VAC
The idea is to invent a compression scheme, and to de-

clare as winner the method that minimizes the compression
cost, including everything: the encoding for the number of
clusters k, the encoding for the shape of each cluster (e.g.,
mean and covariance, if it is a Gaussian cluster), the encod-
ings for the cluster-id and the (relative) coordinates of the
data points.

We assume that all coordinates are integers, since we have
finite precision, anyway. That is, we assume that our data
points are on a d-dimensional grid. The resolution of the
grid can be chosen arbitrarily.

The description of the method consists of the following parts:
(a) how to encode integers (b) how to encode the points,
once we determine that they belong in a given cluster.

The idea is best illustrated with an example. Suppose we
have the dataset of Figure 1. Suppose that the available
distributions in our RIC framework are two: Gaussian, and
uniform (within a Minimum Bounding Rectangle). Once we
decide to assign a point to a cluster, we can store it more
economically, by storing its offset from the center of the
cluster, and using Huffman-like coding, since we know the



distribution of points around the center of the cluster.

Self-delimiting encoding of integers. The idea is that
small integers will require fewer bytes: we use the Elias
codes, or self-delimiting codes [6], where integer i is repre-
sented using O(log i) bits. As Table 2 shows, we can encode
the length of the integer in unary (using log i zeros), and
then the actual value, using log i more bits. Notice that the
first bit of the value part is always ’1’, which helps us decode
a string of integers, without ambiguity. The system can be
easily extended to handle negative numbers, as well as zero
itself.

number coding
length value

1 0 1
2 00 10
3 00 11
8 0000 1000

Table 2: Self-delimiting integer coding

Encoding of points. Associated with each cluster C is
the following information: Rotatedness R (either false or a
orthonormal rotation matrix to decorrelate the cluster), and
for each attribute (regardless if rotated or not) the type T
(Gaussian, Laplacian, uniform) and parameters of the data
distribution. Once we decide that point P belongs to cluster
C, we can encode the point coordinates succinctly, exploit-
ing the fact that it belongs to the known distribution. If p
is the value of the probability density function for attribute
Pi then we need O(log 1/p) bits to encode it. For a white
Gaussian distribution, this is proportional to the Euclidean
distance; for an arbitrary Gaussian distribution, this is pro-
portional to the Mahalanobis distance. For a uniform dis-
tribution in, say, the Minimum Bounding Rectangle (MBR)
(lbi, ubi, with 0 ≤ i < d and lb for lower bound, ub for up-
per bound, respectively), the encoding will be proportional
to the area of the MBR.

The objective of this section is to develop a coding scheme
for the points ~x of a cluster C which represents the points in
a maximally compact way if the points belong to the cluster
subspace and to the characteristic distribution functions of
the cluster. Later, we will inversely define that probability
density function which gives the highest compression rate to
be the right choice. For this section, we assume that all at-
tributes of the points of the cluster have been decorrelated
by PCA, and that a distribution function along with the
corresponding parameters has already been selected for each
attribute. For the example in Figure 2 we have a Laplacian
distribution for the x-coordinate and a Gaussian distribu-
tion for the y-coordinate. Both distributions are assumed
with µ = 3.5 and σ = 1. We need to assign code pat-
terns to the coordinate values such that coordinate values
with a high probability (such as 3 < x < 4) are assigned
short patterns, and coordinate values with a low probability
(such as y = 12 to give a more extreme example) are as-
signed longer patterns. Provided that a coordinate is really
distributed according to the assumed distribution function,
Huffman codes optimize the overall compression of the data
set. Huffman codes associate to each coordinate xi a bit

5% 4.3 bit

19%
2.3 bit

pdfLapl(3.5,1)(x)
pdfG

auss(3.5,1) (y)
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Figure 2: Example of VAC.

string of length l = log2(1/P (xi)) where P (xi) is the prob-
ability of the (discretized) coordinate value. Let us fix this
in the following definition:

Definition 1 (VAC of a point ~x). Let ~x ∈ Rd be a

point of a cluster C and
−→
pdf(~x) be a d-dimensional vector

of probability density functions which are associated to C.
Each pdfi(xi) is selected from a set of predefined probabil-
ity density functions with the corresponding parameters, i.e.
PDF = {pdfGauss(µi,σi), pdfuniform(lbi,ubi), pdfLapl(ai,bi), ...},
µi, lbi, ubi, ai ∈ R, σi, bi ∈ R+. Let γ be the grid constant
(distance between grid cells). The VACi (volume after com-
pression) of coordinate i of point ~x corresponds to

