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Abstract 

This paper presents a nonparametric region competition 
algorithm which combines scale-space clustering and re- 
gion competition to segment the image. It also proposes a 
formal and general procedure to automatically find the ini- 
tial regions. Our algorithm can also segment an image into 
regions which are not homogeneous in the sense of statis- 
tics, but is homogeneous in the sense of semantics with re- 
spect to the segmentation context. 

Keywords Segmentation, region growing, region compe- 
tition 

1 Introduction 

Thresholding techniques [5] and scale-space clustering 
[4] often generate irregular boundaries and undesired small 
holes. And the discrimination points in the histogram may 
not be optimal in the sense of minimizing the classification 
error. Therefore, other criterion has to be introduced to re- 
duce the error. 

Hybrid techniques [ I ]  [3] generally may result in bet- 
ter segmentation. Parametric region competition algorithm 
[6] is such an example. It combines attractive aspects of 
snakesballoons and region growing to produce a segmenta- 
tion with regular boundaries and without small holes. How- 
ever, the forms of underlying density functions of the fea- 
ture values have to be assumed in advance, and such as- 
sumptions are usually suspicious. 

Up till now, there have been no formal and general proce- 
dure, to our knowledge, that can select the seeds for region 
growing and competition. 

To overcome these drawbacks and to improve the seg- 
mentation of thresholding techniques and scale-space clus- 
tering, a nonparametric region competition algorithm is pro- 
posed in this paper. Nonparametric region competition al- 

gorithm utilizes a scale-space based n-dimensional feature 
histogram (n 2 1) to automatically obtain the initial re- 
gions, and then adopts the strategy of region competition to 
determine the final regions. Our method uses a general and 
formal strategy to automatically obtain the initial segmen- 
tation, and can segment an image into regions which are 
homogeneous in the sense of semantics with respect to the 
segmentation context. 

The rest of this paper is organized as follows. Section 2 
describes the basic theory of nonparametric region compe- 
tition. The method to automatically determine the seeds in 
our algorithm is presented in Section 3. Section 4 describes 
the method to approximately evaluate the conditional prob- 
abilities related to our algorithm. In section 5, the nonpara- 
metric region competition algorithm is presented. Experi- 
mental results on real images is included in Section 6. Sec- 
tion 7 is the conclusion. 

2 Basic Theory 

Suppose the domain R of image I is initially segmented 
into E regions R ~ ,  i = 1,2,  ..., 1. R = uiZl ~ i ,  ~i n R~ = 

if i # j. Define the direction of ri = dRi  to be 
counter-clockwise. In the case of holes, it is clockwise. 

= Ui=l ri. 
In order to smooth the irregular boundaries and make the 

resulting segmentation homogeneous individually, we refer 
to the basic idea of [6] and propose the following functional 
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where p is the pixel, 5 ( p )  is the feature vector of p ,  P is 
probability. The first term within the braces is the length of 
the boundary curve ri for Ri, p is a weight constant. The 
second term is related to the individual semantical homo- 
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geneity of the segmentation. The 
geneous the segmentation, the smaller the second term. 

individually homo- 
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we have 

where V,  = {I(p)Ip E Ri}. 
In order to obtain the desirable segmentation, Ri's, i.e., 

ri's, may deform based on the individual semantical homo- 
geneity. Steepest descent with respect to r is adopted. For 
any p E I', dp ld t  = -GE[r]/Gp. Taking the functional 
variation (see Appendix in [6]) yields the following motion 
equation of p 

where & ( p )  = {ilp E ri}, that is, the summation is done 
over Ri's for whichp is on ri. qP) is the curvature of ri at 
point p and f&) is the unit normal to Ti at point p.  's 
point rightward along the direction of ri. 

When V p  E r, dp jd t  = 0, the segmentation is finished. 
Before we can use Equation (2) to segment an image, we 

have to solve two problems, i.e., how to determine the initial 
segmentation, and how to calculate conditional probability 
Ij(Z(p) Ip E Ri) approximately. The following two sections 
will deal with them. 

3 Determining Initial Segmentation 

To determine the initial regions we first classify the im- 
age points. The following algorithm is for this purpose. 
Algorithm 1 (scale-space based classification) 

Step 1. Select a set of proper features to construct a n- 
dimensional feature histogram (feature space), 6, (2), 
of image I ,  where n 2 1. 

