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Abstract. In this paper, we introduce a unified approach for querying
simulation traces of rule-based models about the statistical behavior of
individual agents. In our approach, a query consists in a trace pattern
along with an expression that depends on the variables captured by this
pattern. On a given trace, it evaluates to the multiset of all values of
the expression for every possible matching of the pattern. We illustrate
our proposed query language on a simple example, and then discuss
its semantics and implementation for the Kappa language. Finally, we
provide a detailed use case where we analyze the dynamics of β-catenin
degradation in Wnt signaling from an agent-centric perspective.
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1 Introduction

Rule-based modeling languages such as Kappa [2] and BioNetGen [6] can be
used to write mechanistic models of complex reaction systems. Models in these
languages consist of stochastic graph-rewriting rules that are equipped with rate
constants indicating their propensity to apply. Together with an initial mixture
graph, these rules constitute a dynamical system that can be simulated using
Gillespie’s algorithm [5,3,1]. Each run of simulation results in a sequence of
transitions that we call a trace.

In practice, simulation traces are often discarded in favor of a limited number
of global features, such as the concentration curves of a set of observables. How-
ever, a more detailed analysis of their structure and statistical properties can
provide useful insights into a system’s dynamics. For example, causal analysis
methods exist [2,4] that compress a large trace into a minimal subset of events
that are necessary and jointly sufficient to replicate an outcome of interest, and
then highlight causal influences between those remaining events. Queries about
the statistical behavior of individual agents can lead to complementary insights.
Examples include (i) measuring the average lifespan of a complex under different
conditions, (ii) computing a probability distribution over the states in which a
particular type of agent can be when targeted by a given rule, and (iii) estimat-
ing how much of a certain kind of substrate getting phosphorylated is due to a
particular pathway at different points in time.

In this paper, we propose a unifying language to express queries of this kind,
that are concerned with statistical features of groups of molecular events that
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are related in specific motifs. These motifs are formalized using a notion of trace
pattern. Then, evaluating a query comes down to computing the value of an
expression for every matching of a pattern into a trace. We give a first illustration
of this paradigm on a toy example in section 2. After that, we introduce our
query language in section 3 and give it a formal semantics. We then characterize
a natural subset of this language for which an efficient evaluation algorithm exists
and discuss our implementation for the Kappa language (section 4). Finally, we
leverage our query engine to explore aspects of the dynamics of the Wnt signaling
pathway in a detailed use case (section 5).

2 A Starting Example

In order to illustrate our Trace Query Language, we introduce a toy Kappa
model in Figure 1. It is described using a rule notation that has been introduced
in the latest release of the Kappa simulator and which we borrow in our query
language. With this notation, a rule is described as a pattern that is annotated
with rewriting instructions. The pattern denotes a precondition that is required
for a rule to target a collection of agents. Rewriting instructions are specified by
arrows that indicate the new state of a site after transformation.

The model of Figure 1 features two types of agents: substrates S and kinases
K. Both kinds of agents have two different sites, named x and d. In addition, x-
sites can be in two different internal states: unphosphorylated and phosphorylated.
We write those states u and p, respectively. Rule b expresses the fact that a
substrate and a kinase with free d-sites can bind at rate λb. Rules u and u∗

express the fact that the breaking of the resulting complex happens at different
rates, depending on the phosphorylation state of the kinase involved. Finally,
rule p expresses the fact that a substrate that is bound to a kinase can get
phosphorylated at rate λp. In all our examples, we consider initial mixtures
featuring free substrates and kinases in smiliar quantity. Substrates are initially
unphosphorylated and kinases are present in both phosphorylation states.