V ACi(x) = log2

1

pdfi(xi) · γ

The VAC (volume after compression) of point ~x corresponds
to

V AC(x) = (log2

n

|C| ) +
X

0≤i<d

V ACi(x)

In Figure 2 this is shown for the marked example point: The
x-coordinate (between 2 and 3) has a probability of 19%.
Thus, Huffman compression needs a total of log2(1/0.19) =
2.3 bits. The y-coordinate of this point is in a range of lower
probability (5%) and needs a longer bit string (4.3 bits). In
addition to 6.6 bits for the coordinates, the Huffman-coded
cluster-Id is stored for each point with log2(n/|C|) bits.

Naturally, the question arises to what extent this coding
depends on the choice of the grid resolution. The absolute
value of the code length clearly depends on the grid reso-
lution. It can easily be shown that the code length of each
coordinate is increased by 1 bit if the number of grid cells
per dimension is doubled (γ is divided by 2). This is in-
dependent of the applied probability distribution function,
number of clusters, etc. Since we only compare the VAC



of different cluster structures, distribution functions, sub-
spaces, etc, and leave the grid resolution at a constant level,
high enough to distinguish the different points from each
other, the overall result of our algorithm is not sensitive to
the grid resolution.

Next, we address the question, which set of probability den-
sity functions has to be associated to a given cluster C. Our
optimization goal is data compression, so we should, for each
coordinate, select that pdf (and corresponding parameter
setting) which minimizes the overall VAC of the cluster. It
is well known that for a fixed type of pdf (e.g. Gaussian)
the optimal parameter setting can correspond to the sta-
tistics (e.g. mean, variance, boundaries) of the data set.
Therefore, if the Gaussian pdf is selected for an attribute i,
we use the mean and variance of the i-th coordinate of the
points as parameters of the pdf . Likewise, for the Laplacian
distribution, we apply ai = µi and bi = σi/

√
2. For the

uniform distribution, we apply the lower and upper limit of
the range of the coordinate values. For the selection of the
type of probability density function, we explicitly minimize
the VAC of the cluster, i.e.:

Definition 2 (characteristic
−→
pdf(~x) of cluster C).

Let C be a cluster with points ~x ∈ C.
Let stat = (µi, σi, lbi, ubi, ...) be the statistics of the data
required in the set of allowed probability density functions

PDF . Then,
−→
pdf is composed from pdfi ∈ PDF where

pdfi = argmin
pdfstat∈PDF

X
~x∈C

log2

1

pdfstat(xi) · γ

For the x-coordinate of the example in Figure 2 that means
the following: First required statistics, i.e. mean (3.5), vari-
ance (1.0), and lower and upper limit (1.4, 6.2) of the data
set is determined. Then, V ACx is determined for all allowed
pdf ∈ PDF , i.e. for pdfuniform(1.4,6.2), pdfGauss(3.5,1.0) and
pdfLapl(3.5,0.7). The function yielding the lowest V AXx is
selected. Then, the same is done for V ACy. Throughout
the paper we focuss on three widespread distributions of
high practical relevance: Gaussian, Laplacian and uniform.
Definition 2 can easily be extended to other pdf -functions.

Finally, we define when to use a decorrelation matrix. A
decorrelation matrix is needed whenever a cluster is a cor-
relation cluster, i.e. if one (or more) attribute value of the
points of the cluster depends on the value of one (or more)
other attribute. The decorrelation matrix can be gained
from principal component analysis (PCA) of the d×d covari-
ance matrix Σ of the points of the cluster and corresponds
to the transpose of the orthonormal matrix V T gained from
PCA diagonalization V ΛV T = Σ. We give more details
on estimating the covariance matrix in a noise robust way
in Section 3.2. Decorrelating data can greatly reduce the
VAC of the cluster because, instead of having two attributes
with a high variance (which incurs high coding cost for any
model pdf) and a high correlation, we obtain two new vari-
ables without any correlation, one having variance close to
zero (VAC of almost 0 bit). Intuitively, we want to use a
decorrelation matrix if (and only if) the VAC improvement
is considerable. To obtain a fully automatic method without
user-defined limits we use decorrelation iff the VAC savings
at least compensate the effort of storing the decorrelation
matrix:

Definition 3 (Decorrelation of a cluster). Let C
be a cluster of points ~x (in the original coordinate system), Σ
be a covariance matrix associated to C and V the decorrela-
tion matrix obtained by PCA diagonalization of Σ. Let Y be
the set of decorrelated points, i.e. for each ~y ∈ Y : ~y = V T·~x.

