
Modal Logic: Implications for
Design of a Language for
Distributed Computation

Jonathan Moody

(with Frank Pfenning)

Department of Computer Science

Carnegie Mellon University

Modal Logic: Implications for Design of a Language for Distributed Computation – p.1/53

Talk Outline

Concepts of modal logic
Intuitionistic formalism

Distributed programming

Conclusions

Modal Logic: Implications for Design of a Language for Distributed Computation – p.2/53

Concepts of modal logic

Modal logic(s) distinguish modes of truth.

For the generalized modal logic (S4) these
modes of truth are explained by referring to
(abstract) “worlds”:

Truth in all (accessible) worlds.
Truth in this world.
Truth in some (accessible) world.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.3/53

Concepts: A Kripke model

W1

W4W3

W2

Worlds of the Kripke structure

Modal Logic: Implications for Design of a Language for Distributed Computation – p.4/53

Concepts: A Kripke model

W1

W4W3

W2

Accessibility between worlds

Modal Logic: Implications for Design of a Language for Distributed Computation – p.4/53

Concepts: A Kripke model

W1

W4W3

W2

A
C

B
C

C
D

C

Primitive assumptions

Modal Logic: Implications for Design of a Language for Distributed Computation – p.4/53

Concepts: A Kripke model

W4W3

W2

A
C

B
C

C
D

C
W1

From the perspective of world � ...

Modal Logic: Implications for Design of a Language for Distributed Computation – p.4/53

Concepts: A Kripke model

W4W3

W2

A
C

B
C

C
D

C
W1

and are true here (�)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.4/53

Concepts: Modal propositions

By introducing new forms of proposition, we
can make statements about other worlds.

— true in all accessible worlds.

— true in some accessible world.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.5/53

Concepts: A Kripke model

W4W3

W2

A
C

B
C

C
D

C
W1

true at � because...
true at ��� �� �� � (refl. & trans.)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.6/53

Concepts: A Kripke model

W4W3

W2

A
C

B
C

C
D

C
W1

true at � because...
true at � (reflexivity)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.6/53

Concepts: A Kripke model

W4W3

W2

A
C

B
C

C
D

C
W1

true at � because...
true at �

Modal Logic: Implications for Design of a Language for Distributed Computation – p.6/53

Concepts: A Kripke model

W4W3

W2

A
C

B
C

C
D

C
W1

true at � because...
true at � (transitivity)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.6/53

Concepts: More concrete models

But what are the “worlds” we refer to?

It is quite possible to remain abstract, but for
applications it helps to have a class of worlds
in mind.

Temporal properties
(worlds are moments, ordering determines
accessibility)
Stateful computation
(worlds are states, effects determine
accessibility)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.7/53

Concepts: More concrete models

For distributed computation, we adopt a
spatial interpretation of worlds.

Worlds are:
where program fragments reside,
where these fragments are well-typed,
and hence where evaluation may happen.

Accessibility (hypothesis):
the capability to move program fragments
between worlds.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.8/53

Concepts: More concrete models

For distributed computation, we adopt a
spatial interpretation of worlds.

Worlds are:
where program fragments reside,
where these fragments are well-typed,
and hence where evaluation may happen.

Accessibility (hypothesis):
the capability to move program fragments
between worlds.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.8/53

Concepts: More concrete models

For distributed computation, we adopt a
spatial interpretation of worlds.

Worlds are:
where program fragments reside,
where these fragments are well-typed,
and hence where evaluation may happen.

Accessibility (hypothesis):
the capability to move program fragments
between worlds.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.8/53

Talk Outline

Intuitionistic formalism
Judgements and propositions
Language of proof terms
Operational reading
Properties

Modal Logic: Implications for Design of a Language for Distributed Computation – p.9/53

Judgements and propositions

The meaning of propositions in the
intuitionistic formulation is consistent with
those of the classical formulation.

However, we are now in an intuitionistic
setting...

