Modal Logic: Implications for Design of a Language for Distributed Computation

Jonathan Moody (with Frank Pfenning)

Department of Computer Science
Carnegie Mellon University

Talk Outline

- Concepts of modal logic
- Intuitionistic formalism
- Distributed programming
- Conclusions

Concepts of modal logic

- Modal logic(s) distinguish modes of truth.
- For the generalized modal logic (S4) these modes of truth are explained by referring to (abstract) "worlds":
 - Truth in all (accessible) worlds.
 - Truth in this world.
 - Truth in some (accessible) world.

Worlds of the Kripke structure

Accessibility between worlds

Primitive assumptions

From the perspective of world W_1 ...

• A and C are true here (W_1)

Concepts: Modal propositions

By introducing new forms of proposition, we can make statements about other worlds.

 $\Box A - A$ true in **all** accessible worlds.

 $\Diamond A$ — A true in **some** accessible world.

- $\square C$ true at W_1 because...
 - C true at W_1, W_2, W_3, W_4 (refl. & trans.)

- $\Diamond A$ true at W_1 because...
 - A true at W_1 (reflexivity)

- $\Diamond B$ true at W_1 because...
 - B true at W_3

- $\Diamond D$ true at W_1 because...
 - D true at W_4 (transitivity)

- But what are the "worlds" we refer to?
- It is quite possible to remain abstract, but for applications it helps to have a class of worlds in mind.
 - Temporal properties
 (worlds are moments, ordering determines accessibility)
 - Stateful computation
 (worlds are states, effects determine accessibility)

For distributed computation, we adopt a spatial interpretation of worlds.

- For distributed computation, we adopt a spatial interpretation of worlds.
- Worlds are:
 - where program fragments reside,
 - where these fragments are well-typed,
 - and hence where evaluation may happen.

- For distributed computation, we adopt a spatial interpretation of worlds.
- Worlds are:
 - where program fragments reside,
 - where these fragments are well-typed,
 - and hence where evaluation may happen.
- Accessibility (hypothesis):
 - the capability to move program fragments between worlds.

Talk Outline

Intuitionistic formalism

- Judgements and propositions
- Language of proof terms
- Operational reading
- Properties

Judgements and propositions

- The meaning of propositions in the intuitionistic formulation is consistent with those of the classical formulation.
- However, we are now in an intuitionistic setting...
 - We focus on the form of proofs,
 - not truth relative to a particular model.

Judgements and propositions

- Judgements formalize the modes of truth:
 - A valid (true everywhere)
 - A true (true here)
 - A poss (true somewhere)
- Propositions of the logic remain the same:
 - ullet $\Box A$ (internalizes A valid)
 - $\Diamond A$ (internalizes A poss)
 - $A \rightarrow B$ (internalizes entailment)

Judgements and propositions

- Hypothetical judgements are represented as:
- Δ ; $\Gamma \vdash A$ true (or Δ ; $\Gamma \vdash A$ poss)
 - ullet Δ holds "global" hypotheses (A valid)
 - Γ holds "local" hypotheses (A true)

Language of proof terms

Via a Curry-Howard isomorphism we can:

Pass from
$$\dfrac{\mathcal{P}}{\Delta;\Gamma \vdash A\, \mathrm{true}}$$
 to $\Delta;\Gamma \vdash M:A$

And from
$$\ \frac{\mathcal{Q}}{\Delta;\Gamma \vdash A\, \mathrm{poss}} \ \ \mathrm{to} \ \ \Delta;\Gamma \vdash E \div A$$

Terms and expressions are simultaneously proof objects and programs.

Language of proof terms

Quick overview of syntax (more depth later):

```
Term M,N ::= \mathbf{x} | \mathbf{u} | \lambda \mathbf{x} : A . M | M N | box M | dia E | let box \mathbf{u} = M in N | let box \mathbf{u} = M in F | let dia \mathbf{x} = M in F
```

Operational reading

- Principles of the operational semantics:
 - We may interpret terms/expressions only in a location where they "make sense", that is, where they establish A true
 - Evaluation at separate "worlds" proceeds concurrently.

Operational reading: Notation

- Process notation $\langle r:M \rangle$
 - A process labeled r containing term M.
 - Each process represents a (possibly) distinct "world".
- Transition relation $C \Rightarrow C'$
 - C, C' are process configurations (collections of processes).

Operational reading: Notation

- Evaluation context notation $\mathcal{R}[M]$
- (Term) values of the language:

```
\overline{\lambda \mathbf{x} : A.M} tvalue \overline{box}M tvalue \overline{dia}E tvalue \overline{r} tvalue
```

- Note that language of terms is extended:
 - "Result" label r is considered a term value.
 - Allows processes to refer to one another.

