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Abstract 

A new two-step classification scheme based on nonpara- 
metric estimation of density function and scale-space filter- 
ing is presented in this paper. This scheme is able to com- 
bine traditional supervised classification techniques with 
clustering. After nonparametric estimation of the under- 
lying density function, this scheme utilizes scale-space $1- 
tering and a novel classification algorithm to extract the 
intrinsic basic structure of the data. Then, depending on 
applications, one of the traditional clustering or classifica- 
tion techniques may be employed to obtain a final high level 
data structure. 
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1 Introduction 

The Gaussian mixture model approach (GMM) has been 
widely employed as a clustering method. The main prob- 
lem of GMM is that the cluster validity is subject to a 
strong assumption that the form of the underlying density 
function is known a priori. In addition, the local centroid 
(mean) estimation is not robust to noise. In order to over- 
come the above drawbacks, Wilson and Spann [SI presented 
a paradigm shift for evaluation of the clustering problem. 
Their shift makes the estimate of valid structure within a 
data set be robust to both noise and spatial scale changes 
of the data. Roberts [2 ]  went a step further to propose 
a method of unsupervised classification using scale-space 
filtering, and showed that GMM fails for data sets which 
are not multivariate Gaussian while the scale-space based 
method is considerably more robust. 

In general, a clustering algorithm may be required to 
cluster the data according to a preferred number of parti- 
tions. Although the scale-space based clustering method [2] 
can also be directly extended to control the number of re- 
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sulting clusters and [2] indeed provided a successful exam- 
ple, the precision of such extension may not be high in gen- 
eral, and the resulting clusters may not be what is wanted. 
In addition, the classification rule adopted in [2] is not gen- 
eral and precise enough for data whose dimension is larger 
than one. The hill-clustering method proposed by Tsai and 
Chen [4] can only be used in one dimensional histogram 
and is not precise enough in peak positioning if employed 
as the classification rule. 

To overcome these drawbacks, this paper presents a new 
two-step classification scheme. This scheme is able to com- 
bine traditional supervised classification techniques with 
clustering. After nonparametric estimation of the underly- 
ing density function, our scheme utilizes scale-space filter- 
ing and a novel classification algorithm to extract the in- 
trinsic basic structure of the data. The novel classification 
algorithm can precisely operate in the feature histogram of 
any dimensions. Finally, depending on applications, vari- 
ous clustering or classification techniques can be employed 
to obtain a high level data structure. 

The rest of this paper is organized as follows. Section 
2 briefly describes the scale-space based clustering method 
[2] at first, then presents a general and precise classifica- 
tion algorithm as our classification rule. In section 3, a new 
two-step classification scheme is presented. Experimental 
results and the conclusion are given in Sections 4 and 5, 
respectively. 

Due to the limitation of the paper length, the description 
is very brief in this paper. Refer to [3] for the strict and full 
description of our method and the experiments. 

2 Scale-Space Filtering Based Clustering 

2.1 Theory 

A nonparametric estimation of the probability density 
function of n (n >_ 1) dimensional noisy data is the 
weighted combination of a set of basic functions f i  (2) 

899 0-7695-0750-6/00 $10.00 @ 2000 IEEE 

mailto:tangm@nlpr.ia.ac.cn


where 3c' is the n-dimensional datum. If Parzen-window ap- 
proach is used to estimate densities, N denotes the number 
of samples, and wi = w is a normalizing contant. If the 
approach to finding a set of basic functions to expand the 
density function is employed, N is the number of the basic 
functions used, and wi is also a normalizing factor and is 
concerned with all samples and i-th basic function. 

Our purpose is to detect the genuine data peaks of I jV  (Z) 
with a specified filter, [5] and [2] showed that, for the data 
of any dimensions, Gaussian filter is a proper choice 

where G, (Z) is Gaussian. 

mately extracted from @, (2) with some proper (T. 

Therefore, the genuine data structure can be approxi- 

2.2 Cluster Validity 

Let T (  0) be the number of peaks of @, (Z). Suppose that 
in the evolution of @, (3) with the increment of 0, after 0 2 
(TI, T ( ( T ~ )  = ~ ( n )  = 7r(a2), i.e., 7 r ( ( ~ )  is stable over the 
range of crl to 02, where (T E [ol, 021 and In1- n2 1 > wt, wt 
is a threshold and may be determined empirically. And also 
suppose that there does not exist any such stable interval if 
n < (TI. Then a valid estimation of the density function of 
the noisy data is gal (2).  

