Modal Logic: Implications for
Design of a Language for
Distributed Computation

Jonathan Moody
(with Frank Pfenning)

Department of Computer Science

Carnegie Mellon University

B

I Talk Outline

Concepts of modal logic
Intuitionistic formalism
Distributed programming

© o o o

Conclusions

I Concepts of modal logic

» Modal logic(s) distinguish modes of truth.

» For the generalized modal logic (S4) these
modes of truth are explained by referring to
(abstract) “worlds’:

» Truth in all (accessible) worlds.
» [ruth in this world.
» Truth in some (accessible) world.

|

I Concepts: A Kripke model

Worlds of the Kripke structure

|

I Concepts: A Kripke model

Wl W2

Accessibility between worlds

|

I Concepts: A Kripke model

Primitive assumptions

I Concepts: A Kripke model

From the perspective of world 1V ...

|

I Concepts: A Kripke model

» A and C are true here (IV;)

|

I Concepts: Modal propositions

» By introducing new forms of proposition, we
can make statements about other worlds.

A — A true in all accessible worlds.

OA — A true In some accessible world.

|

I Concepts: A Kripke model

o [IC true at W, because...

» C'true at Wy, Wy, W5, W, (refl. & trans.) I

I Concepts: A Kripke model

o (OA true at W, because...

» A true at I, (reflexivity) I

I Concepts: A Kripke model

o OB true at W, because...

s B true at Ws I

I Concepts: A Kripke model

o OD true at W, because...

» D true at W, (transitivity) I

I Concepts: More concrete models

» But what are the “worlds” we refer to?

» |t is quite possible to remain abstract, but for
applications it helps to have a class of worlds
IN mind.
» Temporal properties
(worlds are moments, ordering determines
accessibility)

» Stateful computation
(worlds are states, effects determine

accessibility)

I Concepts: More concrete models

» For distributed computation, we adopt a
spatial interpretation of worlds.

I Concepts: More concrete models

» For distributed computation, we adopt a
spatial interpretation of worlds.

» Worlds are:
» Where program fragments reside,
» where these fragments are well-typed,
» and hence where evaluation may happen.

|

I Concepts: More concrete models

» For distributed computation, we adopt a
spatial interpretation of worlds.

» Worlds are:
» Where program fragments reside,

» where these fragments are well-typed,
» and hence where evaluation may happen.

» Accessibility (hypothesis):
» the capability to move program fragments

between worlds.

I Talk Outline

» Intuitionistic formalism
» Judgements and propositions
» Language of proof terms
» Operational reading
» Properties

I Judgements and propositions

» The meaning of propositions in the
Intuitionistic formulation is consistent with
those of the classical formulation.

» However, we are now In an intuitionistic
setting...
» We focus on the form of proofs,

» hot truth relative to a particular model.

B

I Judgements and propositions

» Judgements formalize the modes of truth:
» Avalid (true everywhere)
» Atrue (true here)
s Aposs (true somewhere)

» Propositions of the logic remain the same:
» 1A (internalizes Avalid)
s QA (Internalizes A poss)
» A — B (Internalizes entailment)

B

I Judgements and propositions

» Hypothetical judgements are represented as:

» A:T'F Atrue (or A;T' - Aposs)
» A holds “global” hypotheses (A valid)
» [’ holds “local” hypotheses (A true)

B

I Language of proof terms

» Via a Curry-Howard isomorphism we can:

D
Pass from A:I' Atrue to A;I'FM: A

Q
Andfrom A;I'F Aposs to A;I'HFE+ A

» Terms and expressions are simultaneously

proof objects and programs.

I Language of proof terms

» Quick overview of syntax (more depth later):

Term M, N ::

Expr. £/, F' ::

(M}
|

Ax:A.M | MN
box M | diak
let boxu=MinN

| let boxu=MinkF
let diax=MinF

B

I Operational reading

» Principles of the operational semantics:

» We may interpret terms/expressions only in
a location where they “make sense”, that
IS, where they establish A true

» Evaluation at separate “worlds” proceeds
concurrently.

B

Operational reading: Notation

» Process notation (r : M)
» A process labeled r containing term M.

s Each process represents a
(possibly) distinct “world”.

Transition relation C = '

» C,C'" are process configurations
(collections of processes).

B

Operational reading: Notation

» Evaluation context notation R| M |

» (Term) values of the language:

Mx: A. M tvalue box M tvalue

dia F tvalue r tvalue

» Note that language of terms is extended:
» “Result” label r is considered a term value.
» Allows processes to refer to one another.