Let
−→
pdf(~x) be the characteristic pdf of the original cluster and

−→
pdf(~y) that of the decorrelated set Y . The decorrelation of
C is

dec(C) =

(
I if

P
~y∈Y V AC(y) + d2f >

P
~x∈C V AC(x)

V otherwise

The information which of the two cases is true, is coded by 1
bit. The matrix V is coded using d× d floating values using
f bits. The identity matrix needs no coding (0 bits):

V AC(dec(C)) =

(
1 if
P

~y∈Y V AC(y) + d2f >
P

~x∈C V AC(x)

d2 · f + 1 otherwise

The following definition puts these things together.

Definition 4 (Cluster Model). The cluster model of
a cluster C is composed from the decorrelation dec(C) and

the characteristic
−→
pdf(~y) where ~y = dec(C) · ~x for every

point ~x ∈ C. The Volume After Compression of the cluster
V AC(C) corresponds to

V AC(C) = V AC(dec(C)) +
X
~x∈C

V AC(dec(C) · ~x)

3.2 Robust Fitting (RF)
We consider the combination of the cluster’s subspace

and the characteristic probability distribution as the clus-
ter model. A data point in a (tentative) cluster could be
either a core point or an outlier, where core points are de-
fined as points in the cluster’s subspace which follow the
characteristic probability distribution of the cluster model,
while the outliers are points that do not follow the distrib-
ution specified by the cluster model. We will also call the
outliers noise (points).

Having outliers is one reason that prevents conventional
clustering methods from finding the right cluster model (us-
ing e.g. PCA). If the cluster model is known, filtering out-
liers is relatively easy – just remove the points which fit the
worst according to the cluster model. Likewise, determining
the model when clusters are already purified from outliers
is equally simple. What makes the problem difficult and in-
teresting is that we have to filter outliers without knowledge
of the cluster model and vice versa.

Partitioning clustering algorithms such as those based on
K-means or K-medoids typically produce clusters that are
mixed with noise and core points. The quality of these clus-
ters is hurt by the existence of noise, which lead to a biased
estimation of the cluster model.

We propose an algorithm for purifying a cluster that, after
the processing, noise points are separated from their origi-
nal cluster and form a cluster of their own. We start with
a short overview of our purification method before going
into the details. The procedure starts with getting as input
a set of clusters C={C1, . . . , Ck} by an arbitrary clustering
method. Each cluster Ci is purified one by one: First, the
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Figure 3: Conventional and robust estimation.

algorithm estimates an orthonormal matrix called decorre-
lation matrix (V ) to define the subspace of cluster Ci. A
decorrelation matrix defines a similarity measure (an ellip-
soid) which can be used to determine the boundary that
separates the core points and outliers. Our procedure will
pick the boundary which corresponds to the lowest overall
VAC value of all points in cluster Ci. The noise points are
then removed from the cluster and stored in a new cluster.
Next, we elaborate on the steps for purifying a cluster of
points.

3.2.1 Robust Estimation of the Decorrelation Matrix
The decorrelation matrix of a cluster Ci contains the vec-

tors that define (span) the space in which points in cluster
Ci reside. By diagonalizing the covariance matrix Σ of these
points using PCA (Σ = V ΛV T), we obtain an orthonormal
Eigenvector matrix V , which we defined as the decorrelation
matrix. The matrices V and Λ have the following proper-
ties: the decorrelation matrix V spans the space of points
in C, and all Eigenvalues in the diagonal matrix Λ are pos-
itive. To measure the distance between two points ~x and ~y,
taking into account the structure of the cluster, we use the
Mahalanobis distance defined by Λ and V :

dΣC (~x, ~y) = (~x− ~y)T · V · Λ−1 · V T · (~x− ~y).

Given a cluster of points C with center ~µ, the conventional
way to estimate the covariance matrix Σ is by computing a
matrix ΣC from points ~x ∈ C by the following averaging:

ΣC = 1/|C|
X
~x∈C

(~x− ~µ) · (~x− ~µ)T,

where (~x − ~µ) · (~x − ~µ)T is the outer vector product of the
centered data. In other words, the (i, j)-entry of the ma-
trix ΣC , (ΣC)i,j , is the covariance between the i-th and
j-th attributes, which is the product of the attribute values
(xi − µi) · (xj − µj), averaged over all data points ~x ∈ C.
ΣC is a d × d matrix where d is the dimension of the data
space.

