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Introduction
Distributed computation — programming at more than
one location.

Are the locations distinguishable?

No — We can safely ignore locations, we’re done...
Yes — Must be careful when programs or values move.
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Introduction
Benefits of being location-aware:

account for localized code or values.
reflect trust or administration boundaries.
permit/deny some interactions between locations.
reflect costs of remote access (bandwidth/latency).

A location-aware type theory:
Specify and statically check properties defined in
terms of location....
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Introduction
Mobility and locality as aspects of location:

Mobility — “is it location-independent?”
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Locality — “is it here? or there?”.
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Thesis statement
“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
Relate modal logic to distributed computation.
Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.
Apply to distributed grid programming.
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Propositions as types
Functional language typing rules are often logical:

“proof

�

that

�

is true” “term has type

�

”����� � �� � � ! �

Proposition
��

Type

Proof

��
Program

Pf. Normalization

��

Evaluation
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Propositions as types

Natural Deduction Term Typing

�#" � �$�� � %$ % & �� " � �� $�� �� � %$ % &

�� � %$ �� ��� $ % ' �� �� � %$ �� �� ��� �� $ % '
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Consequences
Simplicity: the minimal (logically) complete calculus.

Some properties/behaviors are not captured:
Concurrency (permitted, but not described by types).
Complex, 2-way communication patterns.

Features that may introduce deadlock, interference,
non-determinism are absent in the minimal core.
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Consequences
Generality: new modal types defined orthogonally.

Consider mobility and locality in a familiar framework:
products ( ), sums ( ), etc...
polymorphism ( ), abstract types ( )
refinement types, intersection ( ), union ( ),
dependent types ,
information flow, resource bounds, correctness
specifications (if type system sufficiently powerful)
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Related work
Constructive modal logic:

“Judgmental Reconstruction of Modal Logic”
(Pfenning, Davies ’01)
“Proof Theory and Semantics of I.M.L.”
(Simpson ’94)

Parallel efforts: modal logic 7� distributed calculus.
“Modal Proofs As Distributed Programs”
(Jia, Walker ’03)
ongoing at CMU... (Crary, Murphy, et al.)
“Constructive Logic for Services and Info. Flow...”
(Borghuis, Feijs ’00)
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Related work (contd.)
Process Calculi (some which model locations):

Mobile Ambients & Ambient Logic: (various)
(Cardelli, Caires, Ghelli, Gordon ’98-’02)
DPI: “Resource Access Control...”
(Hennessy, et al. ’02)
Klaim: “Types for Access Control”
(De Nicola, Ferrari, et al. ’00)
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Outline
Introduction and methodology.

Concepts of modal mogic.

Core modal calculus.

Properties of extensions.

Proposed work.
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Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

Judgments for the modes of truth:

— true at this world.

— true at all accessible world(s).

— true at some accessible world.
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B true C true

C true B true
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Hypothetical judgments

H

— “global” assumptions

� = > ? @A�

— “local” assumptions

�98 : ; <

H � � = > ? @A HJI �� �98 :; < HJI �� � C EF F @G ? <
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Modal propositions

N �

— “necessarily

�

”

H " � = > ? @ A I �� � 8 :; < O0PQ � HJIML � �98 : ; <HJI �� N � 8 :; < N &

HJI �� N �98 :; < H " � = > ? @A I �� BR8 :; <HJI �� BR8 :; < N '

— “possibly ”
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Outline
Introduction and methodology.

Concepts of modal logic.

Core modal calculus.

Properties of extensions.

Proposed work.
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Towards a distributed calculus
Judgements

Logical Typing OperationalHJI �� �98 :; < H � I �� � ! �

“evaluate to

�
locally”HJI �� � C EF F @G ? < H � I �� � 'WV �

“produce

�
somewhere”

Propositions

Prop/Type Logical Reading Type ReadingN �

“necessarily

�
” “mobile

�

”S �

“possibly A” “remote

�

”
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Typing:

H "; ! ! �I �� ; ! � O PQ � HJIML � ! �HJI ��

box ! N � N &

HJI �� ! N � H "; ! ! �I �� + ! $HI ��

let box ; = in
+ ! $ N '
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Operational:
Intuition

let box u =
box M

in N

N
... u ... V

Formally

let box = box in

let box = box in

Opportunistic concurrent evaluation — not essential
to logical necessity.
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Operational:
Intuition

