Type Theory for Mobility and Locality

Thesis Proposal

Jonathan Moody

Committee: Frank Pfennning, Karl Crary, Jeannette Wing, Andrew Gordon (MSR)

> School of Computer Science Carnegie Mellon University

Distributed computation — programming at more than one location.

Are the locations distinguishable?

Distributed computation — programming at more than one location.

Are the locations distinguishable?

No — We can safely **ignore** locations, we're done...

Distributed computation — programming at more than one location.

- Are the locations distinguishable?
 - **No** We can safely **ignore** locations, we're done...
 - **Yes** Must be careful when programs or values move.

- Benefits of being location-aware:
 - account for localized code or values.
 - reflect trust or administration boundaries.
 - permit/deny some interactions between locations.
 - reflect costs of remote access (bandwidth/latency).
- A location-aware type theory:
 - Specify and statically check properties defined in terms of location....

- Mobility and locality as aspects of location:
 - Mobility "is it location-independent?"

- Mobility and locality as aspects of location:
 - Mobility "is it location-independent?"

Locality — "is it here? or there?".

- Proposed contributions:
 - Relate modal logic to distributed computation.

- Proposed contributions:
 - Relate modal logic to distributed computation.
 - Core calculus with mobility and locality types.

- Proposed contributions:
 - Relate modal logic to distributed computation.
 - Core calculus with mobility and locality types.
 - Extensions that interact with mobility/locality.

- Proposed contributions:
 - Relate modal logic to distributed computation.
 - Core calculus with mobility and locality types.
 - Extensions that interact with mobility/locality.
 - Apply to distributed grid programming.

Propositions as types

• Functional language **typing rules** are often **logical**:

Propositions as types

Propositions as types

Natural Deduction	Term Typing
$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to I$	$\frac{\Gamma^*, \mathbf{x}: A \vdash_t M : B}{\Gamma^* \vdash_t \lambda \mathbf{x}: A \cdot M : A \to B} \to I$
$\frac{\Gamma \vdash A \to B \Gamma \vdash A}{\Gamma \vdash B} \to E$	$\left \begin{array}{ccc} \Gamma^* \vdash_t M : A \to B & \Gamma^* \vdash_t N : A \\ \hline \Gamma^* \vdash_t MN : B \end{array} \right \to E$

Simplicity: the minimal (logically) complete calculus.

- Simplicity: the minimal (logically) complete calculus.
- Some properties/behaviors are not captured:
 - Concurrency (permitted, but not described by types).
 - Complex, 2-way communication patterns.

- Simplicity: the minimal (logically) complete calculus.
- Some properties/behaviors are not captured:
 - Concurrency (permitted, but not described by types).
 - Complex, 2-way communication patterns.
- Features that may introduce deadlock, interference, non-determinism are **absent** in the minimal core.

Generality: new modal types defined orthogonally.

- Generality: new modal types defined orthogonally.
- Consider mobility and locality in a familiar framework:
 - products (*), sums (+), etc...
 - polymorphism ($\forall \alpha$), abstract types ($\exists \alpha$)
 - refinement types, intersection (\land), union (\lor), dependent types Πi , Σi
 - information flow, resource bounds, correctness specifications (if type system sufficiently powerful)

Related work

- Constructive modal logic:
 - "Judgmental Reconstruction of Modal Logic" (Pfenning, Davies '01)
 - "Proof Theory and Semantics of I.M.L." (Simpson '94)
- Parallel efforts: modal logic \implies distributed calculus.
 - "Modal Proofs As Distributed Programs" (Jia, Walker '03)
 - ongoing at CMU... (Crary, Murphy, *et al.*)
 - "Constructive Logic for Services and Info. Flow..." (Borghuis, Feijs '00)

Related work (contd.)