We focus on the form of proofs,
not truth relative to a particular model.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.10/53

Judgements and propositions

Judgements formalize the modes of truth:

� � � 	
 (true everywhere)

�
� � � (true here)

� �� � (true somewhere)

Propositions of the logic remain the same:
(internalizes � � � 	
)
(internalizes � � � �)

(internalizes entailment)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.11/53

Judgements and propositions

Hypothetical judgements are represented as:

� � � �
� � � (or � � � � �� �)
holds “global” hypotheses (� � � 	
)�

holds “local” hypotheses (�
� � �)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.12/53

Language of proof terms

Via a Curry-Howard isomorphism we can:

Pass from � � � �
� � � to � � � �

And from � � � � �� � to � � � �

Terms and expressions are simultaneously
proof objects and programs.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.13/53

Language of proof terms

Quick overview of syntax (more depth later):

Term � � �� � � �

� � � � � �

�

box
�

dia�

let box � = in

Expr. � � � � { }
�

let box � = in�
let dia � = in

Modal Logic: Implications for Design of a Language for Distributed Computation – p.14/53

Operational reading

Principles of the operational semantics:
We may interpret terms/expressions only in
a location where they “make sense”, that
is, where they establish �
� � �

Evaluation at separate “worlds” proceeds
concurrently.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.15/53

Operational reading: Notation

Process notation

��� �

A process labeled � containing term .
Each process represents a
(possibly) distinct “world”.

Transition relation
!

� !

are process configurations
(collections of processes).

Modal Logic: Implications for Design of a Language for Distributed Computation – p.16/53

Operational reading: Notation

Evaluation context notation

" #
(Term) values of the language:

� � � � tvalue box tvalue

dia tvalue � tvalue

Note that language of terms is extended:
“Result” label � is considered a term value.
Allows processes to refer to one another.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.17/53

Operational reading:

“Local” variables and intro/elim:

� �� � � � � ! � � �

$&% '

� �� � � � �

� � � � � � � �

(

� � � � � � � �

� � � �

Modal Logic: Implications for Design of a Language for Distributed Computation – p.18/53

Operational reading :

Local reduction step:

� �� � � � ! �

� � � � � � � ! �

(

� � � �

� � �) � � � � !* �

� �) � � � � ! * � tvalue� � � " � � # ��� � " " � + � # ! # , ' '

Modal Logic: Implications for Design of a Language for Distributed Computation – p.19/53

Operational reading:

“Global” variables and intro/elim:

� � � � � ! � � � � �

$&% ' -

�/. � �

� � �

box �

(

� � � � � � � � � � � �

� � �

let box � = in �

Modal Logic: Implications for Design of a Language for Distributed Computation – p.20/53

Operational reading:

Local reduction step:

�/. � �

� � �

box �

(
� � � � � � � �

� � �

let box � =box in �

� box � � fresh��� � � "

let box � = in

��� � � � ��� � � " " "� � + � # # #

0&1 2 3&4 5

Modal Logic: Implications for Design of a Language for Distributed Computation – p.21/53

Operational reading:

Synchronization on “result” labels (�)

tvalue� � � � � � � � � " � � # ��� � � � ��� � � " # 6 % 78 �

Immediate synch. is not required (� tvalue).
We have a choice between synchronization
(

" � #

) or the “usual” reduction step.
Concurrency is a secondary effect of the
spatial interpretation, not logically
essential.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.22/53

Operational reading: Notation

Now considering the expression fragment of
the language...

Having � means that E “makes sense”
somewhere (but not necessarily “here”).
We may not interpret expressions until
they are placed in the proper context.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.23/53

Operational reading: Notation

It is convenient to introduce expression
variants of:

Processes:

� 0 �

and

� 0 � � 0 �
Evaluation contexts:

" #
and

" #

Expression values:

tvalue
{ } evalue

Modal Logic: Implications for Design of a Language for Distributed Computation – p.24/53

Operational reading:

Relationship between truth and possibility:

� � � �

� � �

{ }

� ' 4 6 6

“Global” variables bound in expressions:

� � � � � � � � � � � �

� � �

let box � = in

� 9

Modal Logic: Implications for Design of a Language for Distributed Computation – p.25/53

Operational reading:

introduction and elimination:

� � � �

� � �

dia �

(

� � � � � � � � �

� � �

let dia � = in

�

Modal Logic: Implications for Design of a Language for Distributed Computation – p.26/53

Operational reading:

Local reduction step:

� � � �

� � �

dia �

(

� � � � �

� � �

let dia � =dia in

�

� dia
0 � fresh� 0 � � let dia � = in

� 0 � � � � + � � � 0 � � 0 �

01 2 :; ,

Note: location

0 � is not arbitrary.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.27/53

Language of proof terms

In summary:

Term � � �� � � �

� � � � � �

�

box
�

dia�

let box � = in

Expr. � � � � { }
�

let box � = in�
let dia � = in

Modal Logic: Implications for Design of a Language for Distributed Computation – p.28/53

Properties

Typing for process configurations (
�=< �)

Conf. Typing � �� . � � � � � � � 0 �

“Result” labels � � � (logical validity).
“Location” labels

0 � (logical possibility).

