
Modal Logic as a Basis
for Distributed Computation

Jonathan Moody1

jwmoody@cs.cmu.edu

October 2003

CMU-CS-03-194

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship. The ConCert Project is supported by the National Sci-
ence Foundation under grant number 0121633: “ITR/SY+SI: Language Technology for
Trustless Software Dissemination.”

Abstract

In this report, we give a computational interpretation of modal logic in
which the modalities necessity (�A) and possibility (♦A) describe locality
in a distributed computation. This interpretation is quite natural, given the
usual “possible worlds” semantics underlying modal logic. In our case, the
worlds we consider are processes in a spatially distributed configuration. Ne-
cessity describes a term that is well-typed anywhere and possibility a term
that is well-typed somewhere. Thus typing determines the permissible de-
gree of mobility for terms, in some cases allowing us to create new processes
or move terms between existing processes, and in others forbidding mobil-
ity. In addition to the purely logical motivations, we present some examples
demonstrating how the calculus of modal logic proof terms can be used to
write distributed, concurrent programs while preserving safe access to and
manipulation of localized resources.

Keywords: intuitionistic modal logic, distributed programming, mobil-
ity, immobility, Curry-Howard isomorphism

1 Introduction

In this report, we give a computational interpretation of modal logic in which
the modalities necessity (�A) and possibility (♦A) describe locality in a dis-
tributed computation. This interpretation is quite natural, given the usual
“possible worlds” semantics underlying modal logic. In our case, the worlds
we consider are processes in a spatially distributed configuration. Necessity
describes a term that is well-typed anywhere and possibility a term that
is well-typed somewhere. Thus typing determines the permissible degree
of mobility for terms, in some cases allowing us to create new processes or
move terms between existing processes, and in others forbidding mobility.

Type Locality Interpretation
A type A here
�A type A any (accessible) place
♦A type A some (accessible) place

In addition to the purely logical motivations, we present some examples
demonstrating how the calculus of modal logic proof terms can be used to
write distributed, concurrent programs while preserving safe access to and
manipulation of localized resources. This work is supported by the NSF
GRFP1, as well as the CMU ConCert2 project.

2 Modal Logic

Modal logic comes in many varieties; this work is based on an intuitionistic
logic of necessity and possibility developed by Pfenning and Davies [13].
This logic resembles S4, in that axioms corresponding to reflexivity and
transitivity of accessibility (in the classical setting) are derivable. In later
sections of [13], the authors provide a language of proof terms, which can
be interpreted as programs via the Curry-Howard isomorphism. We adopt
their notation of proof terms for this work as well.

Though Pfenning and Davies gave the outlines of an operational seman-
tics for these proof terms in the form of logically sound local reductions,
no particular interpretation of the “worlds” was assumed. Though previous
work focused on showing that proof terms of the logic expressed deductions

1“This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship.”

2The ConCert Project is supported by the National Science Foundation under grant
number 0121633: “ITR/SY+SI: Language Technology for Trustless Software Dissemina-
tion”.

1

in S4 and lax logic (related to monadic programs), this work will show con-
cretely how proof terms express distributed computations. We first extend
the notion of a well-formed proof term to a distributed setting in which
worlds are reflected concretely as locations (processes) where terms reside.
We then give an operational interpretation of such terms in which mobility
is logically justified.

Of course, details of the evaluation strategy are not precisely determined
given only the logical properties of the language. However, by working from
both the logical and the engineering ends of the problem, we show that modal
logic proof terms can serve as a sort of calculus for distributed programming.
Our results represent one interpretation that we judged best under various
practical constraints and desiderata.

2.1 Proof Language

The following term assignment for modal logic is reproduced from [13]. The
development of Pfenning and Davies was based on three forms of primitive
judgment A valid, A true and A poss, representing the three senses in
which we can “know” proposition A holds. Informally these are: A is true
in every accessible world (necessity), A is true “here”, or A is true in some
accessible world (possibility). However, only A true and A poss are needed
to explain the typing rules for the proof language, because A valid is defined
as deduction of A true from no (locally) true assumptions.

Term M,N ::= x | u | λx : A .M | M N

| boxM | let box u =M inN

| diaE

Expression E,F ::= {M} | let box u =M inF

| let dia x =M inF

Two sorts of variable (x and u) are used to represent hypotheses A true
and A valid, respectively. The distinction between terms and expressions
is also logically derived. The expressions are simply those objects which
are proofs of A poss, whereas terms are those which prove A true. The
inclusion of terms in the category of expressions (as {M}) reflects a logical
inclusion between truth and possibility. That is, A true entails A poss in
the trivial sense that here is somewhere.

The form of the typing judgment for terms will be ∆; Γ `M : A, where ∆
and Γ are variable typing contexts corresponding to valid and true hypothe-
ses, respectively. Implicitly, both hypotheses and conclusion are interpreted

2

as statements about an unspecified current location. The hypotheses in
∆, representing assumptions of A valid (here), are available in all accessi-
ble worlds. The hypotheses in Γ, corresponding to assumptions of A true
(here), are only available locally. Since it is not logically sound to permit
proofs of A valid to depend on local assumptions A true, it will be the case
that variables x in Γ have a more restricted scope than u in ∆. The nota-
tion u :: A will be used to distinguish valid hypotheses from those which are
only locally true. Note that the unconventional expression typing judgment
∆; Γ ` E ÷A is a notation meaning “expression E proves A poss”.

Types A,B ::= A→ B | �A | ♦A
Valid Context ∆ ::= · | ∆, u :: A
True Context Γ ::= · | Γ, x : A

∆; Γ, x : A,Γ′ ` x : A
hyp

∆, u :: A,∆′; Γ ` u : A
hyp∗

∆; Γ, x : A `M : B
∆; Γ ` λx : A .M : A→ B

→ I
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : B → E

∆; · `M : A
∆; Γ ` boxM : �A �I

∆; Γ `M : �A ∆, u :: A; Γ ` N : B
∆; Γ ` let box u =M inN : B �E

∆; Γ `M : A
∆; Γ ` {M} ÷A

poss ∆; Γ `M : �A ∆, u :: A; Γ ` F ÷B
∆; Γ ` let box u =M inF ÷B �Ep

∆; Γ ` E ÷A
∆; Γ ` diaE : ♦A ♦I

∆; Γ `M : ♦A ∆; x : A ` F ÷B
∆; Γ ` let dia x =M inF ÷B ♦E

Note that in rule → I, we treat the new bound variable x as a “locally
true” hypothesis. It will be the case that this non-modal fragment of the
logic corresponds to purely local computations expressed in the λ-calculus.
The modal fragment, which allows us to make statements about other worlds
with �A and ♦A, will allow us to express distributed computations. The
typing rules �I and ♦E deserve special attention, because they impose
logically motivated restrictions on hypotheses x : A of the ordinary, locally
true variety.

2.2 Origins of Mobility

Though the language of proof terms and the judgments ∆; Γ ` M : A and
∆; Γ ` E ÷ A make no explicit mention of worlds (representing locations),

3

one can gain an intuition for the behavior and mobility of the various terms
and expressions through a careful reading of the typing rules. Consider the
unusual form of some of the principles of deduction in modal logic, namely
�I and ♦E. We will argue that the restrictions they impose on the form of
Γ (the locally true hypotheses) provide the logical justification we need to
make parts of a program mobile.