- Process Calculi (some which model locations):
 - Mobile Ambients & Ambient Logic: (various) (Cardelli, Caires, Ghelli, Gordon '98-'02)
 - DPI: "Resource Access Control..." (Hennessy, *et al.* '02)
 - Klaim: "Types for Access Control" (De Nicola, Ferrari, *et al.* '00)

Outline

- Introduction and methodology.
- Concepts of modal mogic.
- Core modal calculus.
- Properties of extensions.
- Proposed work.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Judgments for the modes of truth:
 - A true true at **this** world.
 - B valid true at **all** accessible world(s).
 - C possible true at some accessible world.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Judgments for the modes of truth:
 - A true true at **this** world.
 - B valid true at **all** accessible world(s).
 - C possible true at some accessible world.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Judgments for the modes of truth:
 - A true true at **this** world.
 - B valid true at **all** accessible world(s).
 - |C possible| true at **some** accessible world.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Judgments for the modes of truth:
 - A true true at **this** world.
 - B valid true at **all** accessible world(s).
 - C possible true at some accessible world.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Judgments for the modes of truth:
 - A true true at **this** world.
 - B valid true at **all** accessible world(s).
 - C possible true at some accessible world.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Judgments for the modes of truth:
 - A true true at **this** world.
 - B valid true at **all** accessible world(s).
 - C possible true at some accessible world.

- Modal logics distinguish modes or degrees of truth.
- We have worlds related by accessibility.

- Judgments for the modes of truth:
 - A true true at **this** world.
 - B valid true at **all** accessible world(s).
 - C possible true at some accessible world.

Hypothetical judgments

- Δ "global" assumptions A valid
- ▶ Γ "local" assumptions A true

$\Delta \vdash A \text{ valid } \qquad \Delta; \Gamma \vdash A \text{ true } \qquad \Delta; \Gamma \vdash A \text{ possible}$

Hypothetical judgments

- Δ "global" assumptions A valid
- Γ "local" assumptions A true

$$\Delta \vdash A \text{ valid} \qquad \Delta; \Gamma \vdash A \text{ true} \qquad \Delta; \Gamma \vdash A \text{ possible}$$

$\Delta \vdash A \text{ valid } \equiv \Delta; \cdot \vdash A \text{ true}$

Modal propositions

 $\Box A$ — "necessarily A"

$$\frac{\Delta, A \text{ valid}; \Gamma \vdash A \text{ true } hyp^*}{\Delta; \Gamma \vdash \Box A \text{ true }} \Box I$$

$$\frac{\Delta; \Gamma \vdash \Box A \text{ true } \Delta, A \text{ valid}; \Gamma \vdash C \text{ true }}{\Delta; \Gamma \vdash C \text{ true }} \Box E$$

Modal propositions

 $\Box A$ — "necessarily A"

$$\begin{array}{l} \overline{\Delta, A \text{ valid}; \Gamma \vdash A \text{ true }} hyp^* \quad \frac{\Delta; \cdot \vdash A \text{ true }}{\Delta; \Gamma \vdash \Box A \text{ true }} \Box A \\\\ \underline{\Delta; \Gamma \vdash \Box A \text{ true } \Delta, A \text{ valid}; \Gamma \vdash C \text{ true }}{\Delta; \Gamma \vdash C \text{ true }} \Box E \\\\ \Diamond A - \text{"possibly } A \text{"} \end{array}$$

 $\frac{\Delta; \Gamma \vdash A \text{ true}}{\Delta; \Gamma \vdash A \text{ possible}} \ poss \quad \frac{\Delta; \Gamma \vdash A \text{ possible}}{\Delta; \Gamma \vdash \diamond A \text{ true}} \diamond I$

$$\frac{\Delta; \Gamma \vdash \diamondsuit A \text{ true } \Delta; A \text{ true } \vdash C \text{ possible}}{\Delta; \Gamma \vdash C \text{ possible}} \diamondsuit E$$

Outline

- Introduction and methodology.
- Concepts of modal logic.
- Core modal calculus.
- Properties of extensions.
- Proposed work.
Towards a distributed calculus