2.3 Classification Algorithm 

As the form of pol (3) may be extremely complicated in 
practice, generally speaking, any single formula (e.g., the 
classification formula used in [ 2 ] )  to determine the cluster 
for each datum may cause serious error in the case of high 
dimensional data. Therefore, a general and precise classifi- 
cation algorithm has to be designed to label all data. 

The essential difference between the following Algo- 
rithm l and other approaches to dealing with the similar 
problem is that it considers the density function @,, to be 
discrete, but others (e.g., [l]) consider it to be continuous. 
The formulae for the latter are elegant, but do not work well 
in high dimensional space. 

Before describing our classification algorithm formally, 
we first illustrate its basic strategy. The notation of inter- 
vals will be employed to express the set of discrete samples 
in an interval. Fig.1 gives an example of density function 
upon the discrete sample set [Bl , B,]. According to such 
interval notation, Bl and B, are samples, too. Our classifi- 
cation algorithm will follow the procedure below to label all 
2 E [B!,B,]. Note that [Bl,B,] - {zili = 1,. . . ,8} # 4. 
Firstly, find out all its local maximum points, i.e., 2 1  and 
28. Therefore, the number of the clusters is 2 and the cen- 
ters of the clusters are 2 1  and 28, respectively. With the 

Figure 1. The basic strategy adopted in Algo- 
rithm l. See text. 

gradient increment method, if point 2 can reach the clus- 
ter center xi, x is labelled with xi (i = 1,8). Therefore, 
Vx E [Bj, 221 and Vx E [ 2 7 ,  B,] can be labelled. Sec- 
ondly, suppose Y = {xlV@,(z) = 0 , x  does not belong to 
any peak}; then Y = ( 2 2 , 2 3 1  u ( z 4 , q , ]  u ( x g , ~ ) .  Find- 
ing all maximal connected subsets of Y ,  C1 = (22, 231, 

C2 = (24,251 and C, = ( 2 6 ,  27) are obtained, where 
each subset has a unique value of density function. As 

and y 3  E (23, our algorithm will first label x E C1, then 
II: E C2, and at last 2 E C 3 .  Therefore, Vx E C1 are labelled 
firstly with what 22 has been labelled. As Vx E ( 2 3 ,  zq] can 
reach 2 3  with gradient increment method, and x 3  has been 
labelled, Va; E ( z 3 ,  z 4 ]  are labelled with what z3 has been 
labelled. Next step, Vx E C2 are labelled with what 24 has 
been labelled, and then Vx E (25, xg] are labelled with what 
2 5  has been labelled. As 2 6  and 27 have been labelled, for 
any z E C3, if 1% - $61 > Ix - 271, z is labelled with 
what 27 has been labelled, otherwise x will be labelled with 
what 26 has been labelled. Therefore, all sample points are 
labelled with 2 1  or z8. 

The points labelled with x1 are accepted to belong to w1, 
other points belong to w2. 

Algorithm 1. (Labeling every point with a proper peak) 
Suppose m is the peak of discrete function f, and that 

M is the set of all m's. X is the domain of f .  While the 
gradient increment method is used at Z, only the values of 
f(Z) at 2's 3" - 1 closest neighbors are compared to decide 
the next point to go. 

@,(Yl) > @ , ( y 2 )  > ljO(Y3)? where y1 E c1, y2 E c2 

Step 1. Starting with every Z E X, employ the approach of 
gradient increment to find out its corresponding local 
maximum point Zmaz. The path of gradient increment 
is saved as H,-. And 2 is only located in one increment 
path. 
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Step 2. For VZ E m, label 2 with m. If Zm,, E m, label 
with m all points in Hz.  Remove all of them from X .  

Step 3. Find Y = {Zlz E X ,  the maximal increment of 
f(z) among (3n - 1)/2 directions is 0) (Y # 4). 

Step 4. Find S = {sls Y,  VZ E s, f(z)’s are identical.}. 

Step 5. Find C = {clc C s ,  s E S,  c is connected. For any 

If x = a, stop. 

Z E s and 2 4 c,  cu{.’} is disconnected}. 

Step 6. Select out c which satisfies the following condition: 

Set P = {Zlz $! c,  IC’ is a neighbor of y’ E ac, 2 has 
been labelled.}. 

Step 7. For every f E c, 

z E C,Z’ E c’,c E C,C’ E c , c  # C’ , f (Z )  2 f(Z’). 

Z = arg min 
Z < E P  - fll 

label y’with mz. 