∆; · `M : A
∆; Γ ` boxM : �A �I

∆; Γ `M : �A ∆, u :: A; Γ ` N : B
∆; Γ ` let box u =M inN : B �E

∆; Γ `M : �A ∆, u :: A; Γ ` F ÷B
∆; Γ ` let box u =M inF ÷B �Ep

In the case of �I, reading the rule from the bottom up, if we have a term
boxM proving �A, we must have a term M of type A, which is closed
with respect to Γ and hence well-formed at any accessible world. Since M
depends on no locally true assumptions in Γ, it makes sense to treat M as
being mobile. This observation will permit us to spawn M for evaluation at
an arbitrary world. Under the elimination rules �E and �Ep, we see that
given boxM of type �A, we may rely on the hypothesis u :: A throughout
the remainder of the program. Since M establishes A true in the absence
of local assumptions, we can move M (or its value) to any accessible world,
validating the assumption u :: A wherever it occurs. This is the intuition
behind the behavior of necessity.

∆; Γ ` E ÷A
∆; Γ ` diaE : ♦A ♦I

∆; Γ `M : ♦A ∆; x : A ` F ÷B
∆; Γ ` let dia x =M inF ÷B ♦E

Now in the case of ♦I, reading the rule from the bottom up, forming a
term diaE of type ♦A requires that we have an expression ∆; Γ ` E ÷ A.
That is, from a perspective where we know hypotheses in ∆ and Γ are true,
E proves A, at some accessible world. The particular world is not made
clear at this level of abstraction, but the important thing to note is that
E is fixed to that location — we cannot assume that it is mobile. For the
elimination form ♦E, reading from top to bottom, we will have a term diaE
with type ♦A and an expression F such that ∆; x : A ` F ÷B. As remarked
above, we have in mind some particular fixed location where E proves A.
Furthermore, we know F ÷ B under the assumption x : A. Because the
judgment ∆; x : A ` F ÷B depends only on a single true hypothesis x : A, it
makes sense to claim that F is mobile in a restricted sense; that is, we may
send F to the particular accessible world where E proves A, validating the
assumption x : A. By doing so we will have established B poss as required.
This is the intuition behind the behavior of possibility.

4

3 Representing Locality

To this point, we have been speaking abstractly about such things as know-
ing A true in one location and A poss in another. We should now develop
a notation which reflects such concepts concretely, in the same way that the
language of proof terms represents deductions of A true or A poss relative
to an single implicitly defined “current” world. The notation for processes,
introduced below, will provide such a mechanism to place proof terms in
distinct locations relative to one another.

A single process containing a term in isolation would have no more ex-
pressive power than the original calculus of proof terms. It is clear we will
need some new form of hypothesis allowing a proof to refer to results es-
tablished elsewhere (in another process). Process labels are introduced to
serve as concrete manifestations of such hypotheses. We distinguish between
strong labels (r) corresponding to hypotheses of validity, which we call “re-
sult labels” and weak “location labels” (l) corresponding to hypotheses of
possibility. Operationally, result labels will allow us to receive the result
value of a process, whereas location labels allow us to jump to the location
of a remote resource.

Process Label w ::= r | l

Processes are labeled by either a result label (r) or location label (l). La-
bels will serve as process identifiers; we will assume no two processes in a
configuration share the same label.

Process P ::= 〈r : M〉 | 〈l : E〉
Configuration C ::= · | C,P

Process configurations are essentially a labeled collection of terms and ex-
pressions. The linear ordering of a process configuration has no special
meaning, and we will assume process configurations can be rearranged at
will.

Finally, the language of terms is extended to include result labels, and
the language of expressions to include location labels.

Term M,N ::= r | x | u | . . .

Expression E,F ::= l | {M} | . . .

In the context of a proof, a label will serve as a new kind of “remote”
hypothesis. We discuss the logical properties of such hypotheses in the
following section.

5

4 Logical Characterization of Processes

Though we defined some notation for process configurations, there is no as-
surance (as of yet) that such a notation has a well-defined logical meaning.
Syntactically a process configuration C is a labeled collection of interde-
pendent proof terms and expressions. We must now provide a definition of
well-formedness, which allows us to judge when such a configuration respects
the semantics of validity, truth, and possibility in modal logic.

Assuming processes are closed with respect to ∆ and Γ, that is, ·; · `M :
A for a process 〈r : M〉, then it would seem natural to regard the label r as a
sort of valid hypothesis, treating it similarly to u. However, there is a subtle
distinction to be made between a label r and variable u. In the judgment
∆; Γ ` M : A, u :: A denotes the hypothesis that A valid is known here
(implicitly), whereas r refers to a proof of A valid located somewhere else.
In order to remain true to the meaning of A valid, we should conclude
` r : A at a location only if that location is accessible from r. A similar line
of reasoning applies to labels l. Such labels represent the hypothesis that
A poss is known, not here, but at some other world. To respect the meaning
of A poss, we should conclude ` l ÷ A at the current location only if l is
accessible from our current location. Note that the direction of the required
accessibility relationship is reversed when passing between r (logically valid)
and l (logically possible) hypotheses.

To accommodate these new kinds of hypotheses in the typing judgment,
we introduce a new form of deduction context Λ consisting of a mixed col-
lection of hypotheses r :: A and l ÷A.

Remote Hypotheses Λ ::= · | Λ, r :: A | Λ, l ÷A

The notion that A valid known elsewhere can lead to the conclusion A true
here, and that A poss known elsewhere can lead to the conclusion A poss
here is entirely consistent with the meaning ascribed to these judgments.
However, each such case must be justified by some assumption about ac-
cessibility between locations (processes). Rather than requiring all such
assumptions be mentioned explicitly, it is convenient to represent assump-
tions about accessibility with a system constraints and entailment on those
constraints.3

Constraint φ, ψ ::= > | w / w′ | w
.= w′ | φ ∧ ψ

3It is possible to introduce hypotheses about worlds and accessibility explicitly into
the language of proofs, but programs become very rigid in the sense that their layout at
runtime is statically determined by typing.

6

Recall that w denotes a process label r or l. We will treat labels as ab-
stract locations or worlds in a Kripke semantics of modal logic. A primitive
constraint (w / w′) asserts that accessibility holds between w and w′. The
constraint w .= w′ asserts the equivalence of w and w′ under accessibil-
ity. That is, both have the same accessibility properties with respect to all
other worlds, so in a sense they represent (or share) the “same” location.
Compound constraints are conjunctions of such primitive constraints, or the
unit element >. When convenient, we may regard a formula φ as a set of
primitive constraints, joined implicitly by conjunction.

Equivalence (w .= w′) obeys reflexivity, symmetry, and transitivity, but
does not entail w/w′ or w′/w directly. Accessibility w/w′ obeys transitivity
(from S4) and respects congruence classes of worlds (as defined by .=). The
S4 assumption of reflexivity (w / w) is not made explicit, but is present in
the term and expression typing rules poss and hyp∗. The judgment φ `a ψ,
capturing entailment for constraints, is defined as follows. We use Σ to
denote a set of formulae ψ1, ψ2, . . . , ψn.

Σ, ψ `a ψ
Σ, φ1, φ2 `a ψ

Σ, (φ1 ∧ φ2) `a ψ

Σ `a w .= w
Σ `a w .= w′

Σ `a w′ .= w
Σ `a w .= w′ Σ `a w′ .= w′′

Σ `a w .= w′′

Σ `a w .= w1 Σ `a w1 / w2 Σ `a w2
.= w′

Σ `a w / w′
Σ `a w / w′ Σ `a w′ / w′′

Σ `a w / w′′

Note that the specification above is only intended to be complete for deriva-
tion of conclusions w / w′ and w

.= w′, not arbitrary constraint formulae.
Now if we are to make use of hypotheses in Λ, new forms of hypothetical

judgment Λ\ψ; ∆; Γ `J M : A and Λ\ψ; ∆; Γ `J E ÷ A are needed. These
judgments can be understood as a generalization of term and expression
typing to a setting in which the relative locations of M (or E) and the
hypotheses in Λ are taken into account. The notation Λ\ψ is read as Λ
subject to ψ, since constraints ψ will determine which hypotheses in Λ are
available at a given location. The entire judgment is made relative to a
location index J , specifying either a particular location w, or a range of
locations, for example w/, meaning all locations accessible from w. The
relevant forms of index J are:

Location Index J ::= w | J/

7

Though indices J with repetitions of the quantifier / are possible (w // . . .)
we consider all such repetitions equivalent to a single one (w/). That is,
w / / = w/ by definition. Hence any J is equivalent to one of the canonical
forms r, l, r/, or l/.