Step 2. If &,(I) = 0, label I with 'NULL'. 

Step 3. Compute scale space of @,(I) 

where Gu(Z) is Gaussian. Starting from 00, evolve 
&(2) with An, the step length of g .  Let .(o) be 
the number of peaks of fiu(Z). After (T 2 01, a 
valid estimation of the density function, SUI (Z), is ob- 
tained if .(.I) = .(.) = ~ ( 0 2 ) ~  i.e., .(.) is sta- 
ble over a range of C J ~  to 0 2 ,  where c E [OI , .2] and 
101 - 021 > ut, ut is a threshold, and there does not 
exist any such stable interval if o < (TI. 

Step 4. Find M ,  the set of all peaks of (I). Different 
peaks define different clusters (patches). 

Step 5. If feature 2 can reach peak p, with gradient in- 
creasing approach, 2 is assigned to the cluster defined 
by p,. Determine the cluster to which each feature 
point belongs. 

Step 6. Depending on the context of segmentation, se- 
lect some classic algorithm of classification(such 
as c-means algorithm, etc.), and distance measure- 
ment(e.g., Euclidean measurement) to partition M into 
k classes, where k is a parameter representing the re- 
quired number of resulting regions and k = 0 means 
IMJ classes are required, i.e., k = [MI. Correspond- 
ingly (MI clusters, wi(i = 1,2 ,  ..., IMI), are parti- 
tioned into k classes, cj (j = 1,2 ,  ..., k ) ,  too. 

Step 7. For VZ, if Z belongs to wi, and if wi is classified 
into cj in Step 6, then classify I into cj. 

Step 8. For V p  E I ,  I ( p )  = j if 2 ( p )  is classified into cj. 

In the above algorithm, each wi corresponds to a statisti- 
cally homogeneous patch, each cj corresponds to a seman- 
tically homogeneous region. 

In the rest of this paper, we suppose c j  0' = 1; 2, ..., k )  is 
the j-th obtained class. wi j  C cj (i = 1,2 ,  .., k j )  is the i-th 
cluster in the j-th class. IC is the number of classes. kj  is 
the number of clusters in the j-th class. Only thosefeature 
points which are not labelled with 'NULL' are considered. 

The following algorithm determines which pixels will be 
taken as seeds. The initial regions consist of all seeds and 
their background. 
Algorithm 2 (determine the initial regions) 

Step 1. Obtain the classification of all feature points with 
Algorithm 1. 

Step 2. For any wij 

%Wz j 

For Vp E I ,  if 6ij ( Z ( p ) )  > Pij, take n, x n, window 
centered at p as a seed of the j-th segment, where k # 
j, 0 < Pij < 1 is a prescribed constant. 

Step 3. Merge neighboring and overlapping seeds of the 
same segment to constitute a seed group. 

Step 4. Remove the seed groups which are smaller than 
n, x ns and do not neighbor on the background. Back- 
ground is the image areas not occupied by any seed. 
The remaining groups and their background constitute 
the initial regions 

In our experiments, n, = 5 and n, = 3. It is clear 
that a seed group may not be homogeneous in the sense of 
statistics. Several statistically homogeneous seed subgroups 
may constitute a statistically heterogeneous seed group. 
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where d is a constant, and 

Figure 1. The principle adopted in the calcu- 
lation of conditional probabilities. See text. 

4 Calculating Conditional Probabilities 

The principle we employ to approximate$(Z E wij) ’s is 
illustrated in Fig.1. w1 and w2 represent two clusters, and 
belong to different classes. x, is their boundary. The peaks 
of w1 and w2 are x1 and 2 2 ,  respectively. x E w1. Suppose 
the overlapping between w1 and w2 is relatively small. Now 
the problem is how to estimate $(x E w1) and $(x E w2). It 
is reasonable to assume that $(x E wi) depends on ai and 
12 - x i / .  For the fixed Ix - x i l ,  the larger a i ,  the larger the 
variance of w i ,  therefore the larger $(x E wi) .  For the fixed 
a i ,  the larger Ix - x i ( ,  the smaller$(x E wi) .  Therefore a i  

and 1% - xi I are two proper measures for @(x E Wi), where 
i = 1,2. In addition, the larger D2, the larger the variance 
of w2, therefore the larger $(z E w2). Furthermore, it is rea- 
sonable to assume that $(x € w l )  < $(% E w2) in the case 
of x E w1 can only occur when x is near to 2,. Therefore 
@(x E w2) should be a monotonically decreasing function 
of d/D1. Based on the above consideration, we propose a 
method to approximately calculate $(a E w i j ) .  