By playing with this model a bit, one may notice that the concentration
of phosphorylated substrate reaches its maximal value faster when the ratio of
phosphorylated kinases is high (given the rules of our model, the latter quantity
is invariant during the simulation). This phenomenon cannot be explained by
looking at rule p alone. The query provided in (1) can be run to estimate the
probability that a substrate is bound to a phosphorylated kinase when it gets
phosphorylated:

match t :
{
S
(
xu→ p, d

1
)
, k :K

(
d 1

) }
return int state [ • t ] ( k, "x" ) (1)

Given a trace, this query matches every transition where a substrate is getting
phosphorylated and outputs the phosphorylation state of the attached kinase.
The variables t and k denote a transition and an agent, respectively. Moreover,
the expression int state [ • t ] ( k , "x" ) refers to the internal state of the site of
agent k with name "x" in the mixture preceding transition t.
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λu � λu∗ ≈ λp

b : S
(
d •→ 1

)
, K

(
d •→ 1

)
@ λb

u : S
(
d 1→ • ) , K ( d 1→ •, xu

)
@ λu

u∗ : S
(
d 1→ • ) , K ( d 1→ •, xp

)
@ λu∗

p : S
(
d 1, xu→ p

)
, K

(
d 1
)

@ λp

Fig. 1: An Example Kappa Model. On the left, it is described using the edit
notation introduced in KaSim 4. Numbers in a rule expression correspond to
local bond identifiers and • indicates a free site. Sites not mentioned in a rule
are left unchanged by it. A graphical representation is provided on the right.
Phosphorylated sites are indicated in grey. Dotted and solid arrows indicate
slow and fast reactions, respectively.

Running the previous query, we learn that substrates are much more likely
to be phosphorylated by kinases that are phosphorylated themselves, even when
such kinases are in minority in the mixture. This leads us to conjecture a causal
link between the phosphorylation state of a kinase and its efficiency. After some
thoughts, this link can be easily interpreted: because λu � λu∗ , phosphorylated
kinases form more stable complexes with substrates, leaving more chances for a
phosphorylation interaction to happen. In fact, the average lifespan of a kinase-
substrate complex is exactly λ−1u∗ when the kinase is phosphorylated and λ−1u

when it is not. We can check these numbers experimentally by running the
following query:

match b :
{
s :S

(
d •→ 1

)
, K

(
d •→ 1, xp

) }
and first u : { s :S ( d → • ) } after b

return time [u ]− time [ b ]

(2)

This query outputs a multiset of numbers, whose mean is the average lifespan
of a complex formed by a substrate and a phosphorylated kinase. The same
quantity can be computed for unphosphorylated kinases by replacing xp by xu
in the first line of (2). The pattern in this query does not match single transitions
but pairs of related transitions (b, u), where b is a binding transition and u the
first unbinding transition to target the same substrate.

More generally, a query is defined by a pattern P [t,a] and an expression
E[t,a], which feature a shared set t of transition variables and a shared set a of
agent variables. The pattern P can be regarded as a predicate that takes as its
arguments a trace τ and a matching φ mapping the variables in t and a to actual
transitions and events in τ . The expression E can be regarded as a function that
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maps such (τ, φ) pairs to values. Then, the query evaluates on a trace τ to the
multiset of all values of E, for every matching φ that satisfies P in τ .

3 The Core Query Language

In this section, we introduce the extensible core of our proposed query language
and give it a formal semantics.

3.1 Meaning and Structure of Queries

As shown in Figure 2, a query Q consists in a pattern P and an expression
E. It can be interpreted as a function JQ K from traces to multisets3 of values.
The set of allowed values can grow larger as richer expressions are added to the
language. Our current implementation defines a value as a tuple of base values
and features the following types for base values: bool, int, float, string, agent,
agent set and snapshot.

A pattern P is interpreted as a function JP K that maps a trace to a set of
matchings. A matching φ is defined by two functions φ t and φ a, which map
variable names to transition identifiers and agent identifiers, respectively. We
call φ t a transition matching and φ a an agent matching. Given a trace τ and
a matching φ, the transition variable v denotes the transition τ [φ t(v)], where
τ [i] is a notation for the ith transition of a trace. In addition, an expression E
is interpreted as a function JE K that maps a pair of a trace and a matching to
a value. The expression language is extensible and is discussed in section 3.3.
Its syntax is documented in Figure 3. Then, the semantics of a query can be
formally defined as follows:

J match P return E K (τ) = H JE K (τ, φ) | φ ∈ JP K (τ) I.

Our language constraints the structure of possible patterns. As shown in
Figure 2, a pattern consists in a sequence of clauses, which can take one of three
different forms: (t : T ), (first t : T after t′) and (last t : T before t′). Here, t and
t′ are transition variables and T is a transition pattern. In all three cases, we say
that t is constrained by the clause.

