Type Theory for
Mobility and Locality

Thesis Proposal
Jonathan Moody

Committee: Frank Pfennning, Karl Crary,
Jeannette Wing, Andrew Gordon (MSR)

School of Computer Science

Carnegie Mellon University

Type Theory forMobility and Locality —p.1/49

Introduction

o Distributed computation — programming at more than
one location.

o

Are the locations distinguishable?

Type Theory forMobility and Locality — p.2/49

Introduction

o Distributed computation — programming at more than
one location.

i

Are the locations distinguishable?

program
env.

No — We can safely ignhore locations, we're done...

Type Theory forMobility and Locality — p.2/49

Introduction

o Distributed computation — programming at more than

R
i

Are the locations distinguishable?

program
n

No — We can safely ignhore locations, we're done...
Yes — Must be careful when programs or values move.

Type Theory forMobility and Locality — p.2/49

Introduction

Benefits of being location-aware:
» account for localized code or values.
s reflect trust or administration boundaries.
s permit/deny some interactions between locations.
s reflect costs of remote access (bandwidth/latency).

A location-aware type theory:

s Specify and statically check properties defined in
terms of location....

Type Theory forMobility and Locality — p.3/49

Introduction

Mobility and locality as aspects of location:

» Mobility — “is it location-independent?”

2

i

-\

o\

S

Type Theory forMobility and Locality — p.4/49

Introduction

Mobility and locality as aspects of location:

» Mobility — “is it location-independent?”

2

i

2

7

o\

-

Type Theory forMobility and Locality — p.4/49

Thesis statement

“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Type Theory forMobility and Locality — p.5/49

Thesis statement

“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
» Relate modal logic to distributed computation.

Type Theory forMobility and Locality — p.5/49

Thesis statement

“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
» Relate modal logic to distributed computation.
s Core calculus with mobility and locality types.

Type Theory forMobility and Locality — p.5/49

Thesis statement

“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
» Relate modal logic to distributed computation.
s Core calculus with mobility and locality types.
s Extensions that interact with mobility/locality.

Type Theory forMobility and Locality — p.5/49

Thesis statement

“Modal logic can be understood as a type theory defining
mobility and locality; This has practical applications to
distributed programming.”

Proposed contributions:
» Relate modal logic to distributed computation.

s Core calculus with mobility and locality types.
s Extensions that interact with mobility/locality.
s Apply to distributed grid programming.

Type Theory forMobility and Locality — p.5/49

Propositions as types

Functional language typing rules are often logical:

“proof P that A is true”

I'FA

Proposition
Proof
Pf. Normalization

I

“term M has type A”

F*l_tM:A

Type
Program
Evaluation

Type Theory forMobility and Locality — p.6/49

Propositions as types

Natural Deduction Term Typing
AR B ; M, Ak B .
TFA—>B T A B
'+A—>B TFHA [A—B I+ A
[F B - B iy B b

Type Theory forMobility and Locality — p.7/49

Propositions as types

Natural Deduction Term Typing
I'AFB [x: A M : B /

rra-B ! A A M:A=B
- B ~ [*F; MN : B —

Type Theory forMobility and Locality — p.7/49

Consequences

Simplicity: the minimal (logically) complete calculus.

Type Theory forMobility and Locality — p.8/49

Consequences

Simplicity: the minimal (logically) complete calculus.

#® Some properties/behaviors are not captured:
s Concurrency (permitted, but not described by types).
s Complex, 2-way communication patterns.

Type Theory forMobility and Locality — p.8/49

Consequences

Simplicity: the minimal (logically) complete calculus.

#® Some properties/behaviors are not captured:
s Concurrency (permitted, but not described by types).
s Complex, 2-way communication patterns.

Features that may introduce deadlock, interference,
non-determinism are absent in the minimal core.

Type Theory forMobility and Locality — p.8/49

Consequences

Generality: new modal types defined orthogonally.