Judgements

Logical	Typing	Operational
$\Delta;\Gamma \vdash A \; \texttt{true}$	$\Delta^*; \Gamma^* \vdash M : A$	"evaluate to A locally"
$\Delta;\Gammadash A$ possible	$\Delta^*; \Gamma^* \vdash E \div A$	"produce A somewhere"

Propositions

Prop/Type	Logical Reading	Type Reading
$\Box A$	"necessarily A"	"mobile A"
$\Diamond A$	"possibly A"	"remote A"

Typing: $\Box A$

$\frac{\Delta, \mathbf{u} :: A; \Gamma \vdash \mathbf{u} : A}{\Delta, \mathbf{u} :: A; \Gamma \vdash \mathbf{u} : A} \ hyp^* \quad \frac{\Delta; \cdot \vdash M : A}{\Delta; \Gamma \vdash \operatorname{box} M : \Box A} \ \Box I$

$\frac{\Delta;\Gamma\vdash M:\Box A\quad \Delta,\mathbf{u}::A;\Gamma\vdash N:B}{\Delta;\Gamma\vdash \text{let box}\,\mathbf{u}=M\,\text{in}\,N:B}\ \Box E$

 $\langle r_1 : \mathcal{R}[\text{let box} \mathbf{u} = \text{box} M \text{ in } N] \rangle \implies \langle r_2 : M \rangle, \quad \langle r_1 : \mathcal{R}[\llbracket r_2 / \mathbf{u} \rrbracket N] \rangle$

 $\langle r_2:V\rangle, \quad \langle r_1:\mathcal{R}[r_2]\rangle \implies \langle r_2:V\rangle, \quad \langle r_1:\mathcal{R}[V]\rangle$

 $\langle r_1 : \mathcal{R}[\text{let box} \mathbf{u} = \text{box} V \text{ in } N] \rangle \implies \langle r_1 : \mathcal{R}[\llbracket V/\mathbf{u} \rrbracket N] \rangle$

Opportunistic concurrent evaluation — not essential to logical necessity.

Example: Higher-order mobility

```
(* times_k : □nat -> □(nat->nat) *)
fun times_k k =
    let
        box u = k
        in
        box (λ x:nat . x * u)
```

• Lexically-scoped **mobile** closures capture **mobile** bindings $(u \in \Delta)$.

Example: Higher-order mobility

```
(* pmap : \Box (nat->nat) -> list \Boxnat
             -> list [nat *)
fun pmap f [] = []
    pmap f (x::tl) =
      let box f' = f
          box x' = x
          box v = box (f' x') (* spawn work
      in
         ((box v)::(pmap f tl))
(* double_lst : list \Boxnat -> list \Boxnat *)
val double_lst = pmap (times_k (box 2))
```

■ Clean account of mobility at function types $\Box(A \rightarrow B)$.

Example: Divide & conquer

```
(* fib :: □nat -> nat *)
mfun fib x =
  let box n = x in
    if (n < 2) then n
    else
       let
        (* spawn a, b concurrently *)
        box a = box (fib box(n-1))
        box b = box (fib box(n-2))
        in (a + b)</pre>
```

Note: mfun defines a mobile recursive function.

 $\frac{\Delta; \Gamma \vdash M : A}{\Delta; \Gamma \vdash \{M\} \div A} \ poss \quad \frac{\Delta; \Gamma \vdash E \div A}{\Delta; \Gamma \vdash \text{dia} E : \diamondsuit A} \diamondsuit I$