The two main problems of this computation when confronted
with clusters containing outliers are that (1) the centering
step is very sensitive to outliers, i.e. outliers may heav-
ily move the determined center away from the center of the
core points, and (2) the covariances are heavily affected from
wrongly centered data and from the outliers as well. Even
a small number of outliers may thus completely change the
complete decorrelation matrix. This effect can be seen in

Figure 3 where the center has been wrongly estimated using
the conventional estimation. In addition, the ellipsoid which
shows the estimated “data spread” corresponding to the co-
variance matrix has a completely wrong direction which is
not followed by the core points of the clusters.

To improve the robustness of the estimation, we apply an
averaging technique which is much more outlier robust than
the arithmetic means: The coordinate-wise median. To cen-
ter the data, we determine the median of each attribute in-
dependently. The result is a data set where the origin is
close to the center of the core points of the cluster ( ~µR),
rather than the center of all points (~µ).

A similar approach is applied for the covariance matrix:
Here, each entry of the robust covariance matrix (ΣR)i,j is
formed by the median of (xi−µRi)·(xj−µRj ) over all points
~x of the cluster. The matrix ΣR reflects more faithfully the
covariances of the core points, compared to the covariance
matrix obtained by the arithmetic means.

The arithmetic-mean covariance matrix ΣC has the diag-
onal dominance property, where the each diagonal element
Σi,i is greater than the sum of the other elements of the
row Σ∗,i. The direct consequence is that all Eigenvalues in
the corresponding diagonal matrix Λ are positive, which is
essential for the definition of dΣ(~x, ~y).

However, the robust covariance matrix ΣR might not have
the diagonal dominance property. If ΣR is not diagonally
dominant, we can safely add a matrix φ · I to it without
affecting the decorrelation matrix. The value φ can be cho-
sen as the maximum difference of all column sums and the
corresponding diagonal element (plus some small value, say
10%):

φ = 1.1 · max
0≤i<d

{(
X

0≤j<d,i6=j

(ΣC)i,j)− (ΣC)i,i}.

It can easily be seen that adding the matrix φI does only af-
fect the Eigenvalues and not the Eigenvectors: If Σ = V ΛV T

then Σ + φI = V ΛV T + φI. Since V is orthonormal, φI
can also be written as V φIV T, and due to the distributive
law we have Σ + φI = V (Λ + φI)V T, i.e. each Eigenvalue is
increased by φ and matrix V is unaffected by this operation.

Using our robust estimation technique, the center in Fig-
ure 3 is correctly positioned and the ellipsoid which repre-
sents the covariance matrix follows the distribution of the
core points. The safe decorrelation matrix V (cf. Figure 4)

V=[v1,v2]

x

VT . x

v2

v1

Figure 4: The decorrelation matrix.



which has been generated from the safely estimated covari-
ance matrix is composed from Eigenvectors which indicate
the directions of maximum variance of the core of the clus-
ter. When transforming the data by multiplication of V T

we remove the correlations of the attributes. Note that we
do not decide about a projection into a lower dimensional
space at this stage, i.e. no information loss.

3.2.2 Partitioning Points into Core and Noise
The first step of purifying a cluster of points is to iden-

tify the proper decorrelation matrix. We generate several
estimates (called candidates) of the covariance matrix, us-
ing various estimation methods, and pick the one with the
best overall VAC value. In our experiments, the candidates
include the matrix ΣC from the conventional method us-
ing arithmetic average, matrix ΣR from the robust method
described above. We also determine a conventional and a
robust candidate, matrices ΣC,50 and ΣR,50 respectively, by
considering only a certain percentage (e.g. 50%) of points
in the cluster being closest to the robustly estimated center
~µR. In addition, we always have the identity matrix I as one
candidate decorrelation matrix. Among these matrices, our
algorithm selects the matrix giving the best (lowest) over-
all VAC. For our example in Figure 3, the diagram at the
right shows that the lowest VAC value of 1480 is reached
for robust estimation in contrast to 1600 for conventional
estimation.