Type Theory forMobility and Locality — p.9/49

Consequences

Generality: new modal types defined orthogonally.

o Consider mobility and locality in a familiar framework:
s products (%), sums (+), etc...
s polymorphism (V«), abstract types (da)

s refinement types, intersection (A), union (V),
dependent types I1i, X

s Information flow, resource bounds, correctness
specifications (if type system sufficiently powerful)

Type Theory forMobility and Locality — p.9/49

Related work

Constructive modal logic:

s “Judgmental Reconstruction of Modal Logic”
(Pfenning, Davies '01)

s “Proof Theory and Semantics of .LM.L.
(Simpson '94)

o Parallel efforts: modal logic — distributed calculus.

s “Modal Proofs As Distributed Programs”
(Jia, Walker '03)

s ongoing at CMU... (Crary, Murphy, et al.)

s “Constructive Logic for Services and Info. Flow...”
(Borghuis, Feijs '00)

Type Theory forMobility and Locality — p.10/49

Related work (contd.)

® Process Calculi (some which model locations):

» Mobile Ambients & Ambient Logic: (various)
(Cardelli, Caires, Ghelli, Gordon '98-'02)

s DPI: “Resource Access Control..”
(Hennessy, et al. '02)

s Klaim: “Types for Access Control”
(De Nicola, Ferrari, et al. '00)

Type Theory forMobility and Locality — p.11/49

Outline

Introduction and methodology.
Concepts of modal mogic.
o Core modal calculus.

Properties of extensions.

o

Proposed work.

Type Theory forMobility and Locality — p.12/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.
#» We have worlds related by accessibility.

By

Type Theory forMobility and Locality — p.13/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.
#» We have worlds related by accessibility.

A true A true
C true B true

B true

C true

Judgments for the modes of truth:

o | A true|— true at this world.

s | B valid|— true at all accessible world(s).

s |C possible|— true at some accessible world.

Type Theory forMobility and Locality — p.13/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.

#» We have worlds related by accessibility.

ey

T

Judgments for the modes of truth:

o

o

»

A true |— true at this world.

B valid|— true at all accessible world(s).

C possible

— true at some accessible world.

Type Theory forMobility and Locality — p.13/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.
#» We have worlds related by accessibility.

B valid B true
B true

B true

B true

Judgments for the modes of truth:

o | A true|— true at this world.

s | B valid|— true at all accessible world(s).

s |C possible|— true at some accessible world.

Type Theory forMobility and Locality — p.13/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.
#» We have worlds related by accessibility.

- ‘ C poss

|

Judgments for the modes of truth:

o | A true|— true at this world.

s | B valid|— true at all accessible world(s).

s |C possible|— true at some accessible world.

Type Theory forMobility and Locality — p.13/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.
#» We have worlds related by accessibility.

{ H C poss

C true

Judgments for the modes of truth:

o | A true|— true at this world.

s | B valid|— true at all accessible world(s).

s |C possible|— true at some accessible world.

Type Theory forMobility and Locality — p.13/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.
#» We have worlds related by accessibility.

e
T

Judgments for the modes of truth:

o | A true|— true at this world.

s | B valid|— true at all accessible world(s).

s |C possible|— true at some accessible world.

Type Theory forMobility and Locality — p.13/49

Concepts of modal logic

Modal logics distinguish modes or degrees of truth.
#» We have worlds related by accessibility.

{ H C poss
S

Judgments for the modes of truth:

o | A true|— true at this world.

s | B valid|— true at all accessible world(s).

s |C possible|— true at some accessible world.

Type Theory forMobility and Locality — p.13/49

Hypothetical judgments

o A — “global” assumptions A valid
® ['— “local” assumptions A true

A+ Avalid A;T'F A true A;T'F A possible

Type Theory forMobility and Locality — p.14/49

Hypothetical judgments

o A — “global” assumptions A valid
® ['— “local” assumptions A true

A+ Avalid A;T'F A true A;T'F A possible

AF Avalid = A;-F A true

Type Theory forMobility and Locality — p.14/49

Modal propositions

O0A — “necessarily A”

, A:-F A true I
A, Avalid;I' - A true yp’ A;I'F OA true -

A:I'FOA true A, Avalid;I'F C true B
A:T'F C true =

Type Theory forMobility and Locality — p.15/49

Modal propositions

O0A — “necessarily A”

, A:-F A true I
A, Avalid;I' - A true yp’ A;I'F OA true -

A:I'FOA true A, Avalid;I'F C true B
A:T'F C true =

OA — “possibly A”

A;T'H A true 0SS A;T'F A possible
A;T'+ A possible A; T OA true

A;T'HOA true A; A truel C possible OF
A:T'F C possible

Type Theory forMobility and Locality — p.15/49

Outline

Introduction and methodology.
Concepts of modal logic.
Core modal calculus.
Properties of extensions.