Step 8. For each 2 E dc, Hg is a path of gradient increment 
from y’to 2. If r‘ E Hg is not labelled, label r‘with mz. 

Step 9. Remove c from C. If C is not empty, go to Step 6. 
Otherwise, stop. 

After running this algorithm with f = the data la- 
belled with the same m belong to the same cluster. 

3 Scale-Space Based Two-step Classification 

We have improved the scale-space based method of clus- 
tering [2] via inducing a general and precise classification 
algorithm (Algorithm 1). But when one wants to control 
the number of resulting partitions, what should he do? The 
direct extension of scale-space based clustering to do this is 
unsatisfactory [3]. It will introduce too many errors. In or- 
der to control the number of resulting classes while reduce 
the error, we propose the following algorithm. 

Algorithm 2. (Two-step classification scheme based on 
scale-space) 

Step 1. Estimate the underlying density function 
With the noisy data, make estimation 

N 

fi”(5) = C.(UifL(Z) 
i=l 

and scale space 

pu(z) = &(z) * Gu(IC) 

Starting with UO, evolve fiu(5) with Au, the step 
length of U, until a valid density estimation, (Z), 
is established. 

Step 2. Find M ,  the set of all maximum points of @,, (2). 

Step 3. Determine the cluster to which each datum belongs 
with Algorithm 1. 

Step 4. Depending on applications, select some classic al- 
gorithm of classification(such as c-means algorithm, 
nonlinear discrimination function method, etc.), and 
distance measurement(e.g., Euclidean measurement) 
to partition M into k classes, JMJ 2 k ,  where k is 
a parameter representing the required number of re- 
sulting classes and k = 0 means IM( classes are re- 
quired, i.e., k = [MI. Correspondingly, [MI clusters, 
wi(i  = 1,2,  ..., [ M I ) ,  are partitioned into k classes, 
C j ( j  = 1,2,  ..., k ) ,  too. 

Step 5. For VZ, if 2 belongs to wi,  and wi is classified into 
c j  in Step 4, classify 5 into cj.  

When Algorithm 2 is employed as a clustering method, 
the cluster validity is determined by the validities of both 
scale-space based clustering method and the clustering 
method used in Step 4. 

4 Experimental Results 

Algorithm 2 has been used to classify several data sets. 
Fig.2 shows an experiment on a 2-dimensional data set of 
brain pathology. The data are shown in Fig.2(a). It is seen 
that there is a valid clustering of the data, i.e., 3 clusters. 
In order to estimate the density function of the data, a his- 
togram is constructed and is shown in Fig.2(d), where the 
horizontal axis represents the subtraction of the two compo- 
nents of the data. All subtractions are mapped into [0,100]. 
The reason to map the subtractions into [0,100] is that the 
subtraction of the maximum and minimum of subtractions 
of two components is about 100. An evolved version of 
Fig.2(d) is shown in (e), where 0 = 2.17, which is the 
valid estimation of Fig.2(d). Six maximum points are lo- 
cated at 4, 12, 36, 48, 63, 76. To classify the original data 
in a desirable way, two discrimination points, 42 and 56 
are adopted. Consequently, the above 6 points are classified 
into 3 classes, {4,12,36), (48) and {63,76}. The resulting 
classification of the original data is shown in Fig.2(b). 

While the scale-space based clustering method [2] is 
used to cluster the same data, the data will be clustered into 
6 clusters according to the above discussion. This is not 
valid with respect to the application, although it’s valid ac- 
cording to the scale-space based clustering algorithm [2]. 
On the other hand, if the direct extension is employed, the 
remaining 3 maximum points are 72,97, 152, and the final 
clusters are shown in Fig.2(c). It is noted that the error is 
considerable and the result is unacceptable. In this exam- 
ple, both the scale-space based clustering method and it’s 
direct extension fails to obtain a valid clustering. 
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Figure 2. The classification of a set of pathological data of brain. See text for explanation. 

For high dimensional data, by means of the knowledge 
about the data, one may analyze which conventional clus- 
tering or classification algorithms may be invoked to deter- 
mine which maximum points should belong to a class. In 
such process, methods to reduce the dimension of data, such 
as KL transformation, may be used. 

5 Conclusions 

This paper presents a new two-step classification algo- 
rithm which can introduce traditional supervised classifica- 
tion techniques into clustering. Strictly speaking, our clas- 
sification scheme belongs to neither traditional supervised 
approaches nor traditional unsupervised ones. 
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