
Type Theory for
Mobility and Locality

Thesis Proposal

Jonathan Moody

Committee: Frank Pfennning, Karl Crary,

Jeannette Wing, Andrew Gordon (MSR)

School of Computer Science

Carnegie Mellon University

Type Theory forMobility and Locality – p.1/49

Introduction
Distributed computation — programming at more than
one location.

Are the locations distinguishable?

No — We can safely ignore locations, we’re done...
Yes — Must be careful when programs or values move.

Type Theory forMobility and Locality – p.2/49

Introduction
Distributed computation — programming at more than
one location.

pr
og

ra
m

en
v.

Are the locations distinguishable?

No — We can safely ignore locations, we’re done...

Yes — Must be careful when programs or values move.

Type Theory forMobility and Locality – p.2/49

Introduction
Distributed computation — programming at more than
one location.

pr
og

ra
m

en
v.

Are the locations distinguishable?

No — We can safely ignore locations, we’re done...
Yes — Must be careful when programs or values move.

Type Theory forMobility and Locality – p.2/49

Introduction
Benefits of being location-aware:

account for localized code or values.
reflect trust or administration boundaries.
permit/deny some interactions between locations.
reflect costs of remote access (bandwidth/latency).

A location-aware type theory:
Specify and statically check properties defined in
terms of location....

Type Theory forMobility and Locality – p.3/49

Introduction
Mobility and locality as aspects of location:

Mobility — “is it location-independent?”

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � �� � � �� � � �� � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

Locality — “is it here? or there?”.

� �

� 	

Type Theory forMobility and Locality – p.4/49

Introduction
Mobility and locality as aspects of location:

Mobility — “is it location-independent?”

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � �� � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

Locality — “is it here? or there?”.

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � �� � � � �� � � � �� � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

Type Theory forMobility and Locality – p.4/49

Thesis statement
“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
Relate modal logic to distributed computation.
Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.5/49

Thesis statement
“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
Relate modal logic to distributed computation.

Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.5/49

Thesis statement
“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
Relate modal logic to distributed computation.
Core calculus with mobility and locality types.

Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.5/49

Thesis statement
“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
Relate modal logic to distributed computation.
Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.

Apply to distributed grid programming.

Type Theory forMobility and Locality – p.5/49

Thesis statement
“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
Relate modal logic to distributed computation.
Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.5/49

Propositions as types
Functional language typing rules are often logical:

“proof

�

that

�

is true” “term has type

�

”����� � �� � � ! �

Proposition
��

Type

Proof

��
Program

Pf. Normalization

��

Evaluation

Type Theory forMobility and Locality – p.6/49

Propositions as types

Natural Deduction Term Typing

�#" � �$�� � %$ % & �� " � �� $�� �� � %$ % &

�� � %$ �� ��� $ % ' �� �� � %$ �� �� ��� �� $ % '

Type Theory forMobility and Locality – p.7/49

Propositions as types

Natural Deduction Term Typing

�#" � �$�� � %$ % & �� "(! � �� ! $�� ��) (! �* ! � %$ % &

�� � %$ �� ��� $ % ' �� �� ! � %$ �� �� + ! ��� �� + ! $ % '

Type Theory forMobility and Locality – p.7/49

Consequences
Simplicity: the minimal (logically) complete calculus.

Some properties/behaviors are not captured:
Concurrency (permitted, but not described by types).
Complex, 2-way communication patterns.

Features that may introduce deadlock, interference,
non-determinism are absent in the minimal core.

Type Theory forMobility and Locality – p.8/49

Consequences
Simplicity: the minimal (logically) complete calculus.

Some properties/behaviors are not captured:
Concurrency (permitted, but not described by types).
Complex, 2-way communication patterns.

Features that may introduce deadlock, interference,
non-determinism are absent in the minimal core.

Type Theory forMobility and Locality – p.8/49

Consequences
Simplicity: the minimal (logically) complete calculus.

Some properties/behaviors are not captured:
Concurrency (permitted, but not described by types).
Complex, 2-way communication patterns.