© o o o ©

Proposed work.

Type Theory forMobility and Locality — p.16/49

Towards a distributed calculus

Judgements

Logical Typing Operational

A;T'F A true A*:T*FM: A “evaluate to A locally”
A;T'+ A possible A% I*FE-+ A “produce A somewhere”

Propositions

Prop/Type Logical Reading Type Reading

OA “necessarily A “mobile A”
CA “possibly A” “‘remote A”

Type Theory forMobility and Locality — p.17/49

Typing: O A

, A-FM:A ,
Au:ATFu:A yp’ ATFboxM:0OA -

A;T'EFM:0A Auw: A 'EFN:B
A;I'Flet boxu=MinN : B

Ok

Type Theory forMobility and Locality — p.18/49

Operational:

® |Intuition

7

\.

let box u =
box M
in N

—_—_ — = = = = =

—_—_— — = = = = =

—_—_ - = = = = =

Type Theory forMobility and Locality — p.19/49

Operational:

® |Intuition

7

.

let box u =

box M -~

in N

—_—_ — = = = = = =

—_—_ — = = = = = =

Type Theory forMobility and Locality — p.19/49

Operational: 0O A

® |Intuition

N e — - -~

—_—_ — = = = = =

—_—_ — = = = = = =

N -~
N - -

Type Theory forMobility and Locality — p.19/49

Operational: O A

® Intuition

—_—_ — = = = = =

—_—_ — = = = = = =

o Formally | R ,'

(ri:R[let boxu=boxMinN|) = (rq: M), (r1:R[[r2/u]N])
<’l"2 : V>7 <T1 : R[r2]> = <’l"2 - V>7 <T1 - R[VD

(ri : R[let boxu=boxVinN|) = (r1:R[[V/u]N])

Opportunistic concurrent evaluation — not essential
to logical necessity.

Type Theory forMobility and Locality — p.19/49

Example: Higher-order mobility

(* times_k : Onat —-> O(nat—->nat) *)
fun times_k k =
let
box u = k
in
box (A x:nat . x * u)

Lexically-scoped mobile closures
capture mobile bindings (u € A).

Type Theory forMobility and Locality — p.20/49

Example: Higher-order mobility

(* pmap : O(nat->nat) -> list Onat
—> list Onat *)
fun pmap £ [] = []
pmap £ (x::tl) =
let box £’ = £
box x' = x
box v = box (f’ x') (* spawn work
in
((box v)::(pmap £ tl))

(* double 1st : list Onat —-> 1list Onat *)
val double_lst = pmap (times_k (box 2))

Clean account of mobility at function types o(A — B).

Type Theory forMobility and Locality — p.21/49

Example: Divide & conquer

(* fib :: Onat -> nat *)
mfun fib x =
let box n = x 1n
1f (n < 2) then n
else
let
(* spawn a,b concurrently *)
box a = box (fib box(n-1))
box b = box (fib box(n-2))
in (a + b)

® Note: mfun defines a mobile recursive function.

Type Theory forMobility and Locality — p.22/49

Typing: CA

A;T'EM:A A:T'HFE+A

ATE (M1 =AY ATraiag o4 !

ATTEM:CA Ax:AFF =+ B
A;I'Flet diax=MinF + B

Ok

Type Theory forMobility and Locality — p.23/49

Operational: C A

® |Intuition

7

let dia x =
dia V'
in F

\.