The key rules defining well-formed terms and expressions relative to J
are those governing the use of hypotheses in Λ.

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w r′ : A
res

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w/ r′ : A
ures

Λ = Λ1, l
′ ÷A,Λ2 ψ `a w / l′

Λ\ψ; ∆; Γ `w l′ ÷A
loc

The rules res and loc are semantically justified by the following observa-
tions: If we assume that A valid holds in some world r′ from which the
current location w is accessible, then we can safely conclude A true at w.
When A poss holds in some other world l′ accessible from w, the conclu-
sion A poss at w is justified. Note that there is no rule corresponding to
ures for hypotheses l′. Reasoning semantically, we should not assume l′

remains available to us at all worlds accessible from w.4 This has the effect
of disallowing occurrences of l in the context of the judgment `w/.

We now proceed to extend the typing judgment to the all other forms
of term and expression. These rules do not interact with hypotheses Λ\ψ,
hence we abbreviate Λ\ψ; ∆; Γ `J M : A as ∆; Γ `J M : A assuming a
constant Λ\ψ available throughout. The interesting cases are �I and ♦E,
where we introduce quantification in the location index (`J/) for typing

4Hypotheses of possibility l can only be permitted under `w/ if we assume l denotes
a globally accessible location (∀w . w / l). We choose not to introduce such assertions of
accessibility at this time, since they lead to cycles in accessibility and disrupt the logical
reading of process configurations.

8

certain subterms and subexpressions.

∆; Γ, x : A,Γ′ `J x : A
hyp

∆, u :: A,∆′; Γ `J u : A
hyp∗

∆; Γ, x : A `J M : B
∆; Γ `J λx : A .M : A→ B

→ I
∆; Γ `J M : A→ B ∆; Γ `J N : A

∆; Γ `J M N : B → E

∆; · `J/ M : A
∆; Γ `J boxM : �A �I

∆; Γ `J M : �A ∆, u :: A; Γ `J N : B
∆; Γ `J let box u =M inN : B �E

∆; Γ `J M : A
∆; Γ `J {M} ÷A

poss ∆; Γ `J M : �A ∆, u :: A; Γ `J F ÷B
∆; Γ `J let box u =M inF ÷B �Ep

∆; Γ `J E ÷A
∆; Γ `J diaE : ♦A ♦I

∆; Γ `J M : ♦A ∆; x : A `J/ F ÷B
∆; Γ `J let dia x =M inF ÷B ♦E

In the case of �I and ♦E we require M and F remain well-formed
proofs at any world accessible from J (`J/). We must do this in the case
of �I, because the boxed proof term M could be required at all accessible
worlds. For ♦E, the body of a letbox expression F must be well-formed at
the particular location x : A (a proof of A true) is realized. The particular
world is unknown to us, hence the requirement that F remain well-formed
at any accessible world.

By definition, judgments of the form `w// are equivalent to `w/. It is
also the case that judgments `w/ and `w are related:

Lemma 4.1 (Typing Inclusion) If Λ\ψ; ∆; Γ `w/ M : A then Λ\ψ; ∆; Γ `w
M : A. Similarly, if Λ\ψ; ∆; Γ `w/ E ÷A then Λ\ψ; ∆; Γ `w E ÷A.

Proof: by straightforward induction on typing derivations, making use of
the equivalence (w / / = w/) when necessary. �

Given this notion of well-formedness of terms and expressions, we can
now define well-formed process configurations. The judgment ψ `c C : Λ
means that C establishes Λ under the the assumptions ψ governing accessi-
bility. We define ψ `c C : Λ as follows:

ψ `c C : Λ ⇐⇒
Dom(C) = Dom(Λ)

∧ ∀〈r : M〉 ∈ C . Λ\ψ; ·; · `r/ M : Λ(r)
∧ ∀〈l : E〉 ∈ C . Λ\ψ; ·; · `l E ÷ Λ(l)

9

The definition requires that every hypothesis in Λ be realized by a process
of the correct form, and every process in C has the type assigned by Λ.
Processes are required to be closed with respect to ∆ and Γ. Note that ψ
determines the “scope” of hypotheses r and l in Λ.

4.1 Accessibility and Soundness

Finally, in light of the role ψ plays in governing the scope of labels, we must
reconsider the form of ψ, distinguishing between sound and unsound sets of
constraints.

Cyclic constraints w0 / w1 / . . . / w0 can be interpreted as equivalence
of w0, w1, . . . in the sense that the labels wi all share the same accessibility
relationships to other locations. However, we consider such cycles unsound,
since they could permit logically ill-founded process configurations such as
〈r : r〉 (ψ = r / r) or 〈l : l′〉, 〈l′ : l〉 (ψ = l / l′ ∧ l′ / l). We define soundness
of constraints as the absence of cycles in accessibility.

ψ csound ⇐⇒ @w . ψ `a w / w

Explicit equivalence constraints (w .= w′) are perfectly compatible with this
notion of soundness. Here a clear separation between w / w′ and w

.= w′

is crucial. The constraint w .= w′ alone cannot permit a cyclic dependency
between processes w and w′, because the rules for constraint entailment do
not define w .= w′ as w / w′ ∧ w′ / w. By consideration of the typing rules
for located hypotheses, we see a true material dependency is only possible
if w / w′ is known (for equivalence classes of labels w,w′). The intuition is
that w .= w′ equates the locations w and w′ of two otherwise independent
terms or expressions. Our notion of soundness validates this intuition that
w /w′ and w .= w′ are mutually exclusive. If there were labels w,w′ related
by both equivalence (ψ `a w .= w′) and accessibility (ψ `a w / w′), then it
would also be the case that ψ `a w / w.

Under the requirement ψ csound the judgments Λ\ψ; ∆; Γ `J M : A
and Λ\ψ; ∆; Γ `J E ÷ A become sound with respect to the original notion
of well-formed proof.

Theorem 4.1 (Soundness of Process Configuration Typing) Assume
that ψ csound and ψ `c C : Λ. If Λ\ψ; ∆; Γ `J M : A, then there exists M ′

such that ∆; Γ ` M ′ : A. And if Λ\ψ; ∆; Γ `J E ÷ A, then there exists E′

such that ∆; Γ ` E′ ÷A.

Proof: by induction on structure of typing derivation `J and location
index J (ordered by accessibility). Indices J are compared by their root

10

labels, ignoring quantification (w/ = w). For indices of the form J/, we
assume the property holds for prior J ′ (J ′ / J). After establishing this, we
can proceed to arbitrary J , assuming the property holds for subsequent J ′

(J / J ′). Both forms of induction hypothesis are sound, because (/) is a
well-founded strict partial ordering on labels.

Computationally, the proof translates terms and expressions well-typed
under `J by substituting the translation of M from process 〈r : M〉 for each
label r, and E from 〈l : E〉 for each occurrence of l. This collapses a process
configuration into a single term or expression, well-formed under the original
` judgment.5

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w/ r′ : A
ures

〈r′ : M ′〉 ∈ C Assumption, Definition
Λ\ψ; ·; · `r′/ M ′ : A Assumption, Definition
ψ `a r′ / w Assumption
There exists N ′ such that ·; · ` N ′ : A IH (accessibility)
∆; Γ ` N ′ : A Weakening

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w r′ : A
res

〈r′ : M ′〉 ∈ C Assumption, Definition
Λ\ψ; ·; · `r′/ M ′ : A Assumption, Definition
ψ `a r′ / w Assumption
There exists N ′ such that ·; · ` N ′ : A IH (accessibility)
∆; Γ ` N ′ : A Weakening

Case:

Λ = Λ1, l
′ ÷A,Λ2 ψ `a w / l′

Λ\ψ; ∆; Γ `w l′ ÷A
loc

5Defining such a substitution operation {C/Λ}ψM explicitly is complicated; a simple
simultaneous substitution is not adequate. Rather, we must choose an ordering of Λ
(according to certain accessibility criteria) in which M and E are substituted.