The next step is to detect noise points in the cluster. By
now, we have computed the robust center ~µR, and chosen
a candidate covariance matrix, which we call Σ∗ (the corre-
sponding decorrelation matrix is V ∗). The goal is to parti-
tion the set of points in cluster C into two new sets: Ccore

(for the core points) and Cout (outliers). First, our method
orders the points of C according to the Mahalanobis distance
defined by the candidate covariance matrix Σ∗. Initially, we
define all points to be outliers (Cout = C, Ccore = {}). Then,
we iteratively remove points ~x from Cout (according to Ma-
halonobis sort order starting with the point closest to the
center) and insert them into Ccore, and compute the coding
costs before and after moving the point ~x.

At each iteration, the point ~x being moved from Cout to
Ccore, is first projected to the space defined by the selected
candidate decorrelation matrix V ∗. Then, the coding cost of
the new configuration (Ccore∪{~x}, Cout−{~x}) is determined
as the cost where each of the coordinates is modeled using
that distribution function which gives least coding costs.
Outlier points are always coded using uniform distribution.
So each of these configurations corresponds to one given ra-
dius of the ellipsoid partitioning the set into core and noise
objects. The partition which had the least overall cost in
this algorithm is finally returned (cf. Figure 3 where at the
minimum (1480) we have 24 objects in the core set and 6
objects in the noise set).

The diagram in Figure 3 depicts the VAC value (Y-axis)
of the different configuration (Ccore, Cout) at each iteration
(X-axis). Figure 3 shows two VAC-value curves, one for the
conventional candidate decorrelation matrix (VC) and the
other for the robust estimation (VR). At the beginning, all
points are regarded as noise points, yielding a VAC value of
approximately 1800 for both candidate matrices. As more

Data structure clusters C = {C1, . . . , Ck}
Each cluster Ci, has two members:

Ci.points: points in cluster Ci.
Ci.VAC: the VAC value of cluster Ci.

algorithm refined clusters R = RIC (initial clusters C)

clusters P:= RobustFitting(C);
clusters R:= ClusterMerging(P);

return refined clusters R;

algorithm clusters P = RobustFitting(initial clusters C)

// Purifying clusters from noise.

Initialize the output clusters P = {}. for each cluster C ∈ C
Estimate the direction matrix;
Search for the best split of C into Ccore (core objects) and Cout

(noise objects), according to the minimal VAC value;
Initialize the VAC values of Ccore and Cout.

P = P ∪ {Ccore, Cout};
return purified clusters P;

algorithm clusters C = ClusterMerging(clusters C, int t)

//Merging purified clusters.

while |C| > 1 and savedCost > 0
Find the best pair of clusters to merge:

[(C∗1, C∗2), mergedVAC(C∗1,C∗2)]= findMergePair(clusters C);
Merge C∗1 and C∗2 as Cnew = {C ∗1 ∪C∗2}:
C = C − {C∗1, C∗2} ∪ {Cnew}.

Set VAC(Cnew) := mergedVAC(C∗1,C∗2);
end while

while |C| > 1 and counter < t
//Improved search: Getting out of local minimum

Find the best pair of clusters to merge:
[(C∗1, C∗2), mergedVAC(C∗1,C∗2)]= findMergePair(clusters C);

counter + +;
Merge C∗1 and C∗2 as Cnew = {C ∗1 ∪C∗2}
Set VAC(Cnew) := mergedVAC(C∗1,C∗2);

end while

return the clustering C with the minimum overall VAC value, found during
the t iterations;

subroutine [(C∗1, C∗2), mergedCost(C∗1,C∗2)]= findMergePair(clusters
C)

// Find cluster pair with the best (maximal savedCost).

for all cluster pairs (Ci, Cj) ∈ C × C
mergedVAC(Ci,Cj) := VAC(Ci ∪ Cj);
savedCost(Ci,Cj):=(VAC(Ci)+VAC(Cj))-mergedVAC(Ci,Cj);

find the cluster pair to merge:
(C∗1, C∗2)=argmax(Ci,Cj)savedCost(Ci, Cj);

return The cluster pair (C∗1, C∗2), and their mergedCost(C∗1,C∗2);

Figure 5: RIC algorithm.

and more points are moved from Cout to the set of core
points Ccore, the VAC value improves (decreases). For the
robust decorrelation matrix (VR), the VAC value reaches the
minimum of 1480 when there are 24 core points. After this,
the VAC value increases again to approximately 1800.