$\frac{\Delta;\Gamma\vdash M:\diamondsuit A\quad \Delta;\mathbf{x}:A\vdash F\div B}{\Delta;\Gamma\vdash \text{let dia}\,\mathbf{x}=M\,\text{in}\,F\div B}\diamondsuit E$

$$\begin{aligned} \langle l_1 : \mathcal{S}[\text{let dia} \mathbf{x} = \text{dia} \, l_2 \text{ in } F] \rangle, & \langle l_2 : \{V\} \rangle \\ \implies & \langle l_1 : \mathcal{S}[\, l'_2 \,] \rangle, \quad \langle l'_2 : [V/\mathbf{x}] F \rangle, \quad \langle l_2 : \{V\} \rangle \\ \langle l_1 : \mathcal{S}[\, \text{let dia} \, \mathbf{x} = \text{dia} \, \{V\} \text{ in } F] \rangle \\ \implies & \langle l_1 : \mathcal{S}[\, [V/\mathbf{x}] F] \rangle \end{aligned}$$

Example: A remote queue

```
(* rqueue : $\langle({insert:nat->unit, ...}) *)
val rqueue = bind_queue ...
(* insert (x : □nat) into rqueue *)
let
    box v = x
    dia q = rqueue (* jump to queue *)
in
    let val _ = q.insert v (* v mobile *)
in
```

- in ...
- Requires a mobile value (Dnat) because queue is remote.

Core calculus — summary

Type A, B ::= $A \rightarrow B$ | $\Box A$ | $\diamond A$ Term M, N ::= \mathbf{x} | \mathbf{u} | $\lambda \mathbf{x} : A \cdot M$ | M N| $\operatorname{box} M$ | $\operatorname{dia} E$ | $\operatorname{let} \operatorname{box} \mathbf{u} = M \operatorname{in} N$ Expr. E, F ::= $\{M\}$ | $\operatorname{let} \operatorname{box} \mathbf{u} = M \operatorname{in} F$ | $\operatorname{let} \operatorname{dia} \mathbf{x} = M \operatorname{in} F$

Core calculus — summary

Type $A, B ::= A \to B | \Box A | \diamond A$ Term M, N ::= [r] | x | u $| \lambda \mathbf{x} : A \cdot M | M N$ \mid box $M \mid$ dia E| let box $\mathbf{u} = M$ in NExpr. $E, F ::= |l| | \{M\} |$ let box $\mathbf{u} = M \operatorname{in} F$ let dia $\mathbf{x} = M$ in FLabel $w ::= r \mid l$ Process π ::= $\langle r: M \rangle \mid \langle l: E \rangle$ Config. $C ::= \cdot | C, \pi$

Process configurations

$$C \Longrightarrow C'$$
 — "*C* steps to *C*'".

- Non-deterministic choice of process (concurrency).
- Synchronization rule either lazy or strict (don't care).

Process configurations

$$C \Longrightarrow C' \longrightarrow C'$$
 — "C steps to C'".

- Non-deterministic choice of process (concurrency).
- Synchronization rule either lazy or strict (don't care).

$$\psi \vdash^{c} C : \Lambda$$
 — "conf. C has type Λ (under ψ)".

$$\Lambda = r_1 :: A, \dots, l_2 \div A, \dots$$

 $\checkmark \psi$ — determines scope/accessibility of labels.

J Type preservation:

$$\psi \vdash^{c} C : \Lambda \quad \text{and} \quad C \Longrightarrow C'$$
$$\implies \exists \Lambda' \supseteq \Lambda \ . \ \exists \psi' \ . \ \psi' \vdash^{c} C' : \Lambda'$$

• Λ' and ψ' grow as processes are created.

J Type preservation:

$$\psi \vdash^{c} C : \Lambda \quad \text{and} \quad C \Longrightarrow C'$$
$$\implies \exists \Lambda' \supseteq \Lambda \ . \ \exists \psi' \ . \ \psi' \vdash^{c} C' : \Lambda'$$

• Λ' and ψ' grow as processes are created.

$$\psi \vdash^{c} C : \Lambda \quad \text{and} \quad \psi \text{ noncyclic}$$
$$\implies \exists C' \cdot C \Longrightarrow C' \quad \text{or} \quad C \text{ terminal}$$

- ψ noncyclic permits inductive argument.
- deadlocked: $\langle r_1 : r_2 (\lambda \mathbf{x} : A \cdot \mathbf{x}) \rangle, \langle r_2 : r_1 (\lambda \mathbf{x} : A \cdot \mathbf{x}) \rangle$

- **Jermination**: sequences $C_1 \Longrightarrow C_2 \Longrightarrow \ldots$ halt
 - core calculus (without fixpoints).
 - $\psi \vdash^{c} C_1 : \Lambda_1$ well-formed configuration.
 - ψ noncyclic no recursion through "backdoor".