N
... u ... V

Formally

XZY[ \ ] ^

let box _ = box `

in

a bc d e XZYf \ `chg X Y[ \ ] ^ ^ ^Yf i _ b b a b c

XZYf \ jchg XZY[ \ ] ^Yf bc d e XZYf \ jchg XZY [ \ ] ^ j bc

XZY [ \ ] ^

let box _ = box j
in

a bc d e XZY [ \ ] ^ ^ ^ j i _ b b a bc

Opportunistic concurrent evaluation — not essential
to logical necessity.
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Example: Higher-order mobility

(* times_k : Nnat -> N(nat->nat) *)
fun times_k k =
let
box u = k

in
box (

)

x:nat . x * u)

Lexically-scoped mobile closures
capture mobile bindings (; k H

).
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Example: Higher-order mobility
(* pmap : N(nat->nat) -> list Nnat

-> list Nnat *)
fun pmap f [] = []

pmap f (x::tl) =
let box f’ = f

box x’ = x
box v = box (f’ x’) (* spawn work *)

in
((box v)::(pmap f tl))

(* double_lst : list Nnat -> list Nnat *)
val double_lst = pmap (times_k (box 2))

Clean account of mobility at function types N l � %$ m

.
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Example: Divide & conquer

(* fib :: Nnat -> nat *)
mfun fib x =
let box n = x in
if (n < 2) then n
else

let
(* spawn a,b concurrently *)
box a = box (fib box(n-1))
box b = box (fib box(n-2))

in (a + b)

Note: mfun defines a mobile recursive function.

Type Theory forMobility and Locality – p.22/49



Typing:

HJI �� ! �HJI ��

{ }V �Q TU U HJI �� 'V �HI ��

dia

' ! S � S &

HJI �� ! S � HJI ( ! � �n V $HJI ��

let dia ( = in

n V $ S '
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Operational:
Intuition

let dia x = 

in F
dia V*

[V/x] F

Formally

let dia = dia in { }

{ }

let dia = dia { } in
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Operational:
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{...x, F}2

l
2

let dia x = 
dia 

in F

[V/x] F

l

[V/x] F
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Operational:
Intuition

[V/x] F

Formally

Xo[ \ p ^

let dia q = diaof in

r bc g X of \ { j

}

cd e Xo[ \ p ^o sf bc g X o sf \ ^ j i q b rc g X of \ { j

}

c

Xo[ \ p ^
let dia q = dia { j

} in

r bcd e Xo[ \ p ^ ^ j i q b r b c
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Example: A remote queue

(* rqueue :

S

({insert:nat->unit, ...}) *)
val rqueue = bind_queue ...

(* insert (x : Nnat) into rqueue *)
let
box v = x
dia q = rqueue (* jump to queue *)

in
let val _ = q.insert v (* v mobile *)
in ...

Requires a mobile value ( Nnat) because
queue is remote.
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Core calculus — summary

Type

� "$ ! ! 7 � %$ t N � t S �
Term " + ! ! 7 ( t ;t ) ( ! �* t +t

box

t
dia

't

let box ; = in

+

Expr.

' "n ! ! 7 { }

t
let box ; = in

nt
let dia ( = in

n

Type

Term

box dia

let box = in

Expr. { } let box = in

let dia = in

Label

Process

Config.
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Core calculus — summary

Type

� "$ ! ! 7 � %$ t N � t S �
Term " + ! ! 7 u t ( t ;t ) ( ! �* t +t

box

t
dia

't

let box ; = in

+

Expr.

' "n ! ! 7 v t

{ }
t

let box ; = in

n

t

let dia ( = in

n

Label w ! ! 7 u t v
Process x ! ! 7 y u ! z t y v ! ' z

Config.

B ! ! 7 L t B "x
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Process configurations

B 7� B {

— “

B

steps to

B {

”.
Non-deterministic choice of process (concurrency).
Synchronization rule either lazy or strict (don’t care).

— “conf. has type (under )”.

— determines scope/accessibility of labels.
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Process configurations

B 7� B {

— “

B

steps to

B {

”.
Non-deterministic choice of process (concurrency).
Synchronization rule either lazy or strict (don’t care).

| � } B ! ~

— “conf.

B

has type
~

(under

|
)”.~ 7 u� ! ! � "* * * "v�� V � "* * *|

— determines scope/accessibility of labels.
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Properties
Type preservation:

| � } B ! ~

and

B 7� B {

7� 1 ~ {�� ~ * 1 | { * | { � } B { ! ~ {

~ {

and

| {

grow as processes are created.