3.3 Cluster Merging (CM)
Our RIC framework is designed to refine the result of any

clustering algorithm (e.g., K-means). Due to imperfection
of the clusters given by an algorithm, our cluster purifying
algorithm may lead to redundant clusters containing noise
objects that fit well to other neighboring noise clusters. In
this section we describe our proposed cluster merging proce-
dure in more detail, to correct the wrong cluster assignments
caused by the original clustering algorithm.

For example, the K-means clustering algorithm tends to
partition data incorrectly, when the true clusters are non-
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Figure 6: 2-d synthetic data.
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Figure 7: 3-d synthetic data.

compact. These clusters are often split up into several parts
by K-means. A typical, inappropriate partitioning is shown
in Figure 6(a). Our algorithm corrects the wrong partitions
by merging clusters that share common characteristics, takes
into account the subspace orientation and data distribution.

We use the proposed VAC value to evaluate how well two
clusters fit together. The idea is to check whether the merg-
ing of a pair of clusters could decrease the corresponding
VAC values. Mathematically, let V AC(C) be the VAC value
for a cluster C. We also define savedCost(Ci, Cj) of a clus-
ter pair (Ci, Cj) as

savedCost(Ci, Cj) = V AC(Ci)+V AC(Cj)−V AC(Ci∪Cj).

If savedCost(Ci, Cj) > 0, then we consider the cluster pair
(Ci, Cj) a potential pair for merging.

Our proposed merging process is an iterative procedure.
At each iteration, our algorithm merges the two clusters
which have the maximum savedCost(., .) value, resulting
in a greedy search toward a clustering that has the mini-
mum overall cost. To avoid this greedy algorithm from get-
ting stuck in a local minimum, we do not stop immediately,
even when there is no saving of savedCost(., .) value can be
achieved by merging pairs of clusters. That is, we do not
stop when savedCost(., .) ≤ 0. Instead, the algorithm con-
tinues for another t iterations, continuous to merge cluster
pairs (Ci, Cj) with the maximum savedCost(Ci, Cj) value,
even though now the savedCost(Ci, Cj) value is negative,
and merging Ci and Cj will increase the VAC value of the
overall data set. Whenever a new minimum is reached the
counter is reset to zero. Pseudocode for the RIC algorithm
is given in Figure 5.

4. EXPERIMENTS

4.1 Results on Synthetic Data
Especially widespread K-means and K-medoid clustering

methods often fail to separate clusters from noise and, there-
fore produce results where the actual clusters are contam-
inated by noise points. Figure 6(a) shows the result of K-
means with k = 8 on a synthetic 2-d data set consisting
of 4751 data objects. Two of the resulting clusters con-
tain many noise objects, among them the one dimensional
correlation cluster. In Figure 6(b) the result of the cluster
purifying algorithm is depicted. Five of the eight initial clus-
ters have been split up into clusters containing noise objects
and clusters with core points. Three of the initial clusters
contain only noise objects. No objects need to be filtered
out, so these partitions remain unchanged. The purifying
algorithm reduces the overall VAC from 78,956 to 78,222.

As a building block we provide fully automatic noise fil-
tering and outlier detection. Our approach is model based,
supports subspace and correlation clusters and various data
distributions. It provides a natural cut-off point for the
property of being an outlier based on the coding cost.

After the initial clusters have been purified our algorithm
merges together clusters with common characteristics, such
as common subspace orientation or data distribution. In the
example depicted in Figure 6(a) the cluster in the center has
been split up into three parts by K-means. This inappro-
priate partitioning is corrected by the cluster merging algo-
rithm (cf. Figure 6(c)). Also the noise clusters generated by
the previously applied cluster purifying algorithm are now
merged. The resulting clustering in our example consists



of four clusters. The cluster merging algorithm drastically
reduces the VAC-score by removing redundant clusters.

As a particular value-added over conventional clustering,
RIC provides information on the data distribution of the
coordinates. In our example, the x-coordinate of the correla-
tion cluster (top left in Figure 6(d)) is uniformly distributed,
the y-coordinate Gaussian. Both coordinates of the top right
cluster follow a Gaussian distribution. Both coordinates of
the bottom left cluster are Laplacian and both coordinates
of the bottom right cluster (representing the noise objects)
are uniformly distributed.