Features that may introduce deadlock, interference,
non-determinism are absent in the minimal core.

Type Theory forMobility and Locality – p.8/49

Consequences
Generality: new modal types defined orthogonally.

Consider mobility and locality in a familiar framework:
products (), sums (), etc...
polymorphism (), abstract types ()
refinement types, intersection (), union (),
dependent types ,
information flow, resource bounds, correctness
specifications (if type system sufficiently powerful)

Type Theory forMobility and Locality – p.9/49

Consequences
Generality: new modal types defined orthogonally.

Consider mobility and locality in a familiar framework:
products (,), sums (-), etc...
polymorphism (

.0/), abstract types (
1 /)

refinement types, intersection (2), union (3),
dependent types

45

,

6 5
information flow, resource bounds, correctness
specifications (if type system sufficiently powerful)

Type Theory forMobility and Locality – p.9/49

Related work
Constructive modal logic:

“Judgmental Reconstruction of Modal Logic”
(Pfenning, Davies ’01)
“Proof Theory and Semantics of I.M.L.”
(Simpson ’94)

Parallel efforts: modal logic 7� distributed calculus.
“Modal Proofs As Distributed Programs”
(Jia, Walker ’03)
ongoing at CMU... (Crary, Murphy, et al.)
“Constructive Logic for Services and Info. Flow...”
(Borghuis, Feijs ’00)

Type Theory forMobility and Locality – p.10/49

Related work (contd.)
Process Calculi (some which model locations):

Mobile Ambients & Ambient Logic: (various)
(Cardelli, Caires, Ghelli, Gordon ’98-’02)
DPI: “Resource Access Control...”
(Hennessy, et al. ’02)
Klaim: “Types for Access Control”
(De Nicola, Ferrari, et al. ’00)

Type Theory forMobility and Locality – p.11/49

Outline
Introduction and methodology.

Concepts of modal mogic.

Core modal calculus.

Properties of extensions.

Proposed work.

Type Theory forMobility and Locality – p.12/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

Judgments for the modes of truth:

— true at this world.

— true at all accessible world(s).

— true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

A trueA true

B true C true

C true B true

Judgments for the modes of truth:�98 :; < — true at this world.$ = > ? @A — true at all accessible world(s).BDC EF F @G ? < — true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

B valid

Judgments for the modes of truth:�98 :; < — true at this world.$ = > ? @A — true at all accessible world(s).BDC EF F @G ? < — true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

B valid B true

B trueB true

B true

Judgments for the modes of truth:�98 :; < — true at this world.$ = > ? @A — true at all accessible world(s).BDC EF F @G ? < — true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

C poss

Judgments for the modes of truth:�98 :; < — true at this world.$ = > ? @A — true at all accessible world(s).BDC EF F @G ? < — true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

C poss

C true

Judgments for the modes of truth:�98 :; < — true at this world.$ = > ? @A — true at all accessible world(s).BDC EF F @G ? < — true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

C poss
C true

Judgments for the modes of truth:�98 :; < — true at this world.$ = > ? @A — true at all accessible world(s).BDC EF F @G ? < — true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Concepts of modal logic
Modal logics distinguish modes or degrees of truth.

We have worlds related by accessibility.

C poss

C true

Judgments for the modes of truth:�98 :; < — true at this world.$ = > ? @A — true at all accessible world(s).BDC EF F @G ? < — true at some accessible world.

Type Theory forMobility and Locality – p.13/49

Hypothetical judgments

H

— “global” assumptions

� = > ? @A�

— “local” assumptions

�98 : ; <

H � � = > ? @A HJI �� �98 :; < HJI �� � C EF F @G ? <

Type Theory forMobility and Locality – p.14/49

Hypothetical judgments

H

— “global” assumptions

� = > ? @A�

— “local” assumptions

�98 : ; <

H � � = > ? @A HJI �� �98 :; < HJI �� � C EF F @G ? <

H � � = > ? @A K HJIML � �98 : ; <

Type Theory forMobility and Locality – p.14/49

Modal propositions

N �

— “necessarily

�

”