Operational reading: $A \rightarrow B$

■ "Local" variables and → intro/elim:

$$\frac{}{\Delta; \Gamma, \mathbf{x} : A, \Gamma' \vdash \mathbf{x} : A} \ hyp$$

$$\frac{\Delta; \Gamma, \mathbf{x} : A \vdash M : B}{\Delta; \Gamma \vdash \lambda \mathbf{x} : A \cdot M : A \rightarrow B} \rightarrow I$$

$$\frac{\Delta;\Gamma \vdash M:A \to B \quad \Delta;\Gamma \vdash N:A}{\Delta;\Gamma \vdash M \ N:B} \to E$$

Operational reading : $A \rightarrow B$

Local reduction step:

$$\frac{\Delta; \Gamma, \mathbf{x} : A \vdash M' : B}{\Delta; \Gamma \vdash \lambda \mathbf{x} : A \cdot M' : A \to B} \to I \qquad \Delta; \Gamma \vdash N : A}{\Delta; \Gamma \vdash (\lambda \mathbf{x} : A \cdot M') \ N : B} \to E$$

$$\frac{V_1 = (\lambda \mathbf{x} : A . M') \quad V_2 \text{ tvalue}}{\langle r : \mathcal{R}[V_1 V_2] \rangle \Rightarrow \langle r : \mathcal{R}[V_2/\mathbf{x}]M'] \rangle} app$$

Operational reading: $\Box A$

■ "Global" variables and □ intro/elim:

$$\overline{\Delta, \mathbf{u} :: A, \Delta'; \Gamma \vdash \mathbf{u} : A} \ hyp^*$$

$$\frac{\Delta; \cdot \vdash M : A}{\Delta; \Gamma \vdash \text{box} \, M : \Box A} \, \Box I$$

$$\frac{\Delta; \Gamma \vdash M : \Box A \quad \Delta, \mathbf{u} :: A; \Gamma \vdash N : B}{\Delta; \Gamma \vdash \mathsf{let} \ \mathsf{box} \, \mathbf{u} = M \, \mathsf{in} \, N : B} \, \Box E$$

Operational reading: $\Box A$

Local reduction step:

$$\frac{\Delta; \cdot \vdash M : A}{\Delta; \Gamma \vdash \text{box}\, M : \Box A} \,\Box I \quad \Delta, \mathbf{u} :: A; \Gamma \vdash N : B \\ \Delta; \Gamma \vdash \text{let box}\, \mathbf{u} = \text{box}\, M \text{ in } N : B \\ \end{bmatrix} \,\Box E$$

$$\frac{V = \text{box} M \quad r_2 \text{ fresh}}{\langle r_1 : \mathcal{R}[\text{let box } \mathbf{u} = V \text{ in } N] \rangle} \ letbox$$

$$\Rightarrow \ \langle r_2 : M \rangle; \langle r_1 : \mathcal{R}[[[r_2/\mathbf{u}]]N] \rangle$$

Operational reading: $\Box A$

Synchronization on "result" labels (r)

$$\frac{V \text{ tvalue}}{\langle r_2 : V \rangle; \langle r_1 : \mathcal{R}[r_2] \rangle \Rightarrow \langle r_2 : V \rangle; \langle r_1 : \mathcal{R}[V] \rangle} syncr$$

- Immediate synch. is not required (r tvalue).
 - We have a choice between synchronization $(\mathcal{R}[r])$ or the "usual" reduction step.
 - Concurrency is a secondary effect of the spatial interpretation, not logically essential.

Operational reading: Notation

- Now considering the expression fragment of the language...
 - Having $E \div A$ means that E "makes sense" somewhere (but not necessarily "here").
 - We may not interpret expressions E until they are placed in the proper context.

Operational reading: Notation

- It is convenient to introduce expression variants of:
 - Processes: $\langle l:E \rangle$ and $\langle l_1:l_2 \rangle$
 - ullet Evaluation contexts: $\mathcal{S}[M]$ and $\mathcal{S}[E]$
 - Expression values:

$$\frac{V}{\{V\}}$$
 evalue

Operational reading: $\Diamond A$

Relationship between truth and possibility:

$$\frac{\Delta; \Gamma \vdash M : A}{\Delta; \Gamma \vdash \{M\} \div A} \ poss$$

"Global" variables bound in expressions:

$$\frac{\Delta; \Gamma \vdash M : \Box A \quad \Delta, \mathbf{u} :: A; \Gamma \vdash F \div B}{\Delta; \Gamma \vdash \mathbf{let} \quad \mathbf{box} \, \mathbf{u} = M \, \mathbf{in} \, F \div B} \, \Box E_p$$