11

〈l′ : E′〉 ∈ C Assumption, Definition
Λ\ψ; ·; · `l′ E′ : A Assumption, Definition
ψ `a w / l′ Assumption
There exists E′ such that ·; · ` E′ ÷A IH (accessibility)
∆; Γ ` E′ ÷A Weakening

Case:

∆; · `J/ M : A
∆; Γ `J boxM : �A �I

Λ\ψ; ∆; · `J/ M : A Assumption
There exists M ′ such that ∆; · `M ′ : A IH (derivation)
∆; Γ ` boxM ′ : �A Typing (rule �I)

Case:

∆; Γ `J E ÷A
∆; Γ `J diaE : �A ♦I

Λ\ψ; ∆; Γ `J E ÷A Assumption
There exists E′ such that ∆; Γ ` E′ ÷A IH (derivation)
∆; Γ ` diaE′ : ♦A Typing (rule ♦I)

Case:

∆; Γ `J M : A
∆; Γ `J {M} ÷A

poss

Λ\ψ; ∆; Γ `J M : A Assumption
There exists M ′ such that ∆; Γ `M ′ : A IH (derivation)
∆; Γ ` {M ′} ÷A Typing (rule poss)

Case:

∆; Γ `J M : ♦A ∆; x : A `J/ F ÷B
∆; Γ `J let dia x =M inF ÷B ♦E

12

Λ\ψ; ∆; Γ `J M : ♦A Assumption
Λ\ψ; ∆; x : A `J/ F ÷B Assumption
Exists M ′ such that ∆; Γ `M ′ : ♦A IH (derivation)
Exists F ′ such that ∆; x : A ` F ′ ÷B IH (derivation)
∆; Γ ` let dia x =M ′ inF ′ ÷B Typing (rule ♦E)

�

The judgment `J is also complete with respect to `, in the following
sense:

Theorem 4.2 (Completeness of Process Configuration Typing) If ∆; Γ `
M : A then ·\>; ∆; Γ `J M : A for any J . If ∆; Γ ` E ÷ A then
·\>; ∆; Γ `J E ÷A for any J .

Proof: by straightforward induction on derivations `M : A and ` E÷A.
Index J can be chosen arbitrarily because only typing rules for labels (res,
loc, ures) constrain the form of J . �

5 An Operational Semantics

In this section, we present a type-sound operational semantics for process
configurations. Logical considerations will provide justification of why proofs
of a certain form are regarded as mobile whereas others must remain fixed
to a certain location. In certain cases, a term (or expression) may be mobile,
in the sense that Λ\ψ `J M : A and Λ\ψ `J ′ M : A for distinct location
indices J and J ′. Viewed in this way, the typing judgment expresses the
potential locations where a term or expression may be placed, not merely
its current location. If the operational semantics is to be type-sound, each
case in which we move terms or expressions from one world (process) to
another must be justified in this way.

We will not assume a priori a fixed set of worlds and an accessibility
relation constrained by ψ. Rather, it is natural to assume that a proof
expression (the program), will reside at a single location initially, but as that
program evolves under reduction, certain mobile fragments of the program
will be spawned for evaluation in other locations. In each case where such
a new process (location) is created, we will assert additional accessibility
constraints ψ′, essentially defining the new location relative to existing ones.

13

5.1 Form of Values

Two judgments, M tvalue and E evalue, define the form of term and
expression values, respectively.

λx : A .M tvalue boxM tvalue diaE tvalue r tvalue

V tvalue
{V } evalue l evalue

We find it natural to treat the � and ♦ introduction forms (boxM and
diaE) as values, by analogy with the → introduction form (λx : A .M).
The result label r is also treated as a value, so that synchronization can be
performed lazily. The expression values have the form of either a location
label l or a coerced term value {V }.

We may draw certain conclusions about form of a value given its type.
Considering only closed values (∆ and Γ empty), the typing judgment may
be abbreviated as Λ\ψ `J V : A.

Lemma 5.1 (Typing and Form of Values)

V tvalue ∧ Λ\ψ `J V : A→ B =⇒ V = λx : A .M ∨ V = r
V tvalue ∧ Λ\ψ `J V : �A =⇒ V = boxM ∨ V = r
V tvalue ∧ Λ\ψ `J V : ♦A =⇒ V = diaE ∨ V = r

V ∗ evalue ∧ Λ\ψ `w V ∗ ÷A =⇒ V ∗ = {V } ∧ V tvalue
∨ V ∗ = l

Proof: directly, by considering rules defining tvalue and evalue judg-
ments and rules defining typing judgments. Note that hypothesis rules res
and ures could be used to derive `J V : A for any type A. Similarly, loc
can be used to derive `w V ∗ ÷A for any A. �

5.2 Definition of Substitution

Pfenning and Davies develop a substitution-based notion of reduction in
their paper [13]. Substitution of terms for variables x ([M/x]N and [M/x]F)
was defined as one would expect, taking into account restrictions on the
scope of hypotheses x : A. Substitution of terms for u :: A ([[M/u]]N and
[[M/u]]F) was also defined in a straightforward way. However, an unusual
definition of substitution on expressions was found to be necessary in order

14

to maintain type soundness. Substitution of expressions into expressions
(including terms) was defined as follows:

〈〈{M}/x〉〉F = [M/x]F
〈〈let dia y =M inE/x〉〉F = let dia y =M in 〈〈E/x〉〉F
〈〈let box u =M inE/x〉〉F = let box u =M in 〈〈E/x〉〉F

Note that the definition of 〈〈E/x〉〉F is inductive in the structure of E rather
than F . This form of substitution is applied to reduce expressions of the
form let dia x = diaE inF . An inspection of the typing rule ♦E shows
why substitution must behave this way. Specifically, F is well-formed under
the assumption x : A, that is, x is assumed to be a term. Simply replacing
x with E would not result in a well-formed expression.

We have extended the syntax of terms and expressions with labels. Hence
it is technically necessary to extend the definition of substitution also. Labels
w of both varieties are regarded as insensitive to substitution. The intuition
is that labels denote processes which contain terms or expressions that are
closed with respect to ∆ and Γ.

[M/x]w = w [[M/u]]w = w

〈〈l/x〉〉F = let dia x = dia l inF

The case of expression substitution 〈〈l/x〉〉F is unusual. We cannot simply
follow the same strategy used in the prior definition because the form of
expression denoted by l is unknown, at least in the context of performing
a local substitution. By introducing processes and labels we have created
dislocations in terms and expressions, hence reduction cannot always be
explained purely by local substitution. A global view of the process config-
uration as a whole is needed to fully explain the behavior of labels.

Though this definition of 〈〈l/x〉〉F is sound with respect to typing, it is is
not intended to be an effective means of reducing let dia x = dia l inF since
〈〈l/x〉〉F = let dia x = dia l inF . Rather, the form let dia x = dia l inF
should be regarded as a way to defer or suspend the substitution 〈〈l/x〉〉F
until the expression value denoted by l can be provided. We will provide
a special reduction rule (one not based on substitution) specifically for this
form of expression.