H " � = > ? @ A I �� � 8 :; < O0PQ � HJIML � �98 : ; <HJI �� N � 8 :; < N &

HJI �� N �98 :; < H " � = > ? @A I �� BR8 :; <HJI �� BR8 :; < N '

— “possibly ”

Type Theory forMobility and Locality – p.15/49

Modal propositions

N �

— “necessarily

�

”

H " � = > ? @ A I �� � 8 :; < O0PQ � HJIML � �98 : ; <HJI �� N � 8 :; < N &

HJI �� N �98 :; < H " � = > ? @A I �� BR8 :; <HJI �� BR8 :; < N '

S �

— “possibly

�

”HJI �� �98 :; <HJI �� � C EF F @G ? <Q TU U HJI �� � C EF F @ G ? <HJI �� S �98 :; < S &

HJI �� S �98 : ; < HJI �98 :; < � B C EF F @G ? <HJI �� B C EF F @G ? < S '

Type Theory forMobility and Locality – p.15/49

Outline
Introduction and methodology.

Concepts of modal logic.

Core modal calculus.

Properties of extensions.

Proposed work.

Type Theory forMobility and Locality – p.16/49

Towards a distributed calculus
Judgements

Logical Typing OperationalHJI �� �98 :; < H � I �� � ! �

“evaluate to

�
locally”HJI �� � C EF F @G ? < H � I �� � 'WV �

“produce

�
somewhere”

Propositions

Prop/Type Logical Reading Type ReadingN �

“necessarily

�
” “mobile

�

”S �

“possibly A” “remote

�

”

Type Theory forMobility and Locality – p.17/49

Typing:

H "; ! ! �I �� ; ! � O PQ � HJIML � ! �HJI ��

box ! N � N &

HJI �� ! N � H "; ! ! �I �� + ! $HI ��

let box ; = in
+ ! $ N '

Type Theory forMobility and Locality – p.18/49

Operational:
Intuition

let box u =
box M

in N

N
... u ... V

Formally

let box = box in

let box = box in

Opportunistic concurrent evaluation — not essential
to logical necessity.

Type Theory forMobility and Locality – p.19/49

Operational:
Intuition

let box u =
box M

in N

{..., M}

N
... u ... V

Formally

let box = box in

let box = box in

Opportunistic concurrent evaluation — not essential
to logical necessity.

Type Theory forMobility and Locality – p.19/49

Operational:
Intuition

N
... u ... V

Formally

let box = box in

let box = box in

Opportunistic concurrent evaluation — not essential
to logical necessity.

Type Theory forMobility and Locality – p.19/49

Operational:
Intuition

N
... u ... V

Formally

XZY[\] ^

let box _ = box `

in

a bc d e XZYf \ `chg X Y[\] ^ ^ ^Yf i _ b b a b c

XZYf \ jchg XZY[\] ^Yf bc d e XZYf \ jchg XZY [\] ^ j bc

XZY [\] ^

let box _ = box j
in

a bc d e XZY [\] ^ ^ ^ j i _ b b a bc

Opportunistic concurrent evaluation — not essential
to logical necessity.

Type Theory forMobility and Locality – p.19/49

Example: Higher-order mobility

(* times_k : Nnat -> N(nat->nat) *)
fun times_k k =
let
box u = k

in
box (

)

x:nat . x * u)

Lexically-scoped mobile closures
capture mobile bindings (; k H

).

Type Theory forMobility and Locality – p.20/49

Example: Higher-order mobility
(* pmap : N(nat->nat) -> list Nnat

-> list Nnat *)
fun pmap f [] = []

pmap f (x::tl) =
let box f’ = f

box x’ = x
box v = box (f’ x’) (* spawn work *)

in
((box v)::(pmap f tl))

(* double_lst : list Nnat -> list Nnat *)
val double_lst = pmap (times_k (box 2))

Clean account of mobility at function types N l � %$ m

.

Type Theory forMobility and Locality – p.21/49

Example: Divide & conquer

(* fib :: Nnat -> nat *)
mfun fib x =
let box n = x in
if (n < 2) then n
else

let
(* spawn a,b concurrently *)
box a = box (fib box(n-1))
box b = box (fib box(n-2))

in (a + b)

Note: mfun defines a mobile recursive function.