3.2 Transition Patterns

A transition pattern can be thought as a predicate that takes as its argument a
pair (τ, φ a) of a transition and an agent matching. Our current implementation
supports specifying transition patterns using KaSim’s edit notation. Transition
patterns defined this way are enclosed within curly brackets. For example, in
query (1) of section 2, {

S
(
xu→ p, d

1
)
, k :K

(
d 1

) }
3 Note that multisets are indicated in Figure 2 using Dijkstra’s bag notation, whereas

sets are indicated using the standard curly brackets notation.
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is true for a transition t and a matching φ a if and only if t has the effect of
phosphorylating a substrate that is bound to the kinase with identifier φ a(k).
Formally, a transition pattern T is interpreted as a function JT K that maps
transitions into sets of agent matchings. Using the predicate terminology, one
may say that φ a ∈ JT K (t) if and only if (t, φ a) satisfies T .

Our query language can be instantiated with any choice of a language specify-
ing transition patterns. The only requirement is that transition patterns should
be decidable efficiently in the following sense. Given a transition pattern T and a
transition t, one should be able to efficiently compute whether JT K (t) is empty
and generate an element of it in the case it is not. Our evaluation algorithm
relies on this property.

3.3 Expression Language

We show in Figure 3 the syntax of our expression language. An expression can
consist of an agent variable, a constant, a parenthesized expression, a binary
operation, a function4 of an expression, a tuple of expressions or a measure.

Measures are the basic constructs through which information is extracted
from a trace. They come in two different kinds: state measures and event mea-
sures. State measures are used to extract information about the state of the
mixture at different points in the trace. They are parametered with state ex-
pressions that can take the form • t or t • , denoting the states before and after
transition t, respectively. For example, the int state measure that is used in (1)
is a state measure. In addition, event measures are used to extract information
that is about a transition itself (in contrast to the states that it connects). They
are parametered by transition variables. For example, the time measure that is
used in (2) is an event measure.

The expression language can be easily extended with new operators, func-
tions, measures and types. In the same way than the language for specifying
transition patterns, it should be regarded as a parameter of our query language
and not as a rigid component.

4 Evaluating Queries

In this section, we introduce a natural subset of the language described in sec-
tion 3, for which we provide an efficient implementation. Queries in this subset
are said to be regular, and they display an interesting rigidity property.

4.1 Rigidity

Intuitively, a pattern is said to be rigid if its matchings are completely determined
by the value of a single transition variable.

4 Note that functions always take a single argument, which can be a tuple.
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query Q := match P return E JQ K ∈ Trace→ H Value I

pattern P := C JP K ∈ Trace→ {Matching }

| C andC

clause C := t : T JC K ∈ Trace→ {Matching }

| first t : T after t′

| last t : T before t′

transition pat. T := · · · JT K ∈ Transition→ {Matching a }

expression E := · · · JE K ∈ Trace×Matching→ Value

J match P return E K (τ) = H JE K (τ, φ) | φ ∈ JP K (τ) I

JC and C′ K (τ) = JC K (τ) ∩ JC′ K (τ)

J t : T K (τ) = {φ | φ a ∈ JT K (τ [φ t(t)]) }

q
first t : T after t′

y
(τ) =

{
φ
∣∣∣ φ a ∈ JT K (τ [φ t(t)]) , φ t(t

′) < φ t(t) ,

∀i. φ t(t
′) < i < φ t(t) =⇒ φ a /∈ JT K (τ [i])

}

q
last t : T before t′

y
(τ) =

{
φ
∣∣∣ φ a ∈ JT K (τ [φ t(t)]) , φ t(t) < φ t(t

′) ,

∀i. φ t(t) < i < φ t(t
′) =⇒ φ a /∈ JT K (τ [i])

}

Fig. 2: Syntax and semantics of the Trace Query Language

expression E := a | C | (E ) | E ./ E | f (E ) | E , E |

Ms[S ] | Ms[S ](E ) | Me[ t ] | Me[ t ](E )

constant C := 0 | 1 | · · · | "foo" | · · ·

binary operator ./ := + | − | = | < | · · ·

function f := agent id | size | count | · · ·

state measure Ms := int state | component | snapshot | · · ·

state expression S := • t | t •

event measure Me := time | rule | · · ·

(with a an agent variable and t a transition variable)

Fig. 3: Syntax of expressions
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Definition 1. Given a Kappa model, a pattern P is said to be rigid if and only
if it features a transition variable r called root variable such that for any trace
τ that is valid in the model, we have

∀φ, φ′ ∈ JP K (τ), φ t (r) = φ′t (r) =⇒ φ = φ′.