—_—_ — = = = = =

—_—_— — = = = = =

—_—_ - = = = = =

Type Theory forMobility and Locality — p.24/49

Operational: C A

® |Intuition

- —_ — - = = = = =

let dia x =
dia 12 ________
mF----------F---- {..x, F} [oo
- g -~ 2 [V/X]F

Type Theory forMobility and Locality — p.24/49

Operational: C A

® |Intuition

[V/x] F

- —_ — - = = = = =

—_—_ — = = = = = =

—_—_ — = = = = =

Type Theory forMobility and Locality — p.24/49

Operational: G A

® Intuition

o Formally

[V/x] F

—_—_ — = = = = = =

(l1 : S[let diax=dialzin F]),

—

(l1 : S[let diax=dia {V}inF'])

—

(i:S[L1), (I [V/x]IF),

(ly : S[[V/x]F])

—— =

—— =

(la : {V})
(la: (V1)

Type Theory forMobility and Locality — p.24/49

Example: A remote queue

(* rqueue : < ({insert:nat->unit, ...}) *)
val rqueue = bind_gueue
(* 1nsert (x : Onat) i1nto rgqueue *)
let
box v = X
dia g = rqueue (* jump to queue *)
in
let val _ = g.insert v (* v mobile ¥*)
in

Requires a mobile value (Onat) because
gueue is remote.

Type Theory forMobility and Locality — p.25/49

Core calculus — summary

Type A B == A—>B | OA | <A
Term M, N

x | u

Mx:A.M | MN
box M | diak

let boxu=MinN
Expr. B, F == {M} | let boxu=MinF
| let diax=MinF

Type Theory forMobility and Locality — p.26/49

Core calculus — summary

Type A, B = A—>B | OA | <€A

Term M, N == [r] | x | u

MXx:A.M | MN

box M | diakFk

let boxu=MinN

Expr. £, F == [l| | {M} | let boxu=MinkF
| let diax=MinF

Label w == r | |
Processm == (r: M) | (l:FE)
Config. C == - | C,«

Type Theory forMobility and Locality — p.26/49

Process configurations

C = C'| —“C stepsto C".
Non-deterministic choice of process (concurrency).
Synchronization rule either lazy or strict (don't care).

Type Theory forMobility and Locality — p.27/49

Process configurations

C = C'| —“C stepsto C".
Non-deterministic choice of process (concurrency).
Synchronization rule either lazy or strict (don't care).

Y ¢ C A — “cont. C has type A (under ¢)”.
® AN=ri A b+ A, ...
®) — determines scope/accessibility of labels.

Type Theory forMobility and Locality — p.27/49

Properties

o Type preservation:

YECC: A and C = ('
s JAOALTY YO N

s A and ¢’ grow as processes are created.

Type Theory forMobility and Locality — p.28/49

Properties

o Type preservation:

YpHC:A and C = ('
s JAOALTY YO N

s A and ¢’ grow as processes are created.
Progress:

Y HF¢C: A and 1 noncyclic

— 3C'.C = C" or C terminal

s 1 noncyclic — permits inductive argument.
s deadlocked: (ri :ra(Ax: A.x)),(ra: 711 (Ax: A.x))

Type Theory forMobility and Locality — p.28/49

Properties

Termination: sequences 1 — (5 — ... halt
s core calculus (without fixpoints).
s ¢ ¢ (Cq: Ay — well-formed configuration.
s 1 noncyclic — no recursion through “backdoor”.

Type Theory forMobility and Locality — p.29/49

Properties

Termination: sequences 1 — (5 — ... halt
s core calculus (without fixpoints).
s ¢ ¢ (Cq: Ay — well-formed configuration.
s 1 noncyclic — no recursion through “backdoor”.

Confluence holds for well-formed config:
» under same general conditions as above...
s modulo (C' = D) synchronization-equiv.

C=D

Type Theory forMobility and Locality — p.29/49

Outline

Introduction and methodology.
Concepts of modal logic.
Core modal calculus.
Properties of extensions.
Proposed work.

© o o o o

Type Theory forMobility and Locality — p.30/49

Example: marshalling

(* marshall nat :: nat —-> Onat *)
fun marshall nat n =
case n of

zero => box zero (* boxed wval *)

| succ(x) =>
let
box u = marshall nat x
in
box (succ(u)) (* boxed wval *)

Spawning a concurrent process is optional.

Type Theory forMobility and Locality — p.31/49

Example: marshalling

#» PROHIBITED: marshalling arbitrary closures.