- **•** Termination: sequences $C_1 \Longrightarrow C_2 \Longrightarrow \ldots$ halt
 - core calculus (without fixpoints).
 - $\psi \vdash^{c} C_1 : \Lambda_1$ well-formed configuration.
 - ψ noncyclic no recursion through "backdoor".
- Confluence holds for well-formed config:
 - under same general conditions as above...
 - modulo ($C \equiv D$) synchronization-equiv.

Outline

- Introduction and methodology.
- Concepts of modal logic.
- Core modal calculus.
- Properties of extensions.
- Proposed work.

Example: marshalling

```
(* marshall_nat :: nat -> □nat *)
fun marshall_nat n =
  case n of
    zero => box zero (* boxed val *)
    | succ(x) =>
        let
        box u = marshall_nat x
        in
        box (succ(u)) (* boxed val *)
```

Spawning a concurrent process is optional.

Example: marshalling

PROHIBITED: marshalling arbitrary closures.

(* closure over binding c *)
val c = 42
fun f y = if y > 0 then c else y
(* marshall_n2n: (nat->nat) -> □(nat->nat)
fun marshall_n2n f =
 box f (* ill-typed occurrence *)

• An arbitrary (nat \rightarrow nat) may capture local binding.

Locality of effects

- Locality and effects are naturally connected.
 - Observable effects should execute at definite locations.
 - Machine state underlying effects is localized.

Locality of effects

- Locality and effects are naturally connected.
 - Observable effects should execute at definite locations.
 - Machine state underlying effects is localized.
- Nutshell: add effect monad (OA) and local computations.

Typing	Operational
$\Delta;\Gamma \vdash M:A$	"evaluate to A locally"
$\Delta;\Gamma \vdash P \not\sim A$	"produce A locally with effects"
$\Delta;\Gamma \vdash E \div A$	"produce A somewhere with effects"

Example: mutable ref

PROHIBITED: mobility for mutable refereces.

```
(* counter : ref nat *)
val counter = ref 0

(* bump :: unit -> unit *)
mfun bump () =
   counter := !counter + 1

box _ = box (bump ()) (* bump *)
box _ = box (bump ()) (* twice *)
(* !counter = 0? *)
```

- **•** Type system ($\bigcirc A$) disallows effects in spawned terms.
- See proposal document for details...

Outline

- Introduction and methodology.
- Concepts of modal logic.
- Core modal calculus.
- Properties of extensions.
- Proposed work.

Proposed contributions:

- Proposed contributions:
 - ✓ Relate modal logic to distributed computation.

- Proposed contributions:
 - ✓ Relate modal logic to distributed computation.
 - ✓ Core calculus with **mobility** and **locality** types.

- Proposed contributions:
 - ✓ Relate modal logic to distributed computation.
 - ✓ Core calculus with **mobility** and **locality** types. Extensions that interact with mobility/locality.

- Proposed contributions:
 - ✓ Relate modal logic to distributed computation.
 - Core calculus with mobility and locality types.
 Extensions that interact with mobility/locality.
 Apply to distributed grid programming.

Extensions

- Complete
 - Concrete data: products, sums, recursive types.
 - Effects: effect monad ($\bigcirc A$), mutable refs.
- Complete
 - Concrete data: products, sums, recursive types.
 - Effects: effect monad ($\bigcirc A$), mutable refs.
- ▶ Proposed: Polymorphism (\forall), abstract types (\exists).
 - Well-known problem sharing abstract values α between locations.
 - Permutations of $\exists \alpha . B$ and $\Box \diamondsuit$ seem interesting...