5.3 Transition Rules

A single-step transition in the semantics is stated as C \ ψ =⇒ C ′ \ ψ′
for constraints ψ,ψ′ and process configurations C,C ′. We take the point

15

of view that accessibility constraints are informative assertions about the
structure of the running program. As additional processes are created, the
set of constraints ψ will grow, but we are required to preserve soundness of
ψ (ψ csound) and well-formedness of C with respect to ψ (ψ `c C : Λ).

We will be using the notation of evaluation contexts S to reflect where (in
a term or expression) reduction may take place. In fact, evaluation contexts
can be split into two definitions, term and expression contexts.

Term Context R ::= [] | R M | V R
| let box u =R inN

Expression Context S ::= [] | {R}
| let box u =R inE

| let dia x =R inE

Note that only terms M may appear in a context R[M]. Note also that
the structure of S implies we will only perform reductions on expressions in
the empty context (S = []) whereas reductions on terms can occur nested
inside of other terms or expressions.

Processes irrelevant to the transition are omitted: C1, 〈r : M〉, C2, 〈l : E〉, C3

is abbreviated as 〈r : M〉, 〈l : E〉. Also recall that the ordering of processes in
C is not considered relevant, though an order must be chosen when writing
down an instance of that transition.

Rules for reduction of terms will occur in pairs, one applicable to pro-
cesses of the form 〈r : R[M]〉, the other for processes 〈l : S[M]〉. We follow
a convention of naming these variants app, app′, etc.

V1 = (λx : A .M ′) V2 tvalue

〈r : R[V1 V2]〉 \ ψ =⇒ 〈r : R[[V2/x]M ′]〉 \ ψ
app

V1 = (λx : A .M ′) V2 tvalue

〈l : S[V1 V2]〉 \ ψ =⇒ 〈l : S[[V2/x]M ′]〉 \ ψ app′

V tvalue
〈r′ : V 〉, 〈r : R[r′]〉 \ ψ =⇒ 〈r′ : V 〉, 〈r : R[V]〉 \ ψ

syncr

V tvalue
〈r′ : V 〉, 〈l : S[r′]〉 \ ψ =⇒ 〈r′ : V 〉, 〈l : S[V]〉 \ ψ syncr′

The rules for function application are straightforward. Note that synchro-
nization on a result label r may happen implicitly at any time, but it only

16

becomes necessary when the structure of a value is observed. For example,
synchronization could be forced to occur before we may apply the app rule,
because the app rule requires that V1 have the form λx : A .M ′.

V = boxM r′ fresh
ψ′ = ψ ∧ (r′ / r) ∧ (

∧
{ri / r′ | ψ `a ri / r})

〈r : R[let box u =V inN]〉 \ ψ =⇒ 〈r′ : M〉, 〈r : R[[[r′/u]]N]〉 \ ψ′ letbox

V = boxM r′ fresh
ψ′ = ψ ∧ (r′ / l) ∧ (

∧
{ri / r′ | ψ `a ri / l})

〈l : S[let box u =V inN]〉 \ ψ =⇒ 〈r′ : M〉, 〈l : S[[[r′/u]]N]〉 \ ψ′ letbox
′

V = boxM r′ fresh
ψ′ = ψ ∧ (r′ / l) ∧ (

∧
{ri / r′ | ψ `a ri / l})

〈l : let box u =V inF 〉 \ ψ =⇒ 〈r′ : M〉, 〈l : [[r′/u]]F 〉 \ ψ′
letboxp

The letbox and letbox′ rules govern the behavior of terms of type �A. Be-
cause the boxed term M is known to be logically valid (and hence mobile)
we can spawn an independent process for evaluation of M . Since we are cre-
ating an new process r′, we must define its relationship to other processes by
adding constraints to ψ. Though there are other ways to generate such new
constraints, the form of ψ′ is intended to be suggestive of creating a new
process at a location r′ distinct from r. The result label r′ is substituted
for u in N . Label r′ will serve as a placeholder for the value of M , allowing
us to achieve some concurrency in evaluation. The rule letboxp defines the
behavior of the variant in which the body F is an expression.

Finally, the syncl and letdia rules define the behavior of terms ♦A.
Recall that expressions (proofs of A poss) serve as evidence that A is true
at some accessible world.

V = diaE E 6= l′

〈l : let dia x =V inF 〉 \ ψ =⇒ 〈l : 〈〈E/x〉〉F 〉 \ ψ letdia

In the case of letdia, we have direct evidence of A poss (E 6= l′). Therefore
E is either {M} corresponding to a deduction A poss because A true (here),
or E is some other form of expression. In either case, we can continue by
performing substitution locally. Note that the restriction that E is not a
label is crucial because substitution of a label 〈〈l′/x〉〉F does not allow us to

17

make progress.

V = dia l′ V ∗ evalue l′′ fresh ψ′ = ψ ∧ (l′ .= l′′)
〈l : let dia x =V inF 〉, 〈l′ : V ∗〉 \ ψ

=⇒ 〈l : l′′〉, 〈l′ : V ∗〉, 〈l′′ : 〈〈V ∗/x〉〉F 〉 \ ψ′
syncl

One can look at syncl as a sort of dual of syncr – but instead of bringing
the immobile expression V ∗ to our current location, the mobile code F is
sent to the location of V ∗. Here we have “indirect” evidence l′ of A poss at
some other world. Therefore we jump to that world and resume reduction
with the contents of process l′. Note that we must duplicate V ∗ in 〈l′′ : V ∗〉
to preserve the type of the original process l′. The form of the constraints
ψ′ is intended to suggest creating a process l′′ at the same location as l′,
though as with letbox, other forms of ψ′ are possible. The expression value
l′′ is produced in the original process to represent the effect of this jump to
l′′.

5.4 Accessibility Constraints

A few words about the operational interpretation of accessibility constraints
are in order. First, note that a single process in isolation, closed with respect
to Λ, requires no constraints (ψ = >) in order to be well-formed. Secondly,
as the process configuration evolves and additional processes are spawned,
the set of constraints will grow monotonically, through the creation of new
processes (rule letbox) or duplication of processes (rule syncl). Thirdly, in
interesting initial states C0, 〈l0 : E〉 \ ψ0, corresponding to running a pro-
gram E in an environment C0, some initial constraints ψ0 could be required
to specify the relative locations of processes in C and the program l0. Fi-
nally, at any given moment, the set of constraints ψ may be stronger than
required to ensure well-formedness. Generating or maintaining a minimal
ψ requires more detailed program analysis, but would give more precise
information about the dependency structure of the program.

There appear to be two ways to view accessibility constraints: either
the constraints are informative assertions about dependence between pro-
cesses (new processes may be placed arbitrarily), or the constraints must be
solved at runtime against some a priori notion of accessibility (essentially a
concrete Kripke model). We have chosen to adopt the former point of view,
noting that it is not clear what limitation of the runtime environment a fixed
accessibility relation would describe. Accessibility is not precisely commu-
nication, since not all communication is conducted in a direction compatible

18

with accessibility.6 For example, reduction rule letbox creates new processes
〈r′ : M〉 by moving M against the direction of accessibility. Accessibility
constraints might be useful in other ways when read as assertions about
dependency. For example, they might be used to schedule execution and
synchronization more efficiently in a lower-level operational semantics.

6 Properties

We will now present type soundness, progress, and confluence theorems for
the operational semantics, as well as supporting lemmas. This will demon-
strate that the choices we made in defining the operational semantics were
correct and logically coherent.

6.1 Substitution

With some generalization, the following substitution properties from [13]
hold. As before, a constant Λ\ψ deduction context is assumed.