Progress:

and

or terminal

— permits inductive argument.
deadlocked:
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Properties
Type preservation:

| � } B ! ~

and

B 7� B {

7� 1 ~ {�� ~ * 1 | { * | { � } B { ! ~ {

~ {

and

| {

grow as processes are created.

Progress:

| � } B ! ~
and

|�� E� �� � ? @ �

7� 1 B { * B 7� B {
or

B

terminal

| � E� �� � ? @ � — permits inductive argument.
deadlocked:

y u� ! u� l ) ( ! �* ( m z "y u� ! u� l ) ( ! �* ( m z
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Properties
Termination: sequences

B� 7� B� 7� * * * halt
core calculus (without fixpoints).| � } B� ! ~ � — well-formed configuration.| � E� �� � ? @ � — no recursion through “backdoor”.

Confluence holds for well-formed config:
under same general conditions as above...
modulo ( ) synchronization-equiv.

G       H

C       DC       D

**

* *
C’ D’
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Outline
Introduction and methodology.

Concepts of modal logic.

Core modal calculus.

Properties of extensions.

Proposed work.
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Example: marshalling

(* marshall_nat :: nat -> Nnat *)
fun marshall_nat n =
case n of

zero => box zero (* boxed val *)
| succ(x) =>

let
box u = marshall_nat x

in
box (succ(u)) (* boxed val *)

Spawning a concurrent process is optional.
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Example: marshalling
PROHIBITED: marshalling arbitrary closures.

(* closure over binding c *)
val c = 42
fun f y = if y > 0 then c else y

(* marshall_n2n: (nat->nat) -> N(nat->nat) *)
fun marshall_n2n f =

box f (* ill-typed occurrence *)

An arbitrary (nat % nat) may capture local binding.
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Locality of effects
Locality and effects are naturally connected.

Observable effects should execute at definite
locations.
Machine state underlying effects is localized.

Nutshell: add effect monad ( ) and local
computations.

Typing Operational

“evaluate to locally”

“produce locally with effects”

“produce somewhere with effects”
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Example: mutable ref
PROHIBITED: mobility for mutable refereces.

(* counter : ref nat *)
val counter = ref 0

(* bump :: unit -> unit *)
mfun bump () =

counter := !counter + 1

box _ = box (bump ()) (* bump *)
box _ = box (bump ()) (* twice *)
(* !counter = 0? *)

Type system (
�

) disallows effects in spawned terms.

See proposal document for details...
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Outline
Introduction and methodology.

Concepts of modal logic.

Core modal calculus.

Properties of extensions.

Proposed work.

Type Theory forMobility and Locality – p.35/49



Progress
Proposed contributions:

3 Relate modal logic to distributed computation.
3 Core calculus with mobility and locality types.

Extensions that interact with mobility/locality.
Apply to distributed grid programming.
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Extensions
Complete

Concrete data: products, sums, recursive types.
Effects: effect monad (

�

), mutable refs.

Proposed: Polymorphism ( ), abstract types ( ).
Well-known problem sharing abstract values
between locations.
Permutations of and seem interesting...
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Permutations of
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Application: ConCert grid
ConCert runtime for trustless grid computing:

Trustless — execute certified fragments of code.
Grid — network of peers provide compute cycles.

Certification is based on type/proof checking, not trust.

Mobility and locality matter in ConCert:

All the general reasons, plus...
+ confidentiality, abstraction.
+ efficiency (space/bandwidth costs).
+ safety policies (move only certified code).
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Application: ConCert grid
Prototype compiler Hemlock:

Programming with spawn and sync model.
Type system: assume all values are mobile.
Marshalling

mutable refs — by copying.
code — problematic for local libraries.

Mobility and locality types provide:
Statically safe variant of spawn/sync ( ).
Link with local libraries (trusted/certified mix).
Bind and use remote resources ( ).
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Details
Hemlock extensions/modifications:

Type system for N , S

and effects.

Code generation for new box/dia features.
Marshalling: migrate to format compatible with ( ).