Suppose that 0 < E << 1, that 1 0 1 is the number of the 
elements in set 0 ,  that B is the background (the image areas 
not occupied by any seed), that dwi j  is the boundary of w i j ,  

and that 47’ is the peak of w i j .  If 3 p  E Wit7 3q E w j s ,  

where t # s, such that p neighbors on q,  we call Wit and 
w j s  neighbor on each other. After running Algorithm 1, for 
any wi t ,  it is easy to find all wj,’s which neighbors on wit ,  

where t f s. 
Suppose p E I ,  p $! B,  and Z = Z(p)  E W M .  We 

consider the case that there exist m clusters, w j s ,  s # t ,  
which neighbor on Wht. All wj,’s and Wht constitute a set 
Rht- 

Firstly, we suppose m 2 1. 
For Vwij E O h t ,  we set 

where C((z9 is avector from ( i $ ) , $ g ( Z ~ y ) ) )  to (.Z,$g((z9)$ 
2 is the unit vector along the histogram axis. \rij (2) is the 
number of the elements in r i j  (2). 

Under the postulate that the overlapping among the wi j  ’s 
is relatively small, it is reasonable to assume that the larger 
aij(Z),  the larger $(? E w i j ) ;  and the larger d i j ( Z ) ,  the 
small p ( 2  E wi j ) .  Therefore, for the fixed d i j ( Z ) ,  $(Z E 
wi j  ) should be the monotonically increasing function of 
aij (2); and for the fixed aij (Z), $(Z E w i j )  should be the 
monotonically decreasing function of di j  (5). 

On the other hand, we define 

It is reasonable to assume that the larger ( D h t / d h t ) 2 / D i j ,  

the smaller $(Z E w i j ) ,  where i # h, j # t. Therefore, 
$(Z E w i j )  should be the monotonically decreasing func- 
tion of ( D h t / d h t ) 2 / D i j ,  where i # h, j # t. 

Synthesizing the above consideration, we define 

where 

( 1, if i = h, j = t ;  

c >_ 0, c, s1 and s2 are three constants. 
If m = 0, wht (2 )  = 1. 
For Vwuv E $l - $lht, we set 

W i j ( 2 )  = t 

where R is the set of all clusters. 
Consequently, we define 
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where wij E 0. 
Therefore 

where cj is the class to which region Rj corresponds. 
In addition, we define 

5 Nonparametric Region Competition 

Algorithm 3 (nonparametric region competition) 

Step 1. Obtain the seeds with Algorithm 2. 

Suppose the initial regions are RI'), where i = 
1,2 ,  .., 1. 

Step 2. Based on Equation (l), move the boundaries of all 
regions to make them grow and compete with each 
other. Execute this step repeatedly until all boundaries 
are stable. 

Obviously, the resulting regions with our algorithm can 
not only be individually statistically homogeneous, but also 
be individually semantically homogeneous in the segmen- 
tation context. We call such segmentation semantically 
homogeneous. However, high-level instructions are nec- 
essary. 

6 Experimental Results 

The experiment given here is about the segmentation of 
a color image of hand. What is shown in Fig.2(1) is its 
graylevel version. In this experiment, we segment the image 
in two ways: statistically homogeneous (Fig.2(2)), semanti- 
cally homogeneous (Fig.2(3)). To obtain such two segmen- 
tations, the intensity, hue and saturation are employed. The 
edges of the final stable regions are shown in Fig.2(2) and 
(3), respectively. 

7 Conclusions 

In this paper, we presented a new segmentation scheme 
of nonparametric region competition, which can automat- 
ically determine the initial segmentation and segment an 
image into semantically homogeneous regions. Such seg- 
mentation may simplify the following procedures, such as 
object recognition. 

I I 

(3) 

Figure 2. The segmentation of a hand image. 
See text. 
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