For example, the pattern P of query (2) is rigid, with root variable b. Indeed,
suppose that b is matched to a specific transition t. Then, the agent variable
s is determined by t as no more than one substrate can get bound during a
single transition given the rules of our model (Figure 1). Finally, u is uniquely
determined as the first unbinding event that targets s after b.

An easy consequence of Definition 1 is that the number of matchings of a
rigid pattern into a trace is bounded by the size of this trace.

4.2 Regular Queries

Our evaluation algorithm handles a subset of queries whose patterns admit a
certain tree structure. For those patterns, rigidity is implied by a weaker notion
of local rigidity.

Definition 2. Given a Kappa model, a transition pattern T is said to be rigid if
and only if for any agent variable a that appears in T and every valid transition
t, we have

∀φ a , φ
′
a ∈ JT K , φ a(a) = φ′a(a).

Intuitively, a transition pattern is rigid if matching it to a transition determines
all its agent variables.

Definition 3. Given a model, a pattern P is said to be locally rigid if it features
only rigid transition patterns. Then, a transition variable t is said to determine
an agent variable a if there is a clause of P that constrains5 t and features a.

For patterns with a particular structure, local rigidity implies rigidity. This struc-
tural assumption can be expressed in terms of a pattern’s dependency graph.

Definition 4. The dependency graph of a pattern P is a graph whose nodes are
the transition variables of P and for which there is an edge from t to t′ if and
only if P contains a clause of the form (first t′ : T after t) or (last t′ : T before t).

We can now define the notion of a regular pattern, and thus of a regular query.

Definition 5. A pattern is said to be regular if the following three conditions
hold: (i) it is locally rigid (ii) its dependency graph is a tree (iii) whenever two
of its transition variables determine a same agent variable, one of them has to
be a descendent of the other in the dependency tree.

This structure enables an efficient enumeration of the matchings of a regular
pattern into a trace. Moreover, the number of these matchings is bounded by
the size of the trace, as regular patterns can be proven to be rigid.

5 As defined in section 3.1.
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Proposition 1. Regular patterns are rigid.

Finally, regular queries are defined as expected.

Definition 6. A query is said to be regular if its pattern is regular.

This notion of regularity may appear unintuitive at first, and we agree that its
formal definition is somewhat involved. However, we argue that regular queries
are exactly those queries that admit a natural operational interpretation. There-
fore, experimentalists tend to think in terms of regular queries instinctively.

4.3 Evaluating Regular Queries Efficiently

When designing an algorithm for evaluating trace queries, one has to keep in
mind that the corresponding sequence of state mixtures cannot fit in random-
access memory all at once, even for small traces. In fact, even the most economic
representation of a trace, which is specified by an initial mixture and a sequence
of labeled rewriting events, may fail to fit in memory in some cases. Therefore,
as often as possible, one should only be allowed to stream such a representation
from disk, recomputing intermediate states dynamically and never keeping more
than a small number of them in memory at once (two in our case).

Our algorithm for evaluating a regular query proceeds in two steps. First,
it streams the trace to compute the set of all matchings of the pattern. Then,
it streams the trace a second time to compute the value of the expression for
all these matchings. The second step is quite simple to implement. Indeed, once
the matchings are known, it is easy to compute the sequence of all measures
that need to be performed and order them in increasing order of time. The first
step attempts to match the root variable of the pattern to every transition in
the trace. For each candidate matching, it uses rigidity to determine all other
variables progressively as the trace is streamed, in an order that is determined
by the dependency tree and with a minimal amount of caching. Overall, the
algorithm runs in linear time with the length of the trace.

