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Concepts of modal logic

Modal logic(s) distinguish modes of truth.

For the generalized modal logic (S4) these
modes of truth are explained by referring to
(abstract) “worlds”:

Truth in all (accessible) worlds.
Truth in this world.
Truth in some (accessible) world.
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Concepts: A Kripke model

W1

W4W3

W2

Worlds of the Kripke structure
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Concepts: A Kripke model

W1

W4W3

W2

Accessibility between worlds
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Concepts: A Kripke model
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Concepts: A Kripke model
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Concepts: Modal propositions

By introducing new forms of proposition, we
can make statements about other worlds.

— true in all accessible worlds.

— true in some accessible world.
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Concepts: A Kripke model
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true at � because...
true at ��� �� �� � (refl. & trans.)
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Concepts: A Kripke model
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true at � because...
true at � (transitivity)
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Concepts: More concrete models

But what are the “worlds” we refer to?

It is quite possible to remain abstract, but for
applications it helps to have a class of worlds
in mind.

Temporal properties
(worlds are moments, ordering determines
accessibility)
Stateful computation
(worlds are states, effects determine
accessibility)
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Concepts: More concrete models

For distributed computation, we adopt a
spatial interpretation of worlds.

Worlds are:
where program fragments reside,
where these fragments are well-typed,
and hence where evaluation may happen.

Accessibility (hypothesis):
the capability to move program fragments
between worlds.
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Judgements and propositions

The meaning of propositions in the
intuitionistic formulation is consistent with
those of the classical formulation.

However, we are now in an intuitionistic
setting...

We focus on the form of proofs,
not truth relative to a particular model.
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Judgements and propositions

Judgements formalize the modes of truth:

� � � 	
 (true everywhere)

�
� � � (true here)

� �� � (true somewhere)

Propositions of the logic remain the same:
(internalizes � � � 	
 )
(internalizes � � � � )

(internalizes entailment)
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Judgements and propositions

Hypothetical judgements are represented as:

� � � �
� � � (or � � � � �� � )
holds “global” hypotheses ( � � � 	 
 )�

holds “local” hypotheses ( �
� � �)
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Language of proof terms

Via a Curry-Howard isomorphism we can:

Pass from � � � �
� � � to � � � �

And from � � � � �� � to � � � �

Terms and expressions are simultaneously
proof objects and programs.
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Language of proof terms

Quick overview of syntax (more depth later):

Term � � �� � � �

� � � � � �

�

box
�

dia�

let box � = in

Expr. � � � � { }
�

let box � = in�
let dia � = in
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Operational reading

Principles of the operational semantics:
We may interpret terms/expressions only in
a location where they “make sense”, that
is, where they establish �
� � �

Evaluation at separate “worlds” proceeds
concurrently.
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Operational reading: Notation

Process notation

��� �  

A process labeled � containing term .
Each process represents a
(possibly) distinct “world”.

Transition relation
!

� !

are process configurations
(collections of processes).
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Operational reading: Notation

Evaluation context notation

" #
(Term) values of the language:

� � � � tvalue box tvalue

dia tvalue � tvalue

Note that language of terms is extended:
“Result” label � is considered a term value.
Allows processes to refer to one another.
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Operational reading:

“Local” variables and intro/elim:

� �� � � � � ! � � �

$&% '

� �� � � � �

� � � � � � � �

(

� � � � � � � �

� � � �
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Operational reading :

Local reduction step:

� �� � � � ! �

� � � � � � � ! �

(

� � � �

� � � ) � � � � !* �

� � ) � � � � ! * � tvalue� � � " � � #  ��� � " " � + � # ! #  , ' '
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Operational reading:

“Global” variables and intro/elim:

� � � � � ! � � � � �

$&% ' -

�/. � �

� � �

box �

(

� � � � � � � � � � � �

� � �

let box � = in �
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Operational reading:

Local reduction step:

�/. � �

� � �

box �

(
� � � � � � � �

� � �

let box � =box in �

� box � � fresh��� � � "

let box � = in

#  

��� � �  � ��� � � " " "� � + � # # #  

0&1 2 3&4 5
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Operational reading:

Synchronization on “result” labels (� )

tvalue� � � �  � � � � � " � � #  ��� � �  � ��� � � " #  6 % 78 �

Immediate synch. is not required (� tvalue).
We have a choice between synchronization
(

" � #

) or the “usual” reduction step.
Concurrency is a secondary effect of the
spatial interpretation, not logically
essential.
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Operational reading: Notation

Now considering the expression fragment of
the language...

Having � means that E “makes sense”
somewhere (but not necessarily “here”).
We may not interpret expressions until
they are placed in the proper context.
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Operational reading: Notation

It is convenient to introduce expression
variants of:

Processes:

� 0 �  

and

� 0 � � 0 �  
Evaluation contexts:

" #
and

" #

Expression values:

tvalue
{ } evalue
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Operational reading:

Relationship between truth and possibility:

� � � �

� � �

{ }

� ' 4 6 6

“Global” variables bound in expressions:

� � � � � � � � � � � �

� � �

let box � = in

� 9
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Operational reading:

introduction and elimination:

� � � �

� � �

dia �

(

� � � � � � � � �

� � �

let dia � = in

�
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Operational reading:

Local reduction step:

� � � �

� � �

dia �

(

� � � � �

� � �

let dia � =dia in

�

� dia
0 � fresh� 0 � � let dia � = in

 

� 0 � � � � + �    � � 0 � � 0 �  

01 2 :; ,

Note: location

0 � is not arbitrary.
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Language of proof terms

In summary:

Term � � �� � � �

� � � � � �

�

box
�

dia�

let box � = in

Expr. � � � � { }
�

let box � = in�
let dia � = in
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Properties

Typing for process configurations (
�=< � )

Conf. Typing � �� . � � � � � � � 0 �

“Result” labels � � � (logical validity).
“Location” labels

0 � (logical possibility).
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Properties

Type preservation holds for
!