- ConCert runtime for trustless grid computing:
 - **Trustless** execute certified fragments of code.
 - Grid network of peers provide compute cycles.
- Certification is based on type/proof checking, not trust.

- ConCert runtime for trustless grid computing:
 - Trustless execute certified fragments of code.
 - Grid network of peers provide compute cycles.
- Certification is based on type/proof checking, not trust.
- Mobility and locality matter in ConCert:
 - All the general reasons, plus...
 - Image: second constraint cons
 - INST efficiency (space/bandwidth costs).
 - safety policies (move only certified code).

- Prototype compiler Hemlock:
 - Programming with spawn and sync model.
 - Type system: assume **all** values are mobile.
 - Marshalling
 - mutable refs by copying.
 - code problematic for local libraries.

- Prototype compiler Hemlock:
 - Programming with spawn and sync model.
 - Type system: assume **all** values are mobile.
 - Marshalling
 - mutable refs by copying.
 - code problematic for local libraries.
- Mobility and locality types provide:
 - Statically safe variant of spawn/sync ($\Box A$).
 - Link with local libraries (trusted/certified mix).
 - Bind and use remote resources ($\Diamond A$).

- Hemlock extensions/modifications:
 - Type system for \Box , \diamond and effects.

- Hemlock extensions/modifications:
 - Type system for \Box , \diamond and effects.
 - Code generation for new box/dia features.

- Hemlock extensions/modifications:
 - Type system for \Box , \diamond and effects.
 - Code generation for new box/dia features.
 - Marshalling: migrate to format compatible with $(\Box A)$.

- Hemlock extensions/modifications:
 - Type system for \Box , \diamond and effects.
 - Code generation for new box/dia features.
 - Marshalling: migrate to format compatible with $(\Box A)$.

- SonCert runtime extensions (support □, ◇ model):
 - Mapping, binding to $(\diamond A)$ resources.

- Hemlock extensions/modifications:
 - Type system for \Box , \diamond and effects.
 - Code generation for new box/dia features.
 - Marshalling: migrate to format compatible with $(\Box A)$.

- SonCert runtime extensions (support □, ◇ model):
 - Mapping, binding to $(\diamond A)$ resources.
 - Targeted "closures" $\{x \mapsto \bullet; E\}$ (arising from let dia x = M in E)

Strategy: Tasks and priorities

Priority	Effort	Task	
high	med	Polymorphism, abstract types	
high	med	Parsing, typechecking $(\Box, \diamond, \& effects)$	
high	high	Hemlock runtime marshalling code (TALT)	
high	high	TALT code gen. box/dia features	

Strategy: Tasks and priorities

Priority	Effort	Task	
high	med	Polymorphism, abstract types	
high	med	Parsing, typechecking $(\Box, \diamond, \& effects)$	
high	high	Hemlock runtime marshalling code (TALT)	
high	high	TALT code gen. box/dia features	
med	med	ConCert runtime support (<) (ML)	
med	high	Abstract resources ($\Diamond \exists$), Modules?	

Strategy: Tasks and priorities

Priority	Effort	Task	
high	med	Polymorphism, abstract types	
low	med	Dependent types, policy-related types	
high	med	Parsing, typechecking (\Box , \diamond , & effects)	
high	high	Hemlock runtime marshalling code (TALT)	
high	high	TALT code gen. box/dia features	
med	med	ConCert runtime support (\diamond) (ML)	
med	high	Abstract resources (◇∃), Modules?	

Questions?

Strategy: Tasks and Priorities

Time	Date	Task	
1	1	Polymorphism, abstract types	
?	?	Dependent types, policy-related types	
2-4	3-5	Parsing, typechecking $(\Box, \diamond, \& effects)$	
3-4	6-9	Hemlock runtime marshalling code (TALT)	
3-4	9-13	TALT code gen. box/dia features	
2-3	11-16	ConCert runtime support (<) (ML)	
2-3	13-19	Abstract resources (◇∃), Modules?	