B

I Operational reading: A — B

#» “Local” variables and — intro/elim:

A;F,X:A,F’I—X;Ahyp

AT x:AFM:B ,
ATFMN:A.M:A—>B

ATFM:A—-B A T'FN:A B
ATFMN:B —

B

I Operational reading : A — B

» Local reduction step:

A:T.x: A-M': B ,
A;FI—)\X;A.M’:A%B% A:THEN:A
A;TH(Mx:A.MYN:B

— B

Vi=Xx:A. M) V,tvalue
(r:R[Vi Val) = (r:R[[Va/x]M'])

app

B

I Operational reading: [1A4

» “Global” variables and

Intro/elim:

*

A,u::A,A’;FI—u:Ahyp

A-FM:A

A:T'Fbox M :

A:T'EM:OA Au: A 'FN:B

A

A:I'Flet boxu=MinN: B

B

I Operational reading: [1A4

» Local reduction step:
A:-FM:A I

A:T'Fbox M : LIA Au: A;T'HFN: B
A:I'F let boxu=boxMinN:B

V =boxM 1r9 fresh
(ri1 : R|1let boxu=VinN|)
= (1o M);(r1: R [[r2/u][N)

letbox

B

I Operational reading: [1A4

» Synchronization on “result” labels ()

V tvalue
(ro : V)i (r1: Rlre|) = (ro: V);(r1 : RV])

syncr

» Immediate synch. is not required (r tvalue).

» We have a choice between synchronization
(R|r]) or the “usual” reduction step.

s Concurrency is a secondary effect of the
spatial interpretation, not logically

essential.

Operational reading: Notation

» Now considering the expression fragment of
the language...

» Having £ =+ A means that E “makes sense”
somewhere (but not necessarily “here”).

» We may not interpret expressions E until
they are placed in the proper context.

B

Operational reading: Notation

» |t is convenient to introduce expression
variants of:

» Processes: (I :) and (l; : [5)
» Evaluation contexts: S| M | and S| |
» EXxpression values:

V tvalue
(V1 evalue

B

I Operational reading: ¢ A

» Relationship between truth and possibility:

A;T'HFM:A
A;T'H{(My =+ A

POSS

» “Global” variables bound in expressions:

A:T'EFM:OA Auw: A 'FF+B 5
A;I'Flet boxu=MinkF + B o

B

I Operational reading: ¢ A

{ introduction and elimination:

A:T'HFE+A o1
A:I'FdiaF : QA

A;T'EM:0A Ax:AFF+B
A:I'Flet diax=MinF + B

OF

B

I Operational reading: ¢ A

» Local reduction step:
A:T'HFE A o1
A:I'Fdia B : QA A:x: AFF+B
A:I'Flet diax=diaFEinF + B

OF

V =diaFE [y fresh
(Iy : let diax=VinF)
= (o ((E/x))F); (= o)

» Note: location [, is not arbitrary. I

letdia

I Language of proof terms

In summary:

Term MN == x | u

Mx:A.M | MN

box M | diakFk

let boxu=MinN

Expr. B, == {M} | let boxu=MinkF
| let diax=MinF

B

I Properties

» Typing for process configurations (F¢o C' : A)
Conf. Typing A == - | Ar= A | AlI+A

» “Result” labels r :: A (logical validity).
» “Location” labels | =+ A (logical possibility).

B

I Properties

» Type preservation holds for C' = (C’:
s fFcC:Aand C = ('
s thento C": A" (where A’ D A).

» Proof depends on:

» Various substitution properties
(from previous work).

I Properties

» Terminal processes:

V tvalue
(r:V)terminal

V evalue
(I :V)terminal (lj:ls) terminal

B

I Properties

» Progress holds for well-formed config. C:
» If |_C C': A
s thenC = C'or C terminal

» Proof depends on:

s Fco C': A requires labels r to be non-cyclic
(similar to heap typing).

s Thus o C : A imposes an ordering on
processes in C' which permits induction.

B

I Properties

» Confluence (plausible but not proved)

» (' = (' permits non-deterministic,
interleaved evaluation, but the results are
always the “same” (modulo synchronization).

» Essentially there are only two forms of choice:
» Which process to focus on.

» Performing synchronization or the “usual”

reduction step.

I Talk Outline

» Distributed programming
» Marshalling
» The logical solution
» Examples

I Distributed Programming

» From the perspective of ConCert,
remote evaluation is the key.

» [0 support remote evaluation, we need
mechanisms for:
» Code distribution

» Parameter distribution

B

I Marshalling

» Code distribution:
» Pre-distribute code (RPC,Globus).
» Distribute at runtime (Concert).

s In either case, it Is assumed that code Is
“global” (ignoring binary compatibility).

» Parameter distribution:
» Marshalling some things is tricky.

» Hence implementors usually make a
marshallable/non-marshallable

distinction. I

I Marshalling

#» [he marshallable/non-marshallable
distinction is critical:

» Semantic anomalies if you get it wrong.

» Code mobility depends on parameter
mobility.

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?

» Integers, strings, (etc.)?

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?

» Integers, strings, (etc.)? yes.

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?

» Integers, strings, (etc.)? yes.
» functions?

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?
» Integers, strings, (etc.)? yes.
» functions? depends on env. of closure.

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?
» Integers, strings, (etc.)? yes.
» functions? depends on env. of closure.
» heap addresses?

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?
» Integers, strings, (etc.)? yes.
» functions? depends on env. of closure.
» heap addresses? no.

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?
» Integers, strings, (etc.)? yes.
» functions? depends on env. of closure.
» heap addresses? no.
» file handles?