We demonstrate the performance of the cluster filtering and
merging algorithm on a 3-d synthetic data containing 7500
data objects (cf. Figure 7). This data set consists of one
plane (2-d correlation cluster, 2000 objects) and 3 lines (1-d
correlation clusters, two with 2000 objects each, one with
1000 objects) and 500 noise objects. Note that one of the
lines is embedded in the plane. Figure 7(a) shows the clus-
tering result of K-means with k = 20. The correlation clus-
ters are split up in several parts and the noise objects are
distributed among all clusters. This initial clustering ob-
tains a VAC-score of 202,078. After applying the cluster
purifying and merging algorithm, we obtain a much better
clustering result with VAC 153,393. 98.6% of the noise ob-
jects are correctly assigned to the noise cluster. The plane
is 94.6% pure and the lines, even the one embedded in the
plane, are from 99.5% to 100% pure.

The DBSCAN algorithm (MinPts = 4, ε = 0.1) correctly
detects the lines but fails to separate the plane from the
noise objects, and creates many small clusters in dense ar-
eas of the plane (cf. Figure 7(b)). There are 34 initial clus-
ters in total. This result has a VAC-score of 195,276. After
the purifying and merging algorithm we obtain a VAC of
155,412 and a very similar result as depicted in 7(c). This
demonstrates that the RIC framework can be applied with
various partitioning clustering methods. Since the data set
has been artificially generated, we can determine the VAC
for the ideal clustering (exactly corresponding to the gener-
ated clusters): The VAC of the ideal clustering (151 637) is
almost reached by RIC after K-means as well as RIC after
DBSCAN.

The gready fashion optimization process is efficient. We
implemented the RIC algorithm in Java. Runtimes for the
synthetic data sets are 147 s for the 2-d data set and 567 s
for the 3-d data set on a PC with 3 GHz CPU and 1 GB
RAM.

4.2 Performance on Real Data

4.2.1 Metabolome Data
We evaluate the RIC framework using a high dimensional

metabolic data set. This 14-dimensional data set (643 in-
stances) was produced by modern screening methodologies
and represents 306 cases of PKU, a metabolic disorder, and
337 objects from a healthy control group. As initial cluster-
ings, we used spectral clustering (with d = 12 dimensions),
and K-means; in both cases we used k = 6 initial clusters.
To evaluate class purity of the clusterings, we report IMP,
the count of ’impurities’, defined as the count of minority

Table 3: Clusters found by RIC.
method c-id control PKU VAC IMP

RIC+K-means 1 0 275
2 337 31 74,298 31

K-means k=2 1 0 222
2 337 84 75, 497 84

RIC+spectral 1 2 282
2 335 24 72,131 26

spectral k=2 1 2 224
2 335 82 75,922 84

points in each cluster. The initial clusterings have an IMP of
31 and a VAC of 77,822 for K-means and an IMP of 26 and a
VAC of 78,184 for spectral clustering, respectively. Table 3
shows the the same quantities and the clustering results after
we apply RIC. Notice that in all cases, RIC achieved every-
thing we wanted: (a) it found the correct number of clus-
ters, (b) it achieved better compression (lower VAC score,
as expected). For comparison, we also show the results of
K-means and spectral clustering, after setting k=2 (which
gives an unfair advantage to them over RIC). Even so, notice
that RIC achieves both lower VAC score, as well as better
impurity count IMP. Using k = 2, both, K-means and spec-
tral clustering assign many instances of class PKU to the
cluster of the control group.

4.2.2 Cat Retina Images
The data we considered here are image blocks in retinal

images from the UCSB BioImage (http://bioimage.ucsb.
edu/) database. The blocks are taken from 219 images of
retina under 9 different conditions (healthy, diseased, etc.).
Each image is of size 512-by-768. We take non-overlapped
pixel blocks (which are called tiles) of size 64-by-64 from
each image, and collect in 96 tiles per image, or 21,024 tiles
in total. Each tile is represented as a vector of 7 features,
exactly as suggested in [4].

Figure 8(a) visualizes the distribution of the image tiles.
The distribution is viewed from all possible pairs of dimen-
sions – the (i, j)-subfigure plots the i-th dimension versus
the j-th dimension. The histograms at the diagonal sub-
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Figure 8: (a): Visualizing the distribution of the
7-dimensional retinal image tiles. Each subfigure
shows the distribution of two dimensions. The data
set contains non-Gaussian clusters. (b): The 13
clusters found by RIC. Figures look best in color.
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Figure 9: Example clusters on retinal image tiles
found by RIC.