:
If

�< � and

!

then

�< ! � !

(where

!

).

Proof depends on:
Various substitution properties
(from previous work).
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Properties

Terminal processes:

tvalue��� �  

terminal

evalue� 0 �  

terminal
� 0 � � 0 �  

terminal
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Properties

Progress holds for well-formed config. :
if

�< �

then

!

or terminal

Proof depends on:�< � requires labels � to be non-cyclic
(similar to heap typing).
Thus

�< � imposes an ordering on
processes in which permits induction.
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Properties

Confluence (plausible but not proved)

!

permits non-deterministic,
interleaved evaluation, but the results are
always the “same” (modulo synchronization).

Essentially there are only two forms of choice:
Which process to focus on.
Performing synchronization or the “usual”
reduction step.
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Distributed Programming

From the perspective of ConCert,
remote evaluation is the key.

To support remote evaluation, we need
mechanisms for:

Code distribution
Parameter distribution
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Marshalling

Code distribution:
Pre-distribute code (RPC,Globus).
Distribute at runtime (Concert).
In either case, it is assumed that code is
“global” (ignoring binary compatibility).

Parameter distribution:
Marshalling some things is tricky.
Hence implementors usually make a
marshallable/non-marshallable
distinction.
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Marshalling

The marshallable/non-marshallable
distinction is critical:

Semantic anomalies if you get it wrong.
Code mobility depends on parameter
mobility.
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Marshalling

The key is to recognize that some things are
inherently localized.

Need to ask ourselves: Which objects can
sensibly be transferred between locations?

integers, strings, (etc.)? yes.
functions? depends on env. of closure.
heap addresses? no.
file handles? no.
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The logical solution

The language of modal logic reflects
(and resolves) these issues!
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The logical solution

The language of modal logic reflects
(and resolves) these issues!

The expressions � of our language
have the desired properties!

Benefits of the logical approach:
We get a clean type-analysis framework
automatically.
Suggests two forms of code mobility, one
of which is not so obvious.
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The logical solution

Typing judgement reflects
marshallable/non-marshallable distinction:

�/. � �

� � �

box �

(

� � � � � � � � �

� � �

let dia � = in

�

(

permits only globally valid parameters.

permits param. from a single location.
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The logical solution

Moreover, we have two forms of remote
evaluation:
let box � =box in

Ordinary “spawn anywhere” evaluation.
let dia � =dia in

Sending code to the place where local
resources reside.
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Examples : Recursive Fibonacci

fix > fib :: int int .�

n : int .
let box u = n in
if (u < 2) then u
else
let box a =
box(fib (box(u-1))) in

let box b =
box(fib (box(u-2))) in

(a + b)
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Examples: I/O Operations

Assuming ? �@ � � � � � � ? �@ representing a
localized file handle:

let dia c = console in
write c "Enter a number:";
write c "answer = ";
write c ((

�

x : int . M) (read c))
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Examples: Callbacks

Assuming � 	A � � � 	 @ � 	 @ �,
a runtime boxing operation.

let box callback =
box (dia {(

�

x : int . M)}) in
(* jump to console location *)
let dia c = console
write c "Enter a number:";
let box n = lift (read c) in
(* jump back to callback loc *)
let dia cb = callback in
{cb n}
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Conclusions

Modal logic shows how to safely program with
a combination of mobile and immobile
entities.

Restrictions of modal logic are not
mandatory if you deny the existence of
localized entities.
Other ad-hoc solutions to
marshalling/safety are possible.

Novelty is in the logical explanation of
distributed computation.
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Conclusions

The assumptions at the foundations of modal
logic bore fruit:

From � �� � ,
we have expressions
(things with localized meaning).

From � � � 	 
 ,
we have closed terms
(which are fully mobile).
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Conclusions : Future work

More logically explicit (explicit worlds)
Should allow more precise treatment of
dia/letdia.

Lower-level operational semantics
(environments, stacks)

Separate concurrency from distribution.
Concurrency could be orthogonal to
box/letbox.
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Conclusions

Acknowledgements:
Frank Pfenning and Rowan Davies:
“A Judgemental Reconstruction of Modal Logic”

Further Reading:
“Modal Logic as a Basis for Distributed
Computation”
http://www.cs.cmu.edu/

Bjwmoody/doc/np/modalbasis.pdf
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The End
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Expression Substitution

Expression substitution is defined:

� �

{ }

+ �   � " + � #

� �

let dia C = in
+ �   �

let dia C = in

� � + �   

� �

let box � = in

+ �   �

let box � = in

� � + �   
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none
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none
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none
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