4.4 Our Implementation

We provide an implementation of our proposed trace query language, which relies
on the algorithm that is mentioned in section 4.3 for evaluating regular queries.
Our query engine takes for inputs (i) a file that contains a list of queries written
in the same syntax that we use in our examples and (ii) a trace file that has
been generated by the Kappa simulator using the -trace option. It evaluates
all queries at once and generates one output file per query, in comma-separated
values (CSV) format.6

Queries that are non-regular for structural reasons – i.e. that fail to meet
criterion (ii) or (iii) of Definition 5 – are rejected immediately. As there is no

6 Every line of an output file represents a single value. In our expression language,
values are tuples of base values. These are separated by commas within a line.
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easy static check for local rigidity, queries that do not meet this criterion will be
rejected at runtime.

We now introduce a use case in which we leverage our query engine to explore
aspects of the dynamics of the Wnt signaling pathway.
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5 A Use Case on Wnt Signaling

In this use case, we are focusing on a simplified model of the β-catenin destruc-
tion complex from canonical Wnt signaling. This complex is highly conserved
in animals, and operates from humans to nematodes to insects to amphibians,
regulating the establishment of the dorso-ventral axis. It is also heavily involved
in colon cancer.

A source of complexity in our model is the fact that none of the enzymes
involved in destroying β-catenin bind it directly. Instead they are loaded onto
a scaffold. Moreover, the scaffold can head-to-tail homopolymerize, in addition
to having three independent binding sites on a second scaffold, itself capable of
dimerization. This allows a complex of scaffolds, where connection paths or stoi-
chiometries are dynamic. It is this complex that acts as a super-scaffold to bring
the substrate in contact with the enzymes. Considering both scaffolds contain
large regions of disorder (i.e. chunks of unfolded peptide with high flexibility), it
is sensible to believe an enzyme loaded on one scaffold could modify the substrate
loaded on the neighboring scaffold. Lacking experimental evidence to suggest a
ballpark limit for this reachable horizon, we leave it unconstrained: an enzyme
will be able to modify any substrate loaded onto its complex.

Another source of complexity is that having kinases (i.e. enzymes that add
a phosphate group) and phosphatases (i.e. enzymes that remove a phosphate
group) loaded on the same complex will result in unimolecular do-undo loops.
Conceivably the kinetics of complexes will vary heavily with the amount of ki-
nases, phosphatases, and substrates loaded onto them. These are all dynamic
properties.

We leverage our trace query engine to explore the dynamics of this system.
More precisely, we develop queries to probe the agent-centric dephosphorylation
dynamics, to measure the time it takes for an agent to navigate the modification
steps, and to explore the complexes at which events happen. Our results are
relevant to other pathways in addition to Wnt, from NFκB to RAS/ERK to the
most studied protein on the world, P53; the pathways these proteins regulate
make heavy use of polymeric scaffold complexes, sequential modifications, and
do-undo loops.

5.1 Experimental Protocol and Queries

To explore our system, we create a Kappa model with three parametrizations.
The model contains the scaffold proteins Axin1 (Axn) and APC, the kinases
CK1α (CK1) and GSK3β (GSK), the protein phosphatases PP1 and PP2, and
the substrate of all these reactions, β-catenin (Cat). The destruction complex
recruits Cat through Axn. It then gets phosphorylated at the Serine on position
45 (S45) by CK1. While S45-phosphorylated, it can be phosphorylated at the
Threonine on position 41 (T41) by GSK. While T41-phosphorylated, it can be
phosphorylated on both Serines on positions 37 and 33 (S37 and S33). Once S37-
and S33-phosphorylated, Cat is degraded. Meanwhile, PP1 undoes the phospho-
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rylations of CK1, while PP2 undoes those of GSK. Each kinase-phosphatase pair
also compete against each other for binding sites on Axn.

The three parametrizations explore the relationship between phosphatase/k-
inase ratio and the distribution of do-undo events. The three parameter pairs
are 50/10, 10/10, and 10/50, all in units of number of agents, and represent
the number of kinases and phosphatases in the model (e.g. 10/50 presents 10
copies of PP1, 10 copies of PP2, 50 copies of CK1, and 50 copies of GSK). The
scaffolds remain at an abundance of 100 each. The models begin with an initial
amount of Cat of 500 agents, and the models are run for 500 simulated seconds.
We use global stochastic rates for our reactions, a bi-molecular binding of 10−4

per second per agent, a uni-molecular binding of 10−2 per second, an unbinding
of 10−2 per second, and a catalytic of 1.0 per second.