(a) (b)

Figure 10: The white boxes in the two retinal images
indicate example tiles in selected clusters. Left (a):
Tiles at position A of cluster of Figure 9(a) Right
(b): Tiles at position B of cluster of Figure 9(d).
Best viewed in color.

figures depict the distribution of values in each dimension.
The retina image tiles clearly have a non-Gaussian distri-
bution with correlation clusters. Some views show strong
correlation patterns, for example, the view of the first and
5-th dimensions (the subfigure at the first row and the fifth
column). In the following discussion, we will focus on the
view of the first and 5-th dimensions, and show that our
RIC framework is able to find the non-Gaussian, correlation
clusters in this data set.

Moreover, most of the coordinates in the detected clusters
clearly show a supergaussian distribution, which is reported
as Laplacian by RIC. Let us note that our framework is
extensible and can incorporate every data distribution that
has a pdf . Figure 8(b) shows the RIC clustering result on
the retinal tiles, where points of a cluster are plotted with an
unique symbol. In total, RIC produces 13 clusters for this
data set. We plot each cluster separately in different figures,
for better visualization of the clustering result. Some plots
of individual clusters are shown in Figure 9(a)-(f). It can
be easily seen that the proposed RIC method successfully
finds the correlation clusters in this data set, and, unlike
other methods like K-means, it will neither over-cluster nor
under-cluster the data set.

The question is: is there any biological meaning to the clus-
ters derived by RIC? The answer is ’yes’: Tiles from cluster

(A) (see Figure 9(a)) are shown in Figure 10(a), and tend
to correspond to the so-called “Müller cells”. Similarly, tiles
from cluster (B) (see Figure 9(d)) are shown in Figure 10(b),
and tend to correspond to the so-called “rod photorecep-
tors”.

Specifically, Figure 10 shows the layers of cells of a cat’s
retina. The red and green colors in the image indicate the
distribution of two proteins (“rod opsin” and “GFAP”). In
Figure 10(a), the white boxes highlight two tiles at position
A of the cluster shown in Figure 9(a). The image shows the
situation of a layer-detached retina being treated with oxy-
gen exposition. The tiles highlighted are “Müller cells”, with
protein GFAP propagated from the inner layer of the retina.

In Figure 10(b), the white boxes highlight two tiles at posi-
tion B of the cluster shown at Figure 9(d). The image shows
the case of a retina which has suffered layer detachment for
3 months. The tiles highlighted are the “rod photorecep-
tors”, with the protein rod opsin redistributed into the cell
bodies, which are typical for detached retinas.

The point is that our clustering method, without any do-
main knowledge, manages to derive groups of tiles that do
have biological meaning (Müller cells and rod photorecep-
tors, respectively).

5. CONCLUSIONS
The contributions of this work are the answers to the two

questions we posed in the introduction, organized in our RIC
framework.

• (Q1) Goodness measure: We propose the VAC-
criterion using information-theory concepts and specif-
ically, the volume after compression.

• (Q2) Efficiency: We introduce two novel algorithms,
which, together, can help us find good groupings, in a
fast, “greedy” fashion

– the Robust Fitting (RF) algorithm, which care-
fully avoids outliers. Outliers plague all the meth-
ods that use the Euclidean distance (or, equiva-
lently, try to maximize the likelihood for Gaussian
clusters)

– the Cluster Merging (CM) algorithm, which stitches
clusters together, if the stitching gives a better
VAC score

We show that our RIC framework is very flexible, with
several desirable properties that previous clustering algo-
rithms don’t have:

• it can handle any of the known distributions (Gaussian,
uniform, Laplacian) The vast majority of clustering al-
gorithms focus on the Gaussian distributions, only.

• it can be extended to any other distribution we want

• it is orthogonal to the searching algorithm that will
look for clusters.

• it naturally gives outliers (single-member clusters)



• it gives more information: not only it gives the clus-
ters, but also the cluster shapes (uniform, Gaussian,
Laplacian)

• it is fully automatic (no complex parameter setting)
and time and space efficient.

More importantly, the RIC framework does not compete
with existing (or future) clustering methods: in fact, it can
benefit from them! If a clustering algorithm is good, our RIC
framework will use its grouping as a starting point, it will
try to improve on it (through the ’Robust Fit’ and ’Cluster
Merge’ algorithms), and, it will either improve it, or declare
it as the winner. In short, the RIC framework can not lose
- at worst, it will tie!

We also presented experiments on real and synthetic data,
where we showed that our RIC framework and algorithms
give intuitive results, while typical clustering algorithms fail.
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