Lemma 6.1 (Properties of Substitution)

∆; Γ, x : B,Γ′ `J N : A ∧ ∆; Γ `J M : B =⇒ ∆; Γ,Γ′ `J [M/x]N : A
∆; Γ, x : B,Γ′ `J F ÷A ∧ ∆; Γ `J M : B =⇒ ∆; Γ,Γ′ `J [M/x]F ÷A
∆, u :: B,∆′; Γ `J N : A ∧ ∆; · `J/ M : B =⇒ ∆,∆′; Γ `J [[M/u]]N : A
∆, u :: B,∆′; Γ `J F ÷A ∧ ∆; · `J/ M : B =⇒ ∆,∆′; Γ `J [[M/u]]F ÷A
∆; x : B `J/ F ÷A ∧ ∆; Γ `J E ÷B =⇒ ∆; Γ `J 〈〈E/x〉〉F ÷A

Proof ([M/x]N and [M/x]F): by straightforward induction over the
typing derivations for N and F , respectively. �

Proof ([[M/u]]N and [[M/u]]F): by induction over the typing derivations
for N and F , respectively. The specification of a quantified location index
J/ in ∆; · `J/ M : B is crucial in the following cases:

Case:

∆, u :: B,∆′; · `J/ N : A
∆, u :: B,∆′; Γ `J boxN : �A

�I

6If we also assume symmetry of accessibility, as in the modal logic S5, then viewing
accessibility as the capability to communicate might be more tenable.

19

Λ\ψ; ∆, u :: B,∆′; · `J/ N : A Assumption
Λ\ψ; ∆; · `J/ M : B Assumption
Λ\ψ; ∆; · `J// M : B Equivalent Index
[[M/u]]boxN = box [[M/u]]N Definition
Λ\ψ; ∆,∆′; · `J/ [[M/u]]N : A IH
Λ\ψ; ∆,∆′; Γ `J box [[M/u]]N : �A Typing (rule �I)

Case:

∆, u :: B,∆′; Γ ` N : ♦C ∆, u :: B,∆′; x : C ` E ÷A
∆, u :: B,∆′; Γ ` let dia x =N inE ÷A ♦E

Λ\ψ; ∆, u :: B,∆′; Γ `J N : ♦C Assumption
Λ\ψ; ∆, u :: B,∆′; x : C `J/ E ÷A Assumption
Λ\ψ; ∆; · `J/ M : B Assumption
Λ\ψ; ∆; · `J// M : B Equivalent Index
[[M/u]]let dia x =N inF = let dia x = [[M/u]]N in [[M/u]]E Definition
Λ\ψ; ∆,∆′; Γ ` [[M/u]]N : ♦C IH
Λ\ψ; ∆,∆′; x : C ` [[M/u]]E ÷A IH
Λ\ψ; ∆,∆′; Γ ` let dia x = [[M/u]]N in [[M/u]]E ÷A Typing (rule ♦E)

�

Proof (〈〈E/x〉〉F): by induction over the typing derivations for E, relying
on substitution property for [M/x]F .

Case:

Λ = Λ1, l ÷B,Λ2 ψ `a w / l
Λ\ψ; ∆; Γ `w l ÷B

loc

Λ\ψ; ∆; Γ `w l ÷B Assumption
Λ\ψ; ∆; x : B `w/ F ÷A Assumption
〈〈l′/x〉〉F = let dia x = dia l′ inF Definition
Λ\ψ; ∆; Γ `w let dia x = dia l′ inF ÷A Typing (rule ♦E)

Case:

∆; Γ `J M : B
∆; Γ `J {M} ÷B

poss

20

Λ\ψ; ∆; Γ `J M : B Assumption
Λ\ψ; ∆; x : B `J/ F ÷A Assumption
Λ\ψ; ∆; x : B `J F ÷A Typing Inclusion
Λ\ψ; ∆; Γ, x : B `J F ÷A Weakening
〈〈{M}/x〉〉F = [M/x]F Definition
Λ\ψ; ∆; Γ `J [M/x]F ÷A Substitution Prop.

Case:

∆; Γ `J M : ♦C ∆; y : C `J/ E ÷B
∆; Γ `J let dia y =M inE ÷B ♦E

Λ\ψ; ∆; y : C `J/ E ÷B Assumption
Λ\ψ; ∆; Γ `J M : ♦C Assumption
Λ\ψ; ∆; x : B `J/ F ÷A Assumption
Λ\ψ; ∆; x : B `J// F ÷A Equivalent Index
〈〈let dia y =M inE/x〉〉F = let dia y =M in 〈〈E/x〉〉F Definition
Λ\ψ; ∆; y : C `J/ 〈〈E/x〉〉F ÷A IH
Λ\ψ; ∆; Γ `J let dia x =M in 〈〈E/x〉〉F ÷A Typing (rule ♦E)

21

Case:

∆; Γ `J M : �C ∆, u :: C; Γ `J E ÷B
∆; Γ `J let box u =M inE ÷B �Ep

Λ\ψ; ∆, u :: C; Γ `J E ÷B Assumption
Λ\ψ; ∆; Γ `J M : �C Assumption
Λ\ψ; ∆; x : B `J/ F ÷A Assumption
Λ\ψ; ∆, u :: C; x : B `J/ F ÷A Weakening
〈〈let box u =M inE/x〉〉F = let box u =M in 〈〈E/x〉〉F Definition
Λ\ψ; ∆, u :: C,Γ `J 〈〈E/x〉〉F ÷A IH
Λ\ψ; ∆; Γ `J let box u =M in 〈〈E/x〉〉F ÷A Typing (rule �E)

�

6.2 Mobility

There are a variety of mobility properties which relate the typing judgments
Λ\ψ; ∆; Γ `J M : A and Λ\ψ; ∆; Γ `J ′ M : A made relative to distinct loca-
tions J and J ′. In general, the two judgments are related only if J and J ′

(when stripped of quantification) are related under accessibility constraints
ψ. We analyze various forms of mobility below, noting which reduction rules
in the operational semantics make use of each mobility principle.

In the reduction rule syncr the following property justifies moving the
term value V from w to w′. In the case of syncl, it also justifies movement
of expression F , the body of a letdia expression. Note that we are moving
a term (or expression) typed under the quantified form of typing judgment
`w/ from w to some accessible location w′, a situation which was antici-
pated when the judgment `w/ was defined. Hence this is the simplest, most
“natural” form of mobility.

Lemma 6.2 (Natural Mobility (w / w′))

Λ\ψ; ∆; Γ `w/ M : A ∧ ψ `a (w / w′) =⇒ Λ\ψ; ∆; Γ `w′/ M : A
Λ\ψ; ∆; Γ `w/ E ÷A ∧ ψ `a (w / w′) =⇒ Λ\ψ; ∆; Γ `w′/ E ÷A

Proof: by induction on the typing derivations of M and E. Only the
key base case ures is shown.

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w/ r′ : A
ures

22

ψ `a r′ / w Assumption
ψ `a w / w′ Assumption
ψ `a r′ / w′ Entailment `a (trans)
Λ\ψ; ∆; Γ `w′/ r′ : A Typing (rule ures)

�

In reduction rule syncl we copy expression value V ∗ from l′ to l′′. The
intuition is that the duplicate process is be placed at the “same” world, that
is ψ `a (l′ .= l′′). It is always possible to move (in a trivial sense) terms or
expressions between equivalent locations.

Lemma 6.3 (Equivalent Worlds (w .= w′))

Λ\ψ; ∆; Γ `w/ M : A ∧ ψ `a w .= w′ =⇒ Λ\ψ; ∆; Γ `w′/ M : A
Λ\ψ; ∆; Γ `w M : A ∧ ψ `a w .= w′ =⇒ Λ\ψ; ∆; Γ `w′ M : A

Λ\ψ; ∆; Γ `w/ E ÷A ∧ ψ `a w .= w′ =⇒ Λ\ψ; ∆; Γ `w′/ E ÷A
Λ\ψ; ∆; Γ `w E ÷A ∧ ψ `a w .= w′ =⇒ Λ\ψ; ∆; Γ `w′ E ÷A

Proof: by induction on the typing derivations of M and E. The key
cases are the typing rules for hypotheses r and l.