For all three parametrizations, we run the following queries on the resulting
traces.

Undoing S45, T41, S37 and S33 phosphorylation Considering phos-
phatases undoing the phosphorylation of sites, does this happen to all agents?
Does it happen to just a few agents? What is the distribution of dephosphory-
lation events per agent? (Figure 4)

match e :
{
c :Cat

(
S45 1

p→u

) }
return agent id ( c ) , time [ e ]

match e :
{
c :Cat

(
T41 1

p→u

) }
return agent id ( c ) , time [ e ]

match e :
{
c :Cat

(
S37 1

p→u

) }
return agent id ( c ) , time [ e ]

match e :
{
c :Cat

(
S33 1

p→u

) }
return agent id ( c ) , time [ e ]

Wait times What is the distribution of times spent between the first phospho-
rylation on an agent, and the time it gets degraded? (Figure 5)

match i : { c : Cat+ }

and first p : { c :Cat (S45u→ p ) } after i

and first d : { c : Cat−} after p

return time [ d ]− time [ p ]

(3)

About this query. Agent creation and destruction is expressed by suffixing agent
names with + and −, respectively.

Component size and enzyme identity Where do the phosphorylation steps
that actually lead to degradation occur? Do they happen mostly on large com-
plexes? What is the composition in units of Axn and APC of the complexes
where the phosphorylation events leading to degradation took place? What is
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the distribution of kinase identifiers for the last phosphorylation events that lead
to degradation? (Figure 6)

match d : { c : Cat−}

and last p1 :
{
c :Cat

(
S45 1

u→ p

)
, k1 :CK1

(
c 1
) }

before d

and last p2 :
{
c :Cat

(
T41 1

u→ p

)
, k2 :GSK

(
c 1
) }

before d

and last p3 :
{
c :Cat

(
S37 1

u→ p

)
, k3 :GSK

(
c 1
) }

before d

and last p4 :
{
c :Cat

(
S33 1

u→ p

)
, k4 :GSK

(
c 1
) }

before d

return agent id ( k1 ) , count ( component [ • p1 ] ( k1 ) , "Axn", "APC" ) ,

agent id ( k2 ) , count ( component [ • p2 ] ( k2 ) , "Axn", "APC" ) ,

agent id ( k3 ) , count ( component [ • p3 ] ( k3 ) , "Axn", "APC" ) ,

agent id ( k4 ) , count ( component [ • p4 ] ( k4 ) , "Axn", "APC" )

(4)

About this query. The component state measure computes the connected com-
ponent that contains an agent in a mixture. It returns a set of agents S. The
count function takes such a set S along with n strings denoting agent types and
returns an n-tuple of integers indicating how many agents of each type appear
in S.

5.2 Results and Interpretation

Distribution of undo events per agent To study the effect of adding phos-
phatase, we look at the distribution of dephosphorylation events per agent in
Figure 4. S45 is the first residue to be modified in the causal chain leading to
degradation; S37 is the last. Based on the 1:1 system, it is surprising to see
increasing the phosphatase level five-fold maintains a similar total number of
dephosphorylation events (compare curves’ integrals). However, their distribu-
tion is quite different. Interestingly, increasing the amount of kinase to 1:5 led
to decrease in dephosphorylation events, even though the dephosphorylation en-
zyme’s abundance and rates were kept at the same levels. It is also worth noting,
the 1:1 saw almost 30 thousand dephosphorylation events of S45, occurring on a
shrinking pool of at most 500 copies of Cat. Clearly certain agents are caught in
the do-undo loop; some specific agents are getting dephosphorylated almost 800
times. It is worth noting these levels of dephosphorylation imply a comparable
number of phosphorylation events.