Type Theory forMobility and Locality – p.22/49

Typing:

HJI �� ! �HJI ��

{ }V �Q TU U HJI �� 'V �HI ��

dia

' ! S � S &

HJI �� ! S � HJI (! � �n V $HJI ��

let dia (= in

n V $ S '

Type Theory forMobility and Locality – p.23/49

Operational:
Intuition

let dia x =

in F
dia V*

[V/x] F

Formally

let dia = dia in { }

{ }

let dia = dia { } in

Type Theory forMobility and Locality – p.24/49

Operational:
Intuition

{...x, F}2

l
2

let dia x =
dia

in F

[V/x] F

l

[V/x] F

Formally

let dia = dia in { }

{ }

let dia = dia { } in

Type Theory forMobility and Locality – p.24/49

Operational:
Intuition

[V/x] F

Formally

let dia = dia in { }

{ }

let dia = dia { } in

Type Theory forMobility and Locality – p.24/49

Operational:
Intuition

[V/x] F

Formally

Xo[\ p ^

let dia q = diaof in

r bc g X of \ { j

}

cd e Xo[\ p ^o sf bc g X o sf \ ^ j i q b rc g X of \ { j

}

c

Xo[\ p ^
let dia q = dia { j

} in

r bcd e Xo[\ p ^ ^ j i q b r b c

Type Theory forMobility and Locality – p.24/49

Example: A remote queue

(* rqueue :

S

({insert:nat->unit, ...}) *)
val rqueue = bind_queue ...

(* insert (x : Nnat) into rqueue *)
let
box v = x
dia q = rqueue (* jump to queue *)

in
let val _ = q.insert v (* v mobile *)
in ...

Requires a mobile value (Nnat) because
queue is remote.

Type Theory forMobility and Locality – p.25/49

Core calculus — summary

Type

� "$! ! 7 � %$ t N � t S �
Term " + ! ! 7 (t ;t) (! �* t +t

box

t
dia

't

let box ; = in

+

Expr.

' "n ! ! 7 { }

t
let box ; = in

nt
let dia (= in

n

Type

Term

box dia

let box = in

Expr. { } let box = in

let dia = in

Label

Process

Config.

Type Theory forMobility and Locality – p.26/49

Core calculus — summary

Type

� "$! ! 7 � %$ t N � t S �
Term " + ! ! 7 u t (t ;t) (! �* t +t

box

t
dia

't

let box ; = in

+

Expr.

' "n ! ! 7 v t

{ }
t

let box ; = in

n

t

let dia (= in

n

Label w ! ! 7 u t v
Process x ! ! 7 y u ! z t y v ! ' z

Config.

B ! ! 7 L t B "x

Type Theory forMobility and Locality – p.26/49

Process configurations

B 7� B {

— “

B

steps to

B {

”.
Non-deterministic choice of process (concurrency).
Synchronization rule either lazy or strict (don’t care).

— “conf. has type (under)”.

— determines scope/accessibility of labels.

Type Theory forMobility and Locality – p.27/49

Process configurations

B 7� B {

— “

B

steps to

B {

”.
Non-deterministic choice of process (concurrency).
Synchronization rule either lazy or strict (don’t care).

| � } B ! ~

— “conf.

B

has type
~

(under

|
)”.~ 7 u� ! ! � "* * * "v�� V � "* * *|

— determines scope/accessibility of labels.

Type Theory forMobility and Locality – p.27/49

Properties
Type preservation:

| � } B ! ~

and

B 7� B {

7� 1 ~ {�� ~ * 1 | { * | { � } B { ! ~ {

~ {

and

| {

grow as processes are created.

Progress:

and

or terminal

— permits inductive argument.
deadlocked:

Type Theory forMobility and Locality – p.28/49

Properties
Type preservation:

| � } B ! ~

and

B 7� B {

7� 1 ~ {�� ~ * 1 | { * | { � } B { ! ~ {

~ {

and

| {

grow as processes are created.