Modal Logic: Implications for Design of a Language for Distributed Computation – p.29/53

Properties

Type preservation holds for
!

:
If

�< � and

!

then

�< ! � !

(where

!

).

Proof depends on:
Various substitution properties
(from previous work).

Modal Logic: Implications for Design of a Language for Distributed Computation – p.30/53

Properties

Terminal processes:

tvalue��� �

terminal

evalue� 0 �

terminal
� 0 � � 0 �

terminal

Modal Logic: Implications for Design of a Language for Distributed Computation – p.31/53

Properties

Progress holds for well-formed config. :
if

�< �

then

!

or terminal

Proof depends on:�< � requires labels � to be non-cyclic
(similar to heap typing).
Thus

�< � imposes an ordering on
processes in which permits induction.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.32/53

Properties

Confluence (plausible but not proved)

!

permits non-deterministic,
interleaved evaluation, but the results are
always the “same” (modulo synchronization).

Essentially there are only two forms of choice:
Which process to focus on.
Performing synchronization or the “usual”
reduction step.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.33/53

Talk Outline

Distributed programming
Marshalling
The logical solution
Examples

Modal Logic: Implications for Design of a Language for Distributed Computation – p.34/53

Distributed Programming

From the perspective of ConCert,
remote evaluation is the key.

To support remote evaluation, we need
mechanisms for:

Code distribution
Parameter distribution

Modal Logic: Implications for Design of a Language for Distributed Computation – p.35/53

Marshalling

Code distribution:
Pre-distribute code (RPC,Globus).
Distribute at runtime (Concert).
In either case, it is assumed that code is
“global” (ignoring binary compatibility).

Parameter distribution:
Marshalling some things is tricky.
Hence implementors usually make a
marshallable/non-marshallable
distinction.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.36/53

Marshalling

The marshallable/non-marshallable
distinction is critical:

Semantic anomalies if you get it wrong.
Code mobility depends on parameter
mobility.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.37/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions? depends on env. of closure.
heap addresses? no.
file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)?

yes.
functions? depends on env. of closure.

heap addresses? no.
file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.

functions? depends on env. of closure.

heap addresses? no.
file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions?

depends on env. of closure.

heap addresses? no.
file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions? depends on env. of closure.

heap addresses? no.
file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions? depends on env. of closure.
heap addresses?

no.
file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions? depends on env. of closure.
heap addresses? no.

file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions? depends on env. of closure.
heap addresses? no.
file handles?

no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions? depends on env. of closure.
heap addresses? no.
file handles? no.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.38/53

The logical solution

The language of modal logic reflects
(and resolves) these issues!

Modal Logic: Implications for Design of a Language for Distributed Computation – p.39/53

The logical solution

The language of modal logic reflects
(and resolves) these issues!

The expressions � of our language
have the desired properties!

Modal Logic: Implications for Design of a Language for Distributed Computation – p.39/53

The logical solution

The language of modal logic reflects
(and resolves) these issues!

The expressions � of our language
have the desired properties!

Benefits of the logical approach:
We get a clean type-analysis framework
automatically.
Suggests two forms of code mobility, one
of which is not so obvious.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.39/53

The logical solution

Typing judgement reflects
marshallable/non-marshallable distinction:

�/. � �

� � �

box �

(

� � � � � � � � �

� � �

let dia � = in

�

(

permits only globally valid parameters.

permits param. from a single location.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.40/53

The logical solution

Moreover, we have two forms of remote
evaluation:
let box � =box in

Ordinary “spawn anywhere” evaluation.
let dia � =dia in

Sending code to the place where local
resources reside.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.41/53

Examples : Recursive Fibonacci

fix > fib :: int int .�

n : int .
let box u = n in
if (u < 2) then u
else
let box a =
box(fib (box(u-1))) in

let box b =
box(fib (box(u-2))) in

(a + b)