To answer the question that motivated this query, for S45 under 1:5 regime,
most agents don’t get sabotaged by the phosphatase: the blue line is quite flat.
Decreasing the amount of kinase changes this, and under a 1:1 regime some
agents get undone multiple times, a quarter seeing upwards of hundreds of undo
events (e.g. from id 300 onward). Increasing the phosphatase to a 5:1 regime fur-
ther exacerbates this, with over half the agents receiving undo events hundreds
of times. The unavailability of phosphorylated S45 in turn inhibits the phospho-
rylation of T41, and so forth to S37 and S33. It is worth noting that, based on the
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1:1 system, increasing the phosphatase five-fold decreases the number and ex-
tent of advanced dephosphorylation events, such as S33 and S37. Paradoxically,
increasing the kinase five-fold has this same effect. We attribute the former to
decreased availability of the intermediate phosphorylated states (i.e. if T41 is not
phosphorylated, S37 can’t be phosphorylated, ergo can’t be dephosphorylated),
and the latter to increased throughput to degradation (i.e. Cat is not around
for long enough to get dephosphorylated, as once it gets fully phosphorylated it
quickly proceeds to get degraded).

We call attention to the number of agents whose final sites got dephospho-
rylated (Figure 4), vs. the number of agents who got degraded (Figure 7, in
Appendix A). The 1:5 or 1:1 systems both degraded over 450 agents each, but
the former undid around 160 agents (Figure 4 S37, domain of blue curve) while
the latter undid over 350 (Figure 4 S37, domain of red curve). For the 1:5 and
5:1 systems, both undid around 160 agents (Figure 4 S37, domain of blue and
yellow curves), but the former degraded over 450 agents (Figure 7, blue curve)
while the latter less than 50 (Figure 7, yellow curve). This argues the notion of
efficiency (e.g. minimizing the amount of undo steps) can’t readily be inferred
from the throughput of the system.

Fig. 4: Distribution of dephosphorylation events per agent. Each time an agent
gets dephosphorylated, its ID is registered. After sorting, we plot the distri-
bution of these IDs for two residues in the three parameter regimes. The area
under the curve is also presented on each legend. S45 is the first residue to get
phosphorylated, S37 (along with S33) is the last.

Wait times Looking at the distribution of wait times (Figure 5), from first
phosphorylation to degradation, we note the bulk of degradation events occur
rapidly, in less than 50 seconds. Worth noting that, from the 1:1 regime, increas-
ing the amount of kinase five-fold marginally reduced wait times.



14 Jonathan Laurent et al.

Fig. 5: Distribution of wait times from first phosphorylation until degradation.
The sum of the bins is presented in the legend of each plot, and corresponds to
the total number of degradation events, matching what is seen on Figure 7. The
height of each bin represents the number of agents that waited the bin’s position
(in seconds) since they were first modified until they were degraded.

Complex composition A way of looking at the question of complex contribu-
tion is to query the size of the complex at the last phosphorylation event before
degradation. Taking S45 as representative of all the other residues (see Figure 8
in Appendix A for a residue comparative), we plot the size of the complex, in
terms of Axn and APC, at the time the final S45 occurred. Overall, we see a
broad distribution of sizes, with some phosphorylation events occurring in large
complexes (i.e. > 80 Axn, > 40 APC), but a significant number occurring in far
smaller complexes (i.e. < 10 Axn, < 10 APC). Changing the parameter regime
of kinase to phosphatase does not seem to alter this behavior significantly.

5.3 Summary of Findings

1. The number of undo events does not inform us of overall throughput (con-
trast Figure 4 and Figure 7).

2. How a step may be affected by changing abundances depends greatly on its
upstream context (Figure 4).
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Fig. 6: Composition of the complex, in terms of Axn and APC components, at
the last event where Cat got S45 phosphorylated before being degraded. The
number of points corresponds to the number of degradation events. The points
of this scatter plot have been nudged with a random noise factor of 0.2 to increase
visual perception of discrete points where the data overlap.

3. Entities that got degraded waited a short while since their first modification
(Figure 5), and yet most modifications were futile (Figure 4).

4. We can’t argue that giant complexes, nor small complexes, nor medium
complexes, are the sole entities responsible for performing the effective (i.e.
final) phosphorylation events (Figure 6); the distribution of complexes is
wide, and they all contribute to the kinetics.