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w/ r′ : A
ures

ψ `a r′ / w Assumption
ψ `a w .= w′ Assumption
ψ `a r′ / w′ Entailment `a (cong.)
Λ\ψ; ∆; Γ `w′/ r′ : A Typing (rule ures)

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w r′ : A
res

ψ `a r′ / w Assumption
ψ `a w .= w′ Assumption
ψ `a r′ / w′ Entailment `a (cong)
Λ\ψ; ∆; Γ `w′ r′ : A Typing (rule res)

23

Case:

Λ = Λ1, l
′ ÷A,Λ2 ψ `a w / l′

Λ\ψ; ∆; Γ `w l′ : A
loc

ψ `a w / l′ Assumption
ψ `a w .= w′ Assumption
ψ `a w′ / l′ Entailment `a (cong)
Λ\ψ; ∆; Γ `w′/ r′ : A Typing (rule loc)

�

In cases when we spawn a new process (letbox and variants), we must
move a term from w to w′ where w′ / w. Since we cannot assume the
term is closed with respect to Λ we must ensure the new location w′ is
interposed between w and all ri on which the term might depend. This
is the most complex case, because in a sense we are moving against the
“natural” direction of accessibility.

Lemma 6.4 (Mobility Against Accessibility (w′ / w))

Λ\ψ; ∆; Γ `w/ M : A
∧ ∀ri . (ψ `a ri / w)⇒ (ψ `a ri / w′) =⇒ Λ\ψ; ∆; Γ `w′/ M : A

Λ\ψ; ∆; Γ `w/ E ÷A
∧ ∀ri . (ψ `a ri / w)⇒ (ψ `a ri / w′) =⇒ Λ\ψ; ∆; Γ `w′/ E ÷A

Proof: by induction on typing derivations for M and E. Only the key
base case ures is shown.

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w/ r′ : A
ures

ψ `a r′ / w Assumption
∀ri . (ψ `a ri / w)⇒ (ψ `a ri / w′) Assumption
Hence ψ `a r′ / w′
Λ\ψ; ∆; Γ `w′/ r′ : A Typing (rule ures)

�

24

6.3 Evaluation Contexts

A key property of evaluation contexts, as they have been defined, is that
we never evaluate below a binding construct. Hence we know that the term
M ′ filling the hole in R[M ′] will be typed in the same combined context
Λ\ψ; ∆; Γ as the surrounding parts of the term (or expression). For example,
if we assume S[M] is closed (with respect to ∆ and Γ), then M is closed as
well.

Lemma 6.5 (Inversion of Typing for Evaluation Contexts) The fol-
lowing inversion principles apply when typing terms and expressions of the
form R[M], S[M], and S[E]:

(1) Λ\ψ; ∆; Γ `J R[M] : A =⇒ ∃B . Λ\ψ; ∆; Γ `J M : B
(2) Λ\ψ; ∆; Γ `J S[M]÷A =⇒ ∃B . Λ\ψ; ∆; Γ `J M : B
(3) Λ\ψ; ∆; Γ `J S[E]÷A =⇒ Λ\ψ; ∆; Γ `J E ÷A

Proof (1): By straightforward induction on the form of R. �

Proof (2): By cases on the form of S, assuming (1) holds for all term
evaluation contexts R. �

Proof (3): Since S could only be [], the conclusion is immediate. �

6.4 Type Preservation

The operational semantics is type sound, in the following sense: As the
process configuration evolves, new processes may be created, but existing
processes remain well-typed (at the same type). The set of accessibility
constraints will change to account for the creation of new processes, however,
soundness (absence of cycles) of such constraints is preserved.

Theorem 6.1 (Type Preservation) If ψ csound, process configuration
C is well-formed (ψ ` C : Λ), and a reduction step C \ ψ =⇒ C ′ \ ψ′ is
made, then ψ′ csound and ψ′ `c C ′ : Λ′, where Λ′ extends Λ.

ψ csound ∧ ψ `c C : Λ ∧ C \ ψ =⇒ C ′ \ ψ′

=⇒ ∃(Λ′ ⊇ Λ) . ∃ψ′ . ψ′ csound ∧ ψ′ `c C ′ : Λ′

Proof: By cases on the C \ ψ =⇒ C ′ \ ψ′ judgment. Representative
cases are shown.

25

Case:

V tvalue
〈r′ : V 〉, 〈l : S[r′]〉 \ ψ =⇒ 〈r′ : V 〉, 〈l : S[V]〉 \ ψ syncr′

Λ\ψ; ·; · `l S[r′]÷A Assumption, Definition
Λ\ψ; ·; · `l r′ : B Typing Inv. Lemma
Λ\ψ; ·; · `r′/ V : B Assumption, Definition
ψ `a r′ / l Inversion (res)
Λ\ψ; ·; · `l V : B Natural Mobility
Λ\ψ; ·; · `l S[V]÷A Ev. Context Typing
ψ′ = ψ and ψ′ csound Assumption
Λ′ = Λ Directly

Case:

V = boxM r′ fresh
ψ′ = ψ ∧ (r′ / l) ∧ (

∧
{ri / r′ | ψ `a ri / l})

〈l : S[let box u =V inN]〉 \ ψ =⇒ 〈r′ : M〉, 〈l : S[[[r′/u]]N]〉 \ ψ′ letbox
′

Λ\ψ; ·; · `l S[let box u =V inN]÷ C Assumption, Definition
Λ\ψ; ·; · `l let box u =V inN : B Typing Inv. Lemma
Λ\ψ; u :: A; · `l N : B Inversion (�E)
Λ\ψ; ·; · `l boxM : �A Assumption, Inversion (�E)
Λ\ψ; ·; · `l/ M : A Inversion (�I)
Let Λ′ = Λ, r′ :: A
ψ′ = ψ ∧ (r′ / l) ∧ (

∧
{ri / r′ | ψ `w ri / l}) Assumption

ψ `a φ =⇒ ψ′ `a φ Entailment `a
ψ′ `a ri / l =⇒ ψ′ `a ri / r′ Entailment `a
ψ′ `a r′ / l Entailment `a
Λ′\ψ′; ·; · `r′/ M : A Mobility Against Accessibility
Λ′\ψ′; ·; · `l r′ : A Typing (res)
Λ′\ψ′; ·; · `l [[r′/u]]N : B Weakening, Substitution
Λ′\ψ′; ·; · `l S[[[r′/u]]N]÷ C Weakening, Ev. Context Typing
r′ fresh Assumption
∃w,w′ . ψ′ `a w / w′ contradicts ψ csound Entailment `a
ψ′ csound By Contradiction
Λ′ ⊇ Λ Directly

26

Case:

V = diaE E 6= l′

〈l : let dia x =V inF 〉 \ ψ =⇒ 〈l : 〈〈E/x〉〉F 〉 \ ψ letdia

Λ\ψ; ·; · `l let dia x =V inF ÷B Assumption, Definition
Λ\ψ; ·; x : A `l/ F ÷B Inversion (♦E)
Λ\ψ; ·; · `l diaE : ♦A Inversion (♦E)
Λ\ψ; ·; · `l E ÷A Inversion (♦I)
Λ\ψ; ·; · `l 〈〈E/x〉〉F ÷B Substitution
ψ′ = ψ and ψ′ csound Assumption
Λ′ = Λ Directly

Case:

V = dia l′ V ∗ evalue l′′ fresh ψ′ = ψ ∧ (l′ .= l′′)
〈l : let dia x =V inF 〉, 〈l′ : V ∗〉 \ ψ