Operational reading: $\Diamond A$

$$\frac{\Delta;\Gamma \vdash E \div A}{\Delta;\Gamma \vdash \operatorname{dia} E : \lozenge A} \, \lozenge I$$

$$\frac{\Delta; \Gamma \vdash M : \Diamond A \quad \Delta; \mathbf{x} : A \vdash F \div B}{\Delta; \Gamma \vdash \mathsf{let} \quad \mathsf{dia} \, \mathbf{x} = M \, \mathsf{in} \, F \div B} \, \Diamond E$$

Operational reading: $\Diamond A$

Local reduction step:

$$\frac{\Delta; \Gamma \vdash E \div A}{\Delta; \Gamma \vdash \operatorname{dia} E : \Diamond A} \Diamond I \qquad \Delta; \mathbf{x} : A \vdash F \div B \\ \Delta; \Gamma \vdash \operatorname{let} \operatorname{dia} \mathbf{x} = \operatorname{dia} E \operatorname{in} F \div B$$

$$\frac{V = \operatorname{dia} E \quad l_2 \text{ fresh}}{\langle l_1 : \operatorname{let} \operatorname{dia} \mathbf{x} = V \operatorname{in} F \rangle} \ let dia$$

$$\Rightarrow \ \langle l_2 : \langle \langle E/\mathbf{x} \rangle \rangle F \rangle; \langle l_1 : l_2 \rangle$$

• Note: location l_2 is **not** arbitrary.

Language of proof terms

In summary:

```
Term M,N ::= \mathbf{x} | \mathbf{u} | \lambda \mathbf{x} : A . M | M N | box M | dia E | let box \mathbf{u} = M in N | let box \mathbf{u} = M in F | let dia \mathbf{x} = M in F
```

• Typing for process configurations ($\vdash_C C : \Lambda$)

```
Conf. Typing \Lambda::=\cdot \mid \Lambda, r::A \mid \Lambda, l \div A
```

- "Result" labels r :: A (logical validity).
- "Location" labels $l \div A$ (logical possibility).

- **Type preservation** holds for $C \Rightarrow C'$:
 - If $\vdash_C C : \Lambda$ and $C \Rightarrow C'$
 - then $\vdash_C C' : \Lambda'$ (where $\Lambda' \supseteq \Lambda$).
- Proof depends on:
 - Various substitution properties (from previous work).

Terminal processes:

$$\frac{V \text{ tvalue}}{\langle r:V \rangle \text{ terminal}}$$

$$\frac{V \text{ evalue}}{\langle l:V \rangle \text{ terminal}} \ \frac{\langle l_1:l_2 \rangle \text{ terminal}}{\langle l_1:l_2 \rangle \text{ terminal}}$$

- Progress holds for well-formed config. C:
 - if $\vdash_C C : \Lambda$
 - then $C \Rightarrow C'$ or C terminal
- Proof depends on:
 - $\vdash_C C : \Lambda$ requires labels r to be non-cyclic (similar to heap typing).
 - Thus $\vdash_C C : \Lambda$ imposes an ordering on processes in C which permits induction.

- Confluence (plausible but not proved)
- $C \Rightarrow C'$ permits non-deterministic, interleaved evaluation, but the results are always the "same" (modulo synchronization).
- Essentially there are only two forms of choice:
 - Which process to focus on.
 - Performing synchronization or the "usual" reduction step.

Talk Outline

- Distributed programming
 - Marshalling
 - The logical solution
 - Examples

Distributed Programming

- From the perspective of ConCert, remote evaluation is the key.
- To support remote evaluation, we need mechanisms for:
 - Code distribution
 - Parameter distribution

- Code distribution:
 - Pre-distribute code (RPC,Globus).
 - Distribute at runtime (Concert).
 - In either case, it is assumed that code is "global" (ignoring binary compatibility).
- Parameter distribution:
 - Marshalling some things is tricky.
 - Hence implementors usually make a marshallable/non-marshallable distinction.

- The marshallable/non-marshallable distinction is critical:
 - Semantic anomalies if you get it wrong.
 - Code mobility depends on parameter mobility.

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)?

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)? yes.

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)? yes.
 - functions?

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)? yes.
 - functions? depends on env. of closure.

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)? yes.
 - functions? depends on env. of closure.
 - heap addresses?

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)? yes.
 - functions? depends on env. of closure.
 - heap addresses? no.

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)? yes.
 - functions? depends on env. of closure.
 - heap addresses? no.
 - file handles?