(* closure over binding c *)
val ¢ = 42
fun £f yv = 1if yv > 0 then ¢ else vy

(* marshall nZ2n: (nat->nat) -> O (nat—->nat)
fun marshall nZ2n f =
box £ (* 1ll-typed occurrence *)

An arbitrary (nat — nat) may capture local binding.

Type Theory forMobility and Locality — p.32/49

Locality of effects

Locality and effects are naturally connected.

o Observable effects should execute at definite
locations.

» Machine state underlying effects is localized.

Type Theory forMobility and Locality — p.33/49

Locality of effects

Locality and effects are naturally connected.

o Observable effects should execute at definite
locations.

» Machine state underlying effects is localized.

Nutshell: add effect monad (()A) and local
computations.

Typing Operational
A;T'HM: A “evaluate to A locally”
A;T'H P+~ A “produce A locally with effects”

A;T'HE -+ A “produce A somewhere with effects”

Type Theory forMobility and Locality — p.33/49

Example: mutable ref

o PROHIBITED: mobility for mutable refereces.

(* counter : ref nat *)
val counter = ref 0
(* bump :: unit —-> unit *)
mfun bump () =
counter := !counter + 1
box _ = box (bump ()) (* bump *)
box _ = box (bump ()) (* twice *)

(* lcounter 0?2 *)

Type system ((OA) disallows effects in spawned terms.
® See proposal document for details...

Type Theory forMobility and Locality — p.34/49

Outline

Introduction and methodology.
Concepts of modal logic.
Core modal calculus.
Properties of extensions.
Proposed work.

© o o o o

Type Theory forMobility and Locality — p.35/49

Progress

#® Proposed contributions:

Type Theory forMobility and Locality — p.36/49

Progress

Proposed contributions:
v' Relate modal logic to distributed computation.

Type Theory forMobility and Locality — p.36/49

Progress

Proposed contributions:

v' Relate modal logic to distributed computation.
v’ Core calculus with mobility and locality types.

Type Theory forMobility and Locality — p.36/49

Progress

Proposed contributions:

v' Relate modal logic to distributed computation.
v’ Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.

Type Theory forMobility and Locality — p.36/49

Progress

Proposed contributions:

v' Relate modal logic to distributed computation.
v’ Core calculus with mobility and locality types.
Extensions that interact with mobility/locality.

Apply to distributed grid programming.

Type Theory forMobility and Locality — p.36/49

Extensions

#» Complete
s (Concrete data: products, sums, recursive types.
s Effects: effect monad ((O)A), mutable refs.

Type Theory forMobility and Locality — p.37/49

Extensions

#» Complete
s (Concrete data: products, sums, recursive types.
s Effects: effect monad ((O)A), mutable refs.

® Proposed: Polymorphism (V), abstract types (3).

» Well-known problem sharing abstract values o
between locations.

s Permutations of Jo. B and 0< seem interesting...

Type Theory forMobility and Locality — p.37/49

Application: ConCert grid

ConCert runtime for trustless grid computing:
s Trustless — execute certified fragments of code.
s Grid — network of peers provide compute cycles.

o Certification is based on type/proof checking, not trust.

Type Theory forMobility and Locality — p.38/49

Application: ConCert grid

ConCert runtime for trustless grid computing:
s Trustless — execute certified fragments of code.
s Grid — network of peers provide compute cycles.

o Certification is based on type/proof checking, not trust.

Mobility and locality matter in ConCert:

All the general reasons, plus...
= confidentiality, abstraction.
i efficiency (space/bandwidth costs).
= safety policies (move only certified code).

Type Theory forMobility and Locality — p.38/49

Application: ConCert grid

o Prototype compiler Hemlock:
s Programming with spawn and sync model.
s Type system: assume all values are mobile.

s Marshalling
s mutable refs — by copying.
s code — problematic for local libraries.

Type Theory forMobility and Locality — p.39/49

Application: ConCert grid

o Prototype compiler Hemlock:
s Programming with spawn and sync model.
s Type system: assume all values are mobile.

s Marshalling
s mutable refs — by copying.
s code — problematic for local libraries.