ConCert runtime extensions (support , model):
Mapping, binding to ( ) resources.
Targeted “closures”
(arising from let dia = in )
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Details
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Strategy: Tasks and priorities

Priority Effort Task
high med Polymorphism, abstract types

high med Parsing, typechecking ( N , S
, & effects)

high high Hemlock runtime marshalling code (TALT)
high high TALT code gen. box/dia features
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Strategy: Tasks and priorities

Priority Effort Task
high med Polymorphism, abstract types
low med Dependent types, policy-related types
high med Parsing, typechecking ( N , S

, & effects)
high high Hemlock runtime marshalling code (TALT)
high high TALT code gen. box/dia features
med med ConCert runtime support (

S

) (ML)
med high Abstract resources (

S 1

), Modules?
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End

Questions?
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Strategy: Tasks and Priorities

Time Date Task
1 1 Polymorphism, abstract types
? ? Dependent types, policy-related types
2-4 3-5 Parsing, typechecking ( N , S

, & effects)
3-4 6-9 Hemlock runtime marshalling code (TALT)
3-4 9-13 TALT code gen. box/dia features
2-3 11-16 ConCert runtime support (

S

) (ML)
2-3 13-19 Abstract resources (

S 1

), Modules?
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Programming Models

%,nat, ,, -,... (local pure functional programs).N (spawn mobile terms).N S

(spawn mobile terms, jump among locations).

(local effects)N (spawn mobile, local effects)N S

(spawn, local effects, jumping, remote effects)
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S4 and P2P Grid
Recall that ConCert assumes P2P grid with unreliable
nodes...

Some characteristics of the S4 formalism:
No explicit world annotations necessary in calculus.
Non-trivial N S �

values are extra-logical.
Programmer can’t create them (

� � % N S �

).

This simplifies the runtime support layer:
Flexible scheduling. Program fragments run
anywhere, or nearly anywhere.
Most locations are “stateless”. Node can leave
network after producing result.
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Typing Rules

��� �g q \ �g � s��� q \ � ���� �� �g q \ ���� ` \ ��� ���� � q \ � � ` \ �¢¡ � ¡ £

�g _ \ \ �g � s � ���� _ \ � ��� � ¤ �� ���� ` \ � ¡ � �� ���� a \ ��� ���� ` a \ � ¡ ¥

��¦ ��� § ` \ ��� ��� box

` \ ¨ � ¨ £ ��� ���� ` \ ¨ � �g _ \ \ �� ���� a \ ��� ��� let box _ = `
in

a \ � ¨ ¥

�� ���� ` \ ��� ���� {

`

}

© � �ª « « �� ���� ` \ ¬ � ��� q \ ��� § r © ���� ���� let dia q = `

in

r © � ¬ ¥

�� ���� ¥ © ��� ��� dia

¥ \ ¬ � ¬ £ �� ��� ` \ ¨ � �g _ \ \ �� ���� r © ���� ���� let box _ = `

in

r © � ¨ ¥®­
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Extensions
The type theory of ( % N S

) is easily extensible:

products (

� ,$ ), sums (

� -$ ), recursive types ( ¯ / * $ )
... (straightforward)��� �� ` \ � �� �� a \ ��� ��

(

`

,

a

) \ �±° � ��� �� ` \ � ° ���� ��
fst

` \ � �� �� ` \ �±° ���� ��
snd

` \ �

Fixpoints: fixv and fix

fixv fix
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l ; ! ! � m * and fix

l ( ! � m *

H "; ! ! �IML � ! �HJI ��

fixv

l ; ! ! � m * ! � HI � "( ! � � ! �HJI ��

fix

l ; ! � m * ! �
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Extensions
Each extension interacts with mobility and locality.

A heuristic...
Location-neutral term

Location-dependent expression
(actually or potentially)

( ) — can be made mobile (marshalling)
Some values are location-independent.
Others not!
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Effect Typing

�� ��� ² \³ ���� ���� comp

² \ ´ � ´ £ �� ���� ` \ ´ � �� �g q \ ��� µ \³ ���� ���� let comp q = `
in

µ \³ � ´ ¥

�� ���� ` \ ��� ��� [

`

] \³ � ¶ª ·� �� ���� ` \ ¨ � �g _ \ \ �� ���� µ \³ ���� ���� let box _ = `
in

µ \³ � ¨ ¥¹¸

��� ���� ² \³ ���� ���� {

²

}

© � �ª « « s �� ��� ` \ ´ � �� �g q \ ���� r © ���� ���� let comp q = `
in

r © � ´ ¥ ­

Primitive effects:º d º[ g » ¼ \ �g ºfº� �� �� ¼ » ¼ \ ref � » ½ ½Y �� ���� ` \ ��� ��� ref

` \³ ref � ¾ »o oª ¶

��� ���� ` \ ref ��� ���� !

` \³ � ¾¢¿À ¾ ��� ���� ` \ ref � �� ���� a \ ���� ���� `

:=

a \³ 1 ¾ «À ¾
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