- The key is to recognize that some things are inherently localized.
- Need to ask ourselves: Which objects can sensibly be transferred between locations?
 - integers, strings, (etc.)? yes.
 - functions? depends on env. of closure.
 - heap addresses? no.
 - file handles? no.

The language of modal logic reflects (and resolves) these issues!

- The language of modal logic reflects (and resolves) these issues!
- The **expressions** $E \div A$ of our language have the desired properties!

- The language of modal logic reflects (and resolves) these issues!
- The expressions $E \div A$ of our language have the desired properties!
- Benefits of the logical approach:
 - We get a clean type-analysis framework automatically.
 - Suggests two forms of code mobility, one of which is not so obvious.

Typing judgement reflects marshallable/non-marshallable distinction:

$$\frac{\Delta; \cdot \vdash M : A}{\Delta; \Gamma \vdash \text{box}\, M : \Box A} \,\Box I$$

$$\frac{\Delta; \Gamma \vdash M : \Diamond A \quad \Delta; \mathbf{x} : A \vdash F \div B}{\Delta; \Gamma \vdash \mathsf{let} \quad \mathsf{dia} \, \mathbf{x} = M \, \mathsf{in} \, F \div B} \, \Diamond E$$

- ullet $\Box I$ permits only globally valid parameters.
- \bullet $\Diamond E$ permits param. from a **single** location.

- Moreover, we have two forms of remote evaluation:
 - let box $\mathbf{u} = box M in N$
 - Ordinary "spawn anywhere" evaluation.
 - let $\operatorname{dia} \mathbf{x} = \operatorname{dia} E \operatorname{in} F$
 - Sending code to the place where local resources reside.

Examples: Recursive Fibonacci

```
fix, fib :: \Boxint \rightarrow int .
\lambda n : \squareint .
  let box u = n in
    if (u < 2) then u
    else
       let box a =
         box(fib (box(u-1))) in
       let box b =
         box(fib (box(u-2))) in
       (a + b)
```

Examples: I/O Operations

■ Assuming console :: ◇con representing a localized file handle:

```
let dia c = console in write c "Enter a number:"; write c "answer = "; write c ((\lambda \times int \cdot M) (read c))
```

Examples: Callbacks

■ Assuming lift :: int \rightarrow \square int, a **runtime** boxing operation.

```
let box callback =
 box (dia \{(\lambda x : int . M)\}) in
  (* jump to console location *)
  let dia c = console
    write c "Enter a number:";
    let box n = lift (read c) in
    (* jump back to callback loc *)
    let dia cb = callback in
      \{cbn\}
```

Talk Outline

- Concepts of modal logic
- Intuitionistic formalism
- Distributed programming
- Conclusions

Conclusions

- Modal logic shows how to safely program with a combination of mobile and immobile entities.
 - Restrictions of modal logic are not mandatory if you deny the existence of localized entities.
 - Other ad-hoc solutions to marshalling/safety are possible.
- Novelty is in the logical explanation of distributed computation.

Conclusions

- The assumptions at the foundations of modal logic bore fruit:
 - ullet From A poss,
 - we have expressions (things with localized meaning).
 - From A valid,
 - we have closed terms (which are fully mobile).

Conclusions: Future work

- More logically explicit (explicit worlds)
 - Should allow more precise treatment of dia/letdia.
- Lower-level operational semantics (environments, stacks)
- Separate concurrency from distribution.
 - Concurrency could be orthogonal to box/letbox.

Conclusions

- Acknowledgements:
 - Frank Pfenning and Rowan Davies:
 "A Judgemental Reconstruction of Modal Logic"
- Further Reading:
 - "Modal Logic as a Basis for Distributed Computation"

```
http://www.cs.cmu.edu/
~jwmoody/doc/np/modalbasis.pdf
```

The End

Expression Substitution

Expression substitution is defined:

$$\langle\langle\{M\}/\mathbf{x}\rangle\rangle F = [M/\mathbf{x}]F$$

$$\langle\langle \det \operatorname{dia} \mathbf{y} = M \operatorname{in} E/\mathbf{x}\rangle\rangle F =$$

$$\operatorname{let} \operatorname{dia} \mathbf{y} = M \operatorname{in} \langle\langle E/\mathbf{x}\rangle\rangle F$$

$$\langle\langle \det \operatorname{box} \mathbf{u} = M \operatorname{in} E/\mathbf{x}\rangle\rangle F =$$

$$\operatorname{let} \operatorname{box} \mathbf{u} = M \operatorname{in} \langle\langle E/\mathbf{x}\rangle\rangle F$$