The capacity of querying a simulation’s trace offers a mechanistic description
of the inner workings of our system. Since this description uses the vocabulary
of molecular biology, it can greatly inform the search for drug targets.

For example, in our setup, complexes with over 60 copies of Axn and over 40
copies of APC contributed a large amount of degradation events (Figure 6). Con-
sidering there were a total of 100 copies of each scaffold, these large complexes
are giant components, having recruited the majority of scaffolds into a single
entity. If a single entity is contributing an amount of degradation events com-
parable to the rest of the mixture, it means its effective catalytic rate is greater
than that of smaller entities. One could therefore reduce overall degradation of
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Cat by destabilizing any of the three scaffold interactions (i.e. Axn-Axn, APC-
APC, Axn-APC), without affecting the enzymes directly. Since these enzymes
are also involved in metabolism, it would be desirable to avoid affecting their
behaviors outside our pathway of interest.

6 Conclusion

How could one have explored a question like “which complexes contribute to ki-
netics”? Experimental biologists have been using labeling techniques for decades,
but implementing this in a modeling framework requires being able to track indi-
vidual agents, and query particular events. Implementing a framework to query
events on the trace of an agent and rule simulation seems a natural way of
tackling these classes of problems.

Moreover, once a sufficiently rich mechanistic model is available, questions
on mechanism arise. For a subset of these, a satisfying answer will require a
change of vocabulary; the explanations desired use the individual’s lexicon (e.g.
it bound, it unbound, it got dephosphorylated 800 times), rather than a whole
system lexicon (e.g. the abundance changed from 500 to 50). Thus, rather than
tracking the whole model’s behavior (akin to a top-down approach), one needs to
focus on agents, and observe their individual experiences (akin to a bottom-up
approach). These approaches are complementary, as they explore a model’s intri-
cacies from very different viewpoints. We hope that the query language proposed
in this paper will contribute to make agent-centric analysis more widespread and
accessible.
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A Use Case Appendix

Concentration Time Traces From the output of the simulator, we get the
evolution of the abundance of Cat through time. In Figure 7, we can see that
the systems with low phosphatase behave similarly, even though one has five
times the amount of kinases than the other (blue vs red traces). In contrast, the
system with high phosphatase shows markedly less degradation of Cat; where
the other two systems degraded around 450 units, this one has only degraded
23. From this whole-system view, it would seem the amount of phosphatase is
more critical than the amount of kinase: based on the 1:1 system, increasing the
kinase five-fold has little effect, whereas increasing the phosphatase has a more
dramatic effect.

Fig. 7: Tracking the abundance of agent Cat through the simulation. At time
T = 0, the agents are introduced, all in monomeric form. The simulation was
stopped after five hundred simulated seconds. In this legend and throughout
the figures, “ph” stands for phosphatase, “ki” stands for kinase, and numbers
indicate agent multiplicity. Thus “10 ph : 50 ki” means the system with 10 units
of phosphatase and 50 of kinase.

Complex composition: all four on the same component? For the final
query, we wonder if all four final phosphorylation events occur on the same com-
plex. Given the short wait time (Figure 5), one might expect so, but the number
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of dephosphorylation events is so large (Figure 4), it could be well that a sub-
strate is partially modified on one complex, subsequently modified on another,
finalized in yet another. Lacking a metric by which we can compare complexes
for distance, we instead compare complex compositions as a proxy.

Seeing how overwhelmingly, for each specific modification on a single Cat,
the S45 phosphorylation events happened on complexes of the same Axn and
APC composition as the T41 phosphorylation events, as the S37 phosphorylation
events, as the S33 phosphorylation events, we feel confident in claiming all four
steps occurred on the same complex. This agrees well with the observation that
the wait times are fairly short (Figure 5). We did not see an appreciable difference
for the other parameter regimes.

Fig. 8: Complex composition at the time of the last phosphorylation for the
1:1 system. All four residues are shown. A diamond superposed with a cross
superposed with a circle superposed with a plus sign indicates that all four
modifications for a specific copy of Cat occurred on a complex of the same
composition in terms of Axn and APC. We interpret this as having occurred on
the exact same complex.
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