Progress:

| � } B ! ~
and

|�� E� �� � ? @ �

7� 1 B { * B 7� B {
or

B

terminal

| � E� �� � ? @ � — permits inductive argument.
deadlocked:

y u� ! u� l) (! �* (m z "y u� ! u� l) (! �* (m z

Type Theory forMobility and Locality – p.28/49

Properties
Termination: sequences

B� 7� B� 7� * * * halt
core calculus (without fixpoints).| � } B� ! ~ � — well-formed configuration.| � E� �� � ? @ � — no recursion through “backdoor”.

Confluence holds for well-formed config:
under same general conditions as above...
modulo () synchronization-equiv.

G H

C DC D

**

* *
C’ D’

Type Theory forMobility and Locality – p.29/49

Properties
Termination: sequences

B� 7� B� 7� * * * halt
core calculus (without fixpoints).| � } B� ! ~ � — well-formed configuration.| � E� �� � ? @ � — no recursion through “backdoor”.

Confluence holds for well-formed config:
under same general conditions as above...
modulo (

B K �

) synchronization-equiv.

G H

C DC D

**

* *
C’ D’

Type Theory forMobility and Locality – p.29/49

Outline
Introduction and methodology.

Concepts of modal logic.

Core modal calculus.

Properties of extensions.

Proposed work.

Type Theory forMobility and Locality – p.30/49

Example: marshalling

(* marshall_nat :: nat -> Nnat *)
fun marshall_nat n =
case n of

zero => box zero (* boxed val *)
| succ(x) =>

let
box u = marshall_nat x

in
box (succ(u)) (* boxed val *)

Spawning a concurrent process is optional.

Type Theory forMobility and Locality – p.31/49

Example: marshalling
PROHIBITED: marshalling arbitrary closures.

(* closure over binding c *)
val c = 42
fun f y = if y > 0 then c else y

(* marshall_n2n: (nat->nat) -> N(nat->nat) *)
fun marshall_n2n f =

box f (* ill-typed occurrence *)

An arbitrary (nat % nat) may capture local binding.

Type Theory forMobility and Locality – p.32/49

Locality of effects
Locality and effects are naturally connected.

Observable effects should execute at definite
locations.
Machine state underlying effects is localized.

Nutshell: add effect monad () and local
computations.

Typing Operational

“evaluate to locally”

“produce locally with effects”

“produce somewhere with effects”

Type Theory forMobility and Locality – p.33/49

Locality of effects
Locality and effects are naturally connected.

Observable effects should execute at definite
locations.
Machine state underlying effects is localized.

Nutshell: add effect monad (

�
) and local

computations.

Typing OperationalHJI �� ! �

“evaluate to

�
locally”HJI ��� !� �

“produce

�
locally with effects”HJI �� 'WV �

“produce

�

somewhere with effects”

Type Theory forMobility and Locality – p.33/49

Example: mutable ref
PROHIBITED: mobility for mutable refereces.

(* counter : ref nat *)
val counter = ref 0

(* bump :: unit -> unit *)
mfun bump () =

counter := !counter + 1

box _ = box (bump ()) (* bump *)
box _ = box (bump ()) (* twice *)
(* !counter = 0? *)

Type system (
�

) disallows effects in spawned terms.

See proposal document for details...

Type Theory forMobility and Locality – p.34/49

Outline
Introduction and methodology.

Concepts of modal logic.

Core modal calculus.

Properties of extensions.

Proposed work.

Type Theory forMobility and Locality – p.35/49

Progress
Proposed contributions:

3 Relate modal logic to distributed computation.
3 Core calculus with mobility and locality types.

Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.36/49

Progress
Proposed contributions:

3 Relate modal logic to distributed computation.

3 Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.36/49

Progress
Proposed contributions:

3 Relate modal logic to distributed computation.
3 Core calculus with mobility and locality types.

Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.36/49

Progress
Proposed contributions:

3 Relate modal logic to distributed computation.
3 Core calculus with mobility and locality types.

Extensions that interact with mobility/locality.