Programming Models

- \rightarrow ,nat,*,+,... (local pure functional programs).
- \Box (spawn mobile terms, jump among locations).
- \bullet (local effects)
- $\Box \bigcirc \diamondsuit$ (spawn, local effects, jumping, remote effects)

S4 and P2P Grid

- Recall that ConCert assumes P2P grid with unreliable nodes...
- Some characteristics of the S4 formalism:
 - No explicit world annotations necessary in calculus.
 - Non-trivial $\Box \diamond A$ values are **extra-logical**. Programmer can't create them $(A \not\rightarrow \Box \diamond A)$.
- This simplifies the runtime support layer:
 - Flexible scheduling. Program fragments run anywhere, or nearly anywhere.
 - Most locations are "stateless". Node can leave network after producing result.

Typing Rules

$$\begin{array}{ll} \frac{\Delta; \Gamma, \mathbf{x} : A, \Gamma' \vdash_J \mathbf{x} : A}{\Delta; \Gamma, \mathbf{x} : A, \Gamma' \vdash_J \mathbf{x} : A} & hyp & \frac{\Delta; \Gamma \vdash_J \Lambda \mathbf{x} : A \vdash_J M : B}{\Delta; \Gamma \vdash_J \lambda \mathbf{x} : A \cdot M : A \to B} \to I \\ \\ \frac{\Delta, \mathbf{u} :: A, \Delta'; \Gamma \vdash_J \mathbf{u} : A}{\Delta; \mathbf{u} \vdash_J \mathbf{u} : A} & hyp^* & \frac{\Delta; \Gamma \vdash_J M : A \to B}{\Delta; \Gamma \vdash_J M N : B} \to E \\ \\ \frac{\Delta; \cdot \vdash_J A}{\Delta; \Gamma \vdash_J \operatorname{box} M : \Box A} \Box I & \frac{\Delta; \Gamma \vdash_J M : \Box A}{\Delta; \Gamma \vdash_J \operatorname{let} \operatorname{box} \mathbf{u} = M \operatorname{in} N : B} \Box E \\ \\ \frac{\Delta; \Gamma \vdash_J M : A}{\Delta; \Gamma \vdash_J \{M\} \div A} & poss & \frac{\Delta; \Gamma \vdash_J M : \Diamond A \quad \Delta; \mathbf{x} : A \vdash_J A}{\Delta; \Gamma \vdash_J \operatorname{let} \operatorname{dia} \mathbf{x} = M \operatorname{in} F \div B} \diamond E \\ \\ \frac{\Delta; \Gamma \vdash_J E \div A}{\Delta; \Gamma \vdash_J \operatorname{dia} E : \diamond A} \diamond I & \frac{\Delta; \Gamma \vdash_J M : \Box A \quad \Delta, \mathbf{u} :: A; \Gamma \vdash_J F \div B}{\Delta; \Gamma \vdash_J \operatorname{let} \operatorname{box} \mathbf{u} = M \operatorname{in} F \div B} \Box E_p \end{array}$$

- The type theory of $(\rightarrow \Box \diamondsuit)$ is easily extensible:
- products (A * B), sums (A + B), recursive types ($\mu \alpha \cdot B$)
 ... (straightforward)

$\Delta; \Gamma \vdash M : A \Delta; \Gamma \vdash N : B$	$\Delta;\Gamma \vdash M:A*B$	$\Delta;\Gamma \vdash M:A*B$
$\Delta; \Gamma \vdash (M, N) : A * B$	$\Delta;\Gammadash$ fst $M:B$	$\overline{\Delta;\Gamma} \vdash \operatorname{snd} M:A$

- The type theory of $(\rightarrow \Box \diamondsuit)$ is easily extensible:
- products (A * B), sums (A + B), recursive types ($\mu \alpha \cdot B$)
 ... (straightforward)