Mobility and locality types provide:
s Statically safe variant of spawn/sync (OA).
s Link with local libraries (trusted/certified mix).
» Bind and use remote resources (¢ A).

Type Theory forMobility and Locality — p.39/49

Details

Hemlock extensions/modifications:
s Type system for O, ¢ and effects.

Type Theory forMobility and Locality — p.40/49

Details

#® Hemlock extensions/modifications:
s Type system for O, ¢ and effects.
» Code generation for new box/dia features.

Type Theory forMobility and Locality — p.40/49

Details

#® Hemlock extensions/modifications:
s Type system for O, ¢ and effects.
» Code generation for new box/dia features.
s Marshalling: migrate to format compatible with (T0A).

Type Theory forMobility and Locality — p.40/49

Details

#® Hemlock extensions/modifications:
s Type system for O, ¢ and effects.
» Code generation for new box/dia features.
s Marshalling: migrate to format compatible with (T0A).

o ConCert runtime extensions (support 0, model):
» Mapping, binding to (¢ A) resources.

Type Theory forMobility and Locality — p.40/49

Details

#® Hemlock extensions/modifications:
s Type system for O, ¢ and effects.
» Code generation for new box/dia features.
s Marshalling: migrate to format compatible with (T0A).

o ConCert runtime extensions (support 0, model):
» Mapping, binding to (¢ A) resources.
s Targeted “closures” {x > o; F}

(arising from let diax=M in F)

Type Theory forMobility and Locality — p.40/49

Strategy: Tasks and priorities

Priority Effort

Task

high med | Polymorphism, abstract types

nigh med | Parsing, typechecking (O, <, & effects)
nigh high | Hemlock runtime marshalling code (TALT)
nigh high | TALT code gen. box/dia features

Type Theory forMobility and Locality — p.41/49

Strategy: Tasks and priorities

Priority Effort

Task

high med | Polymorphism, abstract types

nigh med | Parsing, typechecking (O, <, & effects)
nigh high | Hemlock runtime marshalling code (TALT)
nigh high | TALT code gen. box/dia features

med med | ConCert runtime support (<) (ML)

med high

Abstract resources (<3d), Modules?

Type Theory forMobility and Locality — p.41/49

Strategy: Tasks and priorities

Priority Effort | Task

nigh med | Polymorphism, abstract types

oW med | Dependent types, policy-related types
nigh med | Parsing, typechecking (O, <, & effects)
nigh high | Hemlock runtime marshalling code (TALT)
nigh high | TALT code gen. box/dia features

med med | ConCert runtime support (<) (ML)

med high

Abstract resources (<3d), Modules?

Type Theory forMobility and Locality — p.41/49

End

Questions?

Type Theory forMobility and Locality — p.42/49

Strategy: Tasks and Priorities

Time Date | Task

1 1 Polymorphism, abstract types

? ? Dependent types, policy-related types
2-4 3-5 Parsing, typechecking (O, <, & effects)
3-4 6-9 Hemlock runtime marshalling code (TALT)
3-4 9-13 | TALT code gen. box/dia features

2-3 11-16 | ConCert runtime support (<) (ML)

2-3 13-19 | Abstract resources (<3), Modules?

Type Theory forMobility and Locality — p.43/49

Programming Models

—,nat,*,+,... (local pure functional programs).

O (spawn mobile terms).

0< (spawn mobile terms, jump among locations).

O (local effects)

00 (spawn mobile, local effects)

0 O <© (spawn, local effects, jumping, remote effects)

© o o o o 0

Type Theory forMobility and Locality — p.44/49

S4 and P2P Grid

» Recall that ConCert assumes P2P grid with unreliable
nodes...

#® Some characteristics of the S4 formalism:
» No explicit world annotations necessary in calculus.

s Non-trivial o< A values are extra-logical.
Programmer can't create them (A A OCA).

This simplifies the runtime support layer:

s Flexible scheduling. Program fragments run
anywhere, or nearly anywhere.

o Most locations are “stateless”. Node can leave
network after producing result.