Apply to distributed grid programming.

Type Theory forMobility and Locality – p.36/49

Progress
Proposed contributions:

3 Relate modal logic to distributed computation.
3 Core calculus with mobility and locality types.

Extensions that interact with mobility/locality.
Apply to distributed grid programming.

Type Theory forMobility and Locality – p.36/49

Extensions
Complete

Concrete data: products, sums, recursive types.
Effects: effect monad (

�

), mutable refs.

Proposed: Polymorphism (), abstract types ().
Well-known problem sharing abstract values
between locations.
Permutations of and seem interesting...

Type Theory forMobility and Locality – p.37/49

Extensions
Complete

Concrete data: products, sums, recursive types.
Effects: effect monad (

�

), mutable refs.

Proposed: Polymorphism (

.

), abstract types (

1

).
Well-known problem sharing abstract values /

between locations.
Permutations of

1 / * $ and N S
seem interesting...

Type Theory forMobility and Locality – p.37/49

Application: ConCert grid
ConCert runtime for trustless grid computing:

Trustless — execute certified fragments of code.
Grid — network of peers provide compute cycles.

Certification is based on type/proof checking, not trust.

Mobility and locality matter in ConCert:

All the general reasons, plus...
+ confidentiality, abstraction.
+ efficiency (space/bandwidth costs).
+ safety policies (move only certified code).

Type Theory forMobility and Locality – p.38/49

Application: ConCert grid
ConCert runtime for trustless grid computing:

Trustless — execute certified fragments of code.
Grid — network of peers provide compute cycles.

Certification is based on type/proof checking, not trust.

Mobility and locality matter in ConCert:

All the general reasons, plus...
+ confidentiality, abstraction.
+ efficiency (space/bandwidth costs).
+ safety policies (move only certified code).

Type Theory forMobility and Locality – p.38/49

Application: ConCert grid
Prototype compiler Hemlock:

Programming with spawn and sync model.
Type system: assume all values are mobile.
Marshalling

mutable refs — by copying.
code — problematic for local libraries.

Mobility and locality types provide:
Statically safe variant of spawn/sync ().
Link with local libraries (trusted/certified mix).
Bind and use remote resources ().

Type Theory forMobility and Locality – p.39/49

Application: ConCert grid
Prototype compiler Hemlock:

Programming with spawn and sync model.
Type system: assume all values are mobile.
Marshalling

mutable refs — by copying.
code — problematic for local libraries.

Mobility and locality types provide:
Statically safe variant of spawn/sync (N �

).
Link with local libraries (trusted/certified mix).
Bind and use remote resources (

S �

).

Type Theory forMobility and Locality – p.39/49

Details
Hemlock extensions/modifications:

Type system for N , S

and effects.

Code generation for new box/dia features.
Marshalling: migrate to format compatible with ().

ConCert runtime extensions (support , model):
Mapping, binding to () resources.
Targeted “closures”
(arising from let dia = in)

Type Theory forMobility and Locality – p.40/49

Details
Hemlock extensions/modifications:

Type system for N , S

and effects.
Code generation for new box/dia features.

Marshalling: migrate to format compatible with ().

ConCert runtime extensions (support , model):
Mapping, binding to () resources.
Targeted “closures”
(arising from let dia = in)

Type Theory forMobility and Locality – p.40/49

Details
Hemlock extensions/modifications:

Type system for N , S

and effects.
Code generation for new box/dia features.
Marshalling: migrate to format compatible with (N �

).

ConCert runtime extensions (support , model):
Mapping, binding to () resources.
Targeted “closures”
(arising from let dia = in)

Type Theory forMobility and Locality – p.40/49

Details
Hemlock extensions/modifications:

Type system for N , S

and effects.
Code generation for new box/dia features.
Marshalling: migrate to format compatible with (N �

).

ConCert runtime extensions (support N , S

model):
Mapping, binding to (

S �
) resources.

Targeted “closures”
(arising from let dia = in)

Type Theory forMobility and Locality – p.40/49

Details
Hemlock extensions/modifications:

Type system for N , S

and effects.
Code generation for new box/dia features.
Marshalling: migrate to format compatible with (N �

).