B

I Marshalling

» The key Is to recognize that some things are
inherently localized.

» Need to ask ourselves: Which objects can
sensibly be transferred between locations?
» Integers, strings, (etc.)? yes.
» functions? depends on env. of closure.
» heap addresses? no.
» file handles? no.

B

I The logical solution

» The language of modal logic reflects
(and resolves) these issues!

I The logical solution

» The language of modal logic reflects
(and resolves) these issues!

» [he expressions E +— A of our language
have the desired properties!

B

I The logical solution

» The language of modal logic reflects
(and resolves) these issues!

» [he expressions E +— A of our language
have the desired properties!

» Benefits of the logical approach:

» We get a clean type-analysis framework
automatically.

» Suggests two forms of code mobility, one

of which is not so obvious.

I The logical solution

» Typing judgement reflects
marshallable/non-marshallable distinction:

A:-FM:A
A;T'Fbox M : A

Il

A;T'EM:0A Ax:AFF+B
A;I'Flet diax=MinF + B

OF

» [1I permits only globally valid parameters.

» OF permits param. from a single location. I

I The logical solution

» Moreover, we have two forms of remote
evaluation:

s let boxu=boxMinN
s Ordinary “spawn anywhere” evaluation.

s let diax=dia bk inkF
s Sending code to the place where local
resources reside.

B

I Examples : Recursive Fibonacci

fix, f£i1b :: int — 1nt
A n : Uint
let box u = n 1n
1f (u < 2) then u
else
let box a =
box (fi1b (box(u-1))) 1in
let box b =
box (fib (box(u—-2))) 1n
(a + b)

B

I Examples: 1/0 Operations

» Assuming console :: {con representing a
localized file handle:

let dia ¢ = console 1n
write ¢ "Enter a number:";
write ¢ "answer = ";
write ¢ ((A x : int . M) (read c))

B

I Examples: Callbacks

Assuming 1lift :: int — [lint,
a runtime boxing operation.

let box callback =
box (dia { (A x : int . M)}) in
(* jJump to console location *)

let dia ¢ = console
write ¢ "Enter a number:";
let box n = 1lift (read c¢) 1n

(* Jump back to callback loc *)
let dia cb = callback 1in

{cb n} I

I Talk Outline

Concepts of modal logic
Intuitionistic formalism
Distributed programming

o o o o

Conclusions

I Conclusions

» Modal logic shows how to safely program with
a combination of mobile and immobile
entities.

» Restrictions of modal logic are not
mandatory if you deny the existence of
localized entities.

» Other ad-hoc solutions to
marshalling/safety are possible.

» Novelty is in the logical explanation of
distributed computation.

B

I Conclusions

» The assumptions at the foundations of modal
logic bore fruit:

» From Aposs,
s we have expressions
(things with localized meaning).

s From Avalid,
s we have closed terms
(which are fully mobile).

B

I Conclusions : Future work

» More logically explicit (explicit worlds)

» Should allow more precise treatment of
dia/letdia.

» Lower-level operational semantics
(environments, stacks)

» Separate concurrency from distribution.
» Concurrency could be orthogonal to

box/letbox.

I Conclusions

» Acknowledgements:
» Frank Pfenning and Rowan Davies:
“A Judgemental Reconstruction of Modal Logic”
» Further Reading:

» “Modal Logic as a Basis for Distributed
Computation”
http://www.cs.cmu.edu/
~Jjwmoody/doc/np/modalbasis.pdf

B

I The End

I Expression Substitution

» EXxpression substitution is defined:

(LM} /%)) F
({(let diay=M inE/x))F

(M /x| F

let diay=M in ((F/x))F

((let boxu=MinFE/x)F =

let boxu=Min((F/x))F

B

nnnnn

nnnnn

nnnnn

	Talk Outline
	Concepts of modal logic
	Concepts: A Kripke model
	Concepts: Modal propositions
	Concepts: A Kripke model
	Concepts: More concrete models
	Concepts: More concrete models
	Talk Outline
	Judgements and propositions
	Judgements and propositions
	Judgements and propositions
	Language of proof terms
	Language of proof terms
	Operational reading
	Operational reading: Notation
	Operational reading: Notation
	Operational reading: $A 	o B$
	Operational reading : $A 	o B$
	Operational reading: $
ec A$
	Operational reading: $
ec A$
	Operational reading: $
ec A$
	Operational reading: Notation
	Operational reading: Notation
	Operational reading: $pos A$
	Operational reading: $pos A$
	Operational reading: $pos A$
	Language of proof terms
	Properties
	Properties
	Properties
	Properties
	Properties
	Talk Outline
	Distributed Programming
	Marshalling
	Marshalling
	Marshalling
	The logical solution
	The logical solution
	The logical solution
	Examples : Recursive Fibonacci
	Examples: I/O Operations
	Examples: Callbacks
	Talk Outline
	Conclusions
	Conclusions
	Conclusions : Future work
	Conclusions
	The End
	Expression Substitution
	
	