 $\frac{\Delta;\Gamma\vdash M:A\quad \Delta;\Gamma\vdash N:B}{\Delta;\Gamma\vdash (M,N):A\ast B}\quad \frac{\Delta;\Gamma\vdash M:A\ast B}{\Delta;\Gamma\vdash \mathrm{fst}\,M:B}\quad \frac{\Delta;\Gamma\vdash M:A\ast B}{\Delta;\Gamma\vdash \mathrm{snd}\,M:A}$

• Fixpoints: fixv(u:: A). M and fix(x: A). M

$$\frac{\Delta, \mathbf{u} :: A; \cdot \vdash M : A}{\Delta; \Gamma \vdash \texttt{fixv} (\mathbf{u} :: A) \cdot M : A} \quad \frac{\Delta; \Gamma, \mathbf{x} : A \vdash M : A}{\Delta; \Gamma \vdash \texttt{fix} (\mathbf{u} : A) \cdot M : A}$$

Each extension interacts with mobility and locality.

- Each extension interacts with mobility and locality.
- A heuristic...
 Location-neutral \implies term M : A Location-dependent \implies expression $E \div A$ (actually or potentially)

- Each extension interacts with mobility and locality.
- A heuristic...
 Location-neutral \implies term M : A Location-dependent \implies expression $E \div A$ (actually or potentially)
- (A → □A) A can be made mobile (marshalling)
 Some values A are location-independent.
 - Others not!

Effect Typing

$$\frac{\Delta; \Gamma \vdash_J P \nleftrightarrow A}{\Delta; \Gamma \vdash_J \operatorname{comp} P : \bigcirc A} \bigcirc I$$

$$\frac{\Delta;\Gamma\vdash_J M:A}{\Delta;\Gamma\vdash_J [M] \thicksim A} \ comp$$

$$\frac{\Delta; \Gamma \vdash_J P \not\sim A}{\Delta; \Gamma \vdash_J \{P\} \div A} \ poss'$$

$$\frac{\Delta; \Gamma \vdash_J M : \bigcirc A \quad \Delta; \Gamma, \mathbf{x} : A \vdash_J Q \thicksim B}{\Delta; \Gamma \vdash_J \text{ let } \operatorname{comp} \mathbf{x} = M \operatorname{in} Q \nsim B} \bigcirc E$$

$$\frac{\Delta; \Gamma \vdash_J M : \Box A \quad \Delta, \mathbf{u} :: A; \Gamma \vdash_J Q \sim B}{\Delta; \Gamma \vdash_J \text{ let box } \mathbf{u} = M \text{ in } Q \sim B} \quad \Box E_l$$

$$\frac{\Delta; \Gamma \vdash_J M : \bigcirc A \quad \Delta; \Gamma, \mathbf{x} : A \vdash_J F \div B}{\Delta; \Gamma \vdash_J \text{ let comp } \mathbf{x} = M \text{ in } F \div B} \bigcirc E_p$$

Primitive effects:

$$\begin{array}{ll} \Theta = \Theta_1, a^w : A, \Theta_2\\ \Theta; \Delta; \Gamma \vdash_w a^w : \operatorname{ref} A \end{array} addr \qquad \qquad \begin{array}{ll} \Delta; \Gamma \vdash_J M : A\\ \overline{\Delta; \Gamma \vdash_J \operatorname{ref} M \nsim \operatorname{ref} A} \end{array} talloc\\ \\ \frac{\Delta; \Gamma \vdash_J M : \operatorname{ref} A}{\Delta; \Gamma \vdash_J ! M \nsim A} tget \qquad \qquad \begin{array}{ll} \Delta; \Gamma \vdash_J M : A\\ \overline{\Delta; \Gamma \vdash_J M : \operatorname{ref} A} \end{array} talloc\\ \\ \frac{\Delta; \Gamma \vdash_J M : \operatorname{ref} A}{\Delta; \Gamma \vdash_J M : = N \nsim 1} tset\end{array}$$