Type Theory forMobility and Locality — p.45/49

Typing Rules

A;Tx: Ay M : B

h
AT, x: ATVE;x: A P A;FI—J/\X:A.M:A—>B_>I
. AT M:A—- B A;TH;N:A
p hyp —~ E
Au:: A AT Hyju: A AT, MN: B
Ay-Fjq M A ; ATy M:0A Au:: A;THy N: B .
A;T'Fjybox M :OA = A;T'Fj5 let boxu=MinN : B -
A;TH; M:A ATH M: QA Ajx: Ay F+ B
POSS OF
AT Ry (My+ A A;T'Fjy let diax=MinF + B
ATy E+A ATy M:0A Auw:: A;THy F+B
J oI / J 0E,

A;T'Fydiak :OA A;T'Fjy let boxu=MinF + B

Type Theory forMobility and Locality — p.46/49

Extensions

The type theory of (—0O<) is easily extensible:

products (A * B), sums (A + B), recursive types (ua . B)
... (straightforward)

ATHFM:A A;CTEN:B A;THFEM:AxB A T'HEM:AxB
A;T'H (M,N) : Ax B A T'HfstM: B A;T'FsndM: A

Type Theory forMobility and Locality — p.47/49

Extensions

The type theory of (—0O<) is easily extensible:
products (A * B), sums (A + B), recursive types (ua . B)
... (straightforward)

ATHFM:A A;CTEN:B A;THFEM:AxB A T'HEM:AxB
A;T'H (M,N) : Ax B A T'HfstM: B A;T'FsndM: A

® Fixpoints: fixv(u:: A).Mand fix(x: A). M

AusA-FM: A A:l''x: AFM: A
AT Efixv(ua A). M A A THfix(u:A).M: A

Type Theory forMobility and Locality — p.47/49

Extensions

Each extension interacts with mobility and locality.

Type Theory forMobility and Locality — p.48/49

Extensions

Each extension interacts with mobility and locality.

® A heuristic...
Location-neutral — termM: A

Location-dependent —> expression £+ A
(actually or potentially)

Type Theory forMobility and Locality — p.48/49

Extensions

Each extension interacts with mobility and locality.

® A heuristic...
Location-neutral — termM: A

Location-dependent —> expression £+ A
(actually or potentially)

® (A — 0OA)— A can be made mobile (marshalling)
s Some values A are location-independent.
s Others not!

Type Theory forMobility and Locality — p.48/49

Effect Typing

A;T'HFy Py A
A;T'Fycomp P: OA

OlI

AT'HM:A
A;T'Hy (M A

comp

A;T'Hy Py A ,
ATH; (P~ A Po%°

Primitive effects:

@Z@l,aw :A,@2
O;A;T'Fy a¥ s ref A

addr

ATy M:ref A
ATy M A

tget

ATHM:OA A T,x:AF;Q+ B
A;T'Fylet compx=MinQ~ B

OF

ATy M:0A Au: A;TH; Qv B
A;T'Fjy let boxu=MinQ@Q~ B

OFE;

AsTH;M:OA A T,x:A-yj F+ B

E
A;T'Fjy let compx=MinF + B OFp

AT'HyM: A
A;T'Fjref M~ ref A

talloc

A;T'Hy M:refA A;TH;NGA
AT'HFy M =N 1

tset

Type Theory forMobility and Locality — p.49/49

	Introduction
	Introduction
	Introduction
	Thesis statement
	Propositions as types
	Propositions as types
	Consequences
	Consequences
	Related work
	Related work (contd.)
	Outline
	Concepts of modal logic
	Hypothetical judgments
	Modal propositions
	Outline
	Towards a distributed calculus
	Typing: $
ec A$
	Operational: $
ec A$
	Example: Higher-order mobility
	Example: Higher-order mobility
	Example: Divide & conquer
	Typing: $pos A$
	Operational: $pos A$
	Example: A remote queue
	Core calculus --- summary
	Process configurations
	Properties
	Properties
	Outline
	Example: marshalling
	Example: marshalling
	Locality of effects
	Example: mutable ref
	Outline
	Progress
	Extensions
	Application: ConCert grid
	Application: ConCert grid
	Details
	Strategy: Tasks and priorities
	End
	Strategy: Tasks and Priorities
	Programming Models
	S4 and P2P Grid
	Typing Rules
	Extensions
	Extensions
	Effect Typing