Modal Logic: Implications for Design of a Language for Distributed Computation – p.42/53

Examples: I/O Operations

Assuming ? �@ � � � � � � ? �@ representing a
localized file handle:

let dia c = console in
write c "Enter a number:";
write c "answer = ";
write c ((

�

x : int . M) (read c))

Modal Logic: Implications for Design of a Language for Distributed Computation – p.43/53

Examples: Callbacks

Assuming � 	A � � � 	 @ � 	 @ �,
a runtime boxing operation.

let box callback =
box (dia {(

�

x : int . M)}) in
(* jump to console location *)
let dia c = console
write c "Enter a number:";
let box n = lift (read c) in
(* jump back to callback loc *)
let dia cb = callback in
{cb n}

Modal Logic: Implications for Design of a Language for Distributed Computation – p.44/53

Talk Outline

Concepts of modal logic

Intuitionistic formalism

Distributed programming

Conclusions

Modal Logic: Implications for Design of a Language for Distributed Computation – p.45/53

Conclusions

Modal logic shows how to safely program with
a combination of mobile and immobile
entities.

Restrictions of modal logic are not
mandatory if you deny the existence of
localized entities.
Other ad-hoc solutions to
marshalling/safety are possible.

Novelty is in the logical explanation of
distributed computation.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.46/53

Conclusions

The assumptions at the foundations of modal
logic bore fruit:

From � �� � ,
we have expressions
(things with localized meaning).

From � � � 	
 ,
we have closed terms
(which are fully mobile).

Modal Logic: Implications for Design of a Language for Distributed Computation – p.47/53

Conclusions : Future work

More logically explicit (explicit worlds)
Should allow more precise treatment of
dia/letdia.

Lower-level operational semantics
(environments, stacks)

Separate concurrency from distribution.
Concurrency could be orthogonal to
box/letbox.

Modal Logic: Implications for Design of a Language for Distributed Computation – p.48/53

Conclusions

Acknowledgements:
Frank Pfenning and Rowan Davies:
“A Judgemental Reconstruction of Modal Logic”

Further Reading:
“Modal Logic as a Basis for Distributed
Computation”
http://www.cs.cmu.edu/

Bjwmoody/doc/np/modalbasis.pdf

Modal Logic: Implications for Design of a Language for Distributed Computation – p.49/53

The End

Modal Logic: Implications for Design of a Language for Distributed Computation – p.50/53

Expression Substitution

Expression substitution is defined:

� �

{ }

+ � � " + � #

� �

let dia C = in
+ � �

let dia C = in

� � + �

� �

let box � = in

+ � �

let box � = in

� � + �

Modal Logic: Implications for Design of a Language for Distributed Computation – p.51/53

none

Modal Logic: Implications for Design of a Language for Distributed Computation – p.52/53

none

Modal Logic: Implications for Design of a Language for Distributed Computation – p.53/53

none

Modal Logic: Implications for Design of a Language for Distributed Computation – p.53/53

	Talk Outline
	Concepts of modal logic
	Concepts: A Kripke model
	Concepts: Modal propositions
	Concepts: A Kripke model
	Concepts: More concrete models
	Concepts: More concrete models
	Talk Outline
	Judgements and propositions
	Judgements and propositions
	Judgements and propositions
	Language of proof terms
	Language of proof terms
	Operational reading
	Operational reading: Notation
	Operational reading: Notation
	Operational reading: $A 	o B$
	Operational reading : $A 	o B$
	Operational reading: $
ec A$
	Operational reading: $
ec A$
	Operational reading: $
ec A$
	Operational reading: Notation
	Operational reading: Notation
	Operational reading: $pos A$
	Operational reading: $pos A$
	Operational reading: $pos A$
	Language of proof terms
	Properties
	Properties
	Properties
	Properties
	Properties
	Talk Outline
	Distributed Programming
	Marshalling
	Marshalling
	Marshalling
	The logical solution
	The logical solution
	The logical solution
	Examples : Recursive Fibonacci
	Examples: I/O Operations
	Examples: Callbacks
	Talk Outline
	Conclusions
	Conclusions
	Conclusions : Future work
	Conclusions
	The End
	Expression Substitution
	
	