ConCert runtime extensions (support N , S

model):
Mapping, binding to (

S �
) resources.

Targeted “closures”
� (� %� I ' �

(arising from let dia (= in

'

)

Type Theory forMobility and Locality – p.40/49

Strategy: Tasks and priorities

Priority Effort Task
high med Polymorphism, abstract types

high med Parsing, typechecking (N , S
, & effects)

high high Hemlock runtime marshalling code (TALT)
high high TALT code gen. box/dia features

Type Theory forMobility and Locality – p.41/49

Strategy: Tasks and priorities

Priority Effort Task
high med Polymorphism, abstract types

high med Parsing, typechecking (N , S
, & effects)

high high Hemlock runtime marshalling code (TALT)
high high TALT code gen. box/dia features
med med ConCert runtime support (

S

) (ML)
med high Abstract resources (

S 1

), Modules?

Type Theory forMobility and Locality – p.41/49

Strategy: Tasks and priorities

Priority Effort Task
high med Polymorphism, abstract types
low med Dependent types, policy-related types
high med Parsing, typechecking (N , S

, & effects)
high high Hemlock runtime marshalling code (TALT)
high high TALT code gen. box/dia features
med med ConCert runtime support (

S

) (ML)
med high Abstract resources (

S 1

), Modules?

Type Theory forMobility and Locality – p.41/49

End

Questions?

Type Theory forMobility and Locality – p.42/49

Strategy: Tasks and Priorities

Time Date Task
1 1 Polymorphism, abstract types
? ? Dependent types, policy-related types
2-4 3-5 Parsing, typechecking (N , S

, & effects)
3-4 6-9 Hemlock runtime marshalling code (TALT)
3-4 9-13 TALT code gen. box/dia features
2-3 11-16 ConCert runtime support (

S

) (ML)
2-3 13-19 Abstract resources (

S 1

), Modules?

Type Theory forMobility and Locality – p.43/49

Programming Models

%,nat, ,, -,... (local pure functional programs).N (spawn mobile terms).N S

(spawn mobile terms, jump among locations).

(local effects)N (spawn mobile, local effects)N S

(spawn, local effects, jumping, remote effects)

Type Theory forMobility and Locality – p.44/49

S4 and P2P Grid
Recall that ConCert assumes P2P grid with unreliable
nodes...

Some characteristics of the S4 formalism:
No explicit world annotations necessary in calculus.
Non-trivial N S �

values are extra-logical.
Programmer can’t create them (

� � % N S �

).

This simplifies the runtime support layer:
Flexible scheduling. Program fragments run
anywhere, or nearly anywhere.
Most locations are “stateless”. Node can leave
network after producing result.

Type Theory forMobility and Locality – p.45/49

Typing Rules

��� �g q \ �g � s��� q \ � ���� �� �g q \ ���� ` \ ��� ���� � q \ � � ` \ �¢¡ � ¡ £

�g _ \ \ �g � s � ���� _ \ � ��� � ¤ �� ���� ` \ � ¡ � �� ���� a \ ��� ���� ` a \ � ¡ ¥

��¦ ��� § ` \ ��� ��� box

` \ ¨ � ¨ £ ��� ���� ` \ ¨ � �g _ \ \ �� ���� a \ ��� ��� let box _ = `
in

a \ � ¨ ¥

�� ���� ` \ ��� ���� {

`

}

© � �ª « « �� ���� ` \ ¬ � ��� q \ ��� § r © ���� ���� let dia q = `

in

r © � ¬ ¥

�� ���� ¥ © ��� ��� dia

¥ \ ¬ � ¬ £ �� ��� ` \ ¨ � �g _ \ \ �� ���� r © ���� ���� let box _ = `

in

r © � ¨ ¥®­

Type Theory forMobility and Locality – p.46/49

Extensions
The type theory of (% N S

) is easily extensible:

products (

� ,$), sums (

� -$), recursive types (¯ / * $)
... (straightforward)��� �� ` \ � �� �� a \ ��� ��

(

`

,

a

) \ �±° � ��� �� ` \ � ° ���� ��
fst

` \ � �� �� ` \ �±° ���� ��
snd

` \ �

Fixpoints: fixv and fix

fixv fix

Type Theory forMobility and Locality – p.47/49

Extensions
The type theory of (% N S

) is easily extensible:

products (

� ,$), sums (

� -$), recursive types (¯ / * $)
... (straightforward)��� �� ` \ � �� �� a \ ��� ��

(

`

,

a

) \ �±° � ��� �� ` \ � ° ���� ��
fst

` \ � �� �� ` \ �±° ���� ��
snd

` \ �

Fixpoints: fixv

l ; ! ! � m * and fix

l (! � m *

H "; ! ! �IML � ! �HJI ��

fixv

l ; ! ! � m * ! � HI � "(! � � ! �HJI ��

fix

l ; ! � m * ! �

Type Theory forMobility and Locality – p.47/49

Extensions
Each extension interacts with mobility and locality.

A heuristic...
Location-neutral term

Location-dependent expression
(actually or potentially)

() — can be made mobile (marshalling)
Some values are location-independent.
Others not!

Type Theory forMobility and Locality – p.48/49

Extensions
Each extension interacts with mobility and locality.

A heuristic...
Location-neutral 7� term ! �

Location-dependent 7� expression

'V �

(actually or potentially)

() — can be made mobile (marshalling)
Some values are location-independent.
Others not!

Type Theory forMobility and Locality – p.48/49

Extensions
Each extension interacts with mobility and locality.

A heuristic...
Location-neutral 7� term ! �

Location-dependent 7� expression

'V �

(actually or potentially)

(

� % N �

) —

�

can be made mobile (marshalling)
Some values

�
are location-independent.

Others not!

Type Theory forMobility and Locality – p.48/49

Effect Typing

�� ��� ² \³ ���� ���� comp

² \ ´ � ´ £ �� ���� ` \ ´ � �� �g q \ ��� µ \³ ���� ���� let comp q = `
in

µ \³ � ´ ¥

�� ���� ` \ ��� ��� [

`

] \³ � ¶ª ·� �� ���� ` \ ¨ � �g _ \ \ �� ���� µ \³ ���� ���� let box _ = `
in

µ \³ � ¨ ¥¹¸

��� ���� ² \³ ���� ���� {

²

}

© � �ª « « s �� ��� ` \ ´ � �� �g q \ ���� r © ���� ���� let comp q = `
in

r © � ´ ¥ ­

Primitive effects:º d º[g » ¼ \ �g ºfº� �� �� ¼ » ¼ \ ref � » ½ ½Y �� ���� ` \ ��� ��� ref

` \³ ref � ¾ »o oª ¶

��� ���� ` \ ref ��� ���� !

` \³ � ¾¢¿À ¾ ��� ���� ` \ ref � �� ���� a \ ���� ���� `

:=

a \³ 1 ¾ «À ¾

Type Theory forMobility and Locality – p.49/49

	Introduction
	Introduction
	Introduction
	Thesis statement
	Propositions as types
	Propositions as types
	Consequences
	Consequences
	Related work
	Related work (contd.)
	Outline
	Concepts of modal logic
	Hypothetical judgments
	Modal propositions
	Outline
	Towards a distributed calculus
	Typing: $
ec A$
	Operational: $
ec A$
	Example: Higher-order mobility
	Example: Higher-order mobility
	Example: Divide & conquer
	Typing: $pos A$
	Operational: $pos A$
	Example: A remote queue
	Core calculus --- summary
	Process configurations
	Properties
	Properties
	Outline
	Example: marshalling
	Example: marshalling
	Locality of effects
	Example: mutable ref
	Outline
	Progress
	Extensions
	Application: ConCert grid
	Application: ConCert grid
	Details
	Strategy: Tasks and priorities
	End
	Strategy: Tasks and Priorities
	Programming Models
	S4 and P2P Grid
	Typing Rules
	Extensions
	Extensions
	Effect Typing