=⇒ 〈l : l′′〉, 〈l′ : V ∗〉, 〈l′′ : 〈〈V ∗/x〉〉F 〉 \ ψ′
syncl

Λ\ψ; ·; · `l let dia x =V inF ÷B Assumption, Definition
Λ\ψ; ·; · `l′ V ∗ ÷A Assumption, Definition
Λ\ψ; ·; x : A `l/ F ÷B Inversion (♦E)
Λ\ψ; ·; · `l dia l′ : ♦A Assumption, Inversion (♦E)
ψ `a l / l′ Inversion (loc)
Let Λ′ = Λ, l′′ ÷B
ψ′ = ψ ∧ (l′ .= l′′) Assumption
ψ `a φ =⇒ ψ′ `a φ Entailment `a
ψ′ `a l′ .= l′′ Entailment `a
ψ′ `a l / l′′ Entailment `a (cong)
Λ′\ψ′; ·; · `l′′ V ∗ ÷A Weakening, Mobility Equivalent Worlds
Λ′\ψ′; ·; x : A `l′′/ F ÷B Weakening, Natural Mobility
Λ′\ψ′; ·; · `l′′ 〈〈V ∗/x〉〉F ÷B Substitution
Λ′\ψ′; ·; · `l l′′ ÷B Typing (loc)

l′′ fresh Assumption
∃w,w′ . ψ′ `a w / w′ contradicts ψ csound Form of ψ′, Entailment `a
ψ′ csound By Contradiction
Λ′ ⊇ Λ Directly

�

27

6.5 Progress

A progress property for the semantics ensures that well-formed process con-
figurations do not get stuck in an erroneous, non-value, state. The proof of
progress relies on the condition ψ csound, since the ordering of labels under
w / w′ must be inductively well-founded.

Theorem 6.2 (Progress) Assume ψ csound. If ψ `c C : Λ, then either
C is terminal (all processes contain values) or C \ ψ =⇒ C ′ \ ψ′ (progress
can be made).

V ∗ evalue
〈l : V ∗〉 terminal

V tvalue
〈r : V 〉 terminal

ψ csound ∧ ψ `c C : Λ

=⇒ C terminal ∨ ∃(C ′, ψ′) . C \ ψ =⇒ C ′ \ ψ′

Proof: Consider an arbitrary process 〈r : M〉 or 〈l : E〉 in C. We
reformulate the progress theorem as follows, separating M or E from the
rest of the configuration C.

ψ csound ∧ ψ `c C : Λ ∧ Λ\ψ; ·; · `J M : A
(where J = r/)

=⇒ M tvalue ∨ ∃C ′,M ′ . C, 〈r : M〉 \ ψ =⇒ C ′, 〈r : M ′〉 \ ψ′

ψ csound ∧ ψ `c C : Λ ∧ Λ\ψ; ·; · `J E ÷A
(where J = l or J = l/)

=⇒ E evalue ∨ ∃C ′, E′ . C, 〈l : E〉 \ ψ =⇒ C ′, 〈l : E′〉 \ ψ′

The proof then proceeds by induction on the typing derivations for M and E,
as well as ordering of location indices J imposed by accessibility constraints
ψ. As before, indices J are compared by their root labels w ignoring quan-
tifier symbols. We first consider judgments of the form J/, in which case
our induction hypothesis is that progress holds for prior J ′ (J ′ / J). Then
unquantified J can be considered under the hypothesis that progress holds
for subsequent J ′ (J / J ′). Representative cases are shown:

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w/ r′ : A
ures

28

r’ tvalue Definition

Case:

Λ = Λ1, r
′ :: A,Λ2 ψ `a r′ / w

Λ\ψ; ∆; Γ `w r′ : A
res

r’ tvalue Definition

Case:

Λ = Λ1, l
′ ÷A,Λ2 ψ `a w / l′

Λ\ψ; ∆; Γ `w l′ ÷A
loc

l′ evalue Definition

Case:

∆; Γ, x : A `J M : B
∆; Γ `J λx : A .M : A→ B

→ I

λx : A .M tvalue Definition

Case:

∆; Γ `J M : A→ B ∆; Γ `J N : A
∆; Γ `J M N : B → E

Λ\ψ; ·; · `J M : A→ B Assumption
Λ\ψ; ·; · `J N : A Assumption
M tvalue or C, 〈r : M〉 \ ψ =⇒ C ′, 〈r : M ′〉 \ ψ′ IH (derivation)
N tvalue or C, 〈r : N〉 \ ψ =⇒ C ′, 〈r : N ′〉 \ ψ′ IH (derivation)

Subcase: Progress on either N or M

Progress is also possible for (M N) Def. Eval. Context

Subcase: M tvalue and N tvalue

29

M = λx : A .M ′ or M = r′ Form of Values

If M = λx : A .M ′ then:
C, 〈r : M N〉 \ ψ =⇒ C, 〈r : [N/x]M ′〉 \ ψ′ Reduction (rule app)

If M = r′ then:
ψ `a r′ / r Inversion (ures)
Process 〈r′ : M ′〉 ∈ C
Λ\ψ; ·; · `r′/ M ′ : A→ B Def. Well-formed Conf.
M ′ tvalue
or C, 〈r : M N〉, 〈r′ : M ′〉 \ ψ =⇒ C ′, 〈r : M N〉, 〈r′ : M ′′〉 \ ψ′

IH (accessibility)

In the latter case we are done.
If M ′ tvalue then:
C, 〈r : r′ N〉 \ ψ =⇒ C ′, 〈r : M ′ N〉 \ ψ′ Reduction (rule syncr)

Case:

∆; · `J/ M : A
∆; Γ `J boxM : �A �I

boxM tvalue Definition

Case:

∆; Γ `J M : �A ∆, u :: A; Γ `J N : B
∆; Γ `J let box u =M inN : B �E

Λ\ψ; ·; · `J M : �A Assumption
Λ\ψ; u :: A; · `J N : B Assumption
M tvalue or
C, 〈r : M〉 \ ψ =⇒ C ′, 〈r : M ′〉 \ ψ′ IH (derivation)

Subcase: Progress on M .

Progress is also possible for (let box u =M inN)
Def. Eval. Context

Subcase: M tvalue

30

M = boxM ′ or M = r′ Form of Values

If M = boxM ′ then:
C, 〈r : let box u =M inN〉 \ ψ =⇒ C, 〈r′ : M ′〉, 〈r : [[r′/u]]N〉 \ ψ′

Reduction (rule letbox)

If M = r′ then
ψ `a r′ / r Inversion (ures)
Process 〈r′ : M ′〉 ∈ C
Λ\ψ; ·; · `r′/ M ′ : �A Def. Well-formed Conf.
M ′ tvalue
or C, 〈r : ...〉, 〈r′ : M ′〉 \ ψ =⇒ C ′, 〈r : ...〉, 〈r′ : M ′′〉 \ ψ′

IH (accessibility)

In the latter case we are done.
If M ′ tvalue then
C, 〈r : let box u = r′ inN〉 \ ψ =⇒ C, 〈r : let box u =M ′ inN〉 \ ψ′

Reduction (rule syncr)

Case:

∆; Γ `J M : ♦A ∆; x : A `J/ F ÷B
∆; Γ `J let dia x =M inF ÷B ♦E

Λ\ψ; ·; · `J M : ♦A Assumption
Λ\ψ; u :: A; · `J F ÷B Assumption
M tvalue or
C, 〈r : M〉 \ ψ =⇒ C ′, 〈r : M ′〉 \ ψ′ IH (derivation)

Subcase: Progress on M .

Progress is also possible for (let dia x =M inF)
Def. Eval. Context

Subcase: M tvalue

M = diaE or M = r′ Form of Values

If M = diaE and E 6= l then
C, 〈l : let dia x = diaE inF 〉 \ ψ =⇒ C, 〈l : 〈〈E/x〉〉F 〉 \ ψ′

31

Reduction (rule letdia)

If M = diaE and E = l then
ψ `a l / l′ Inversion (loc)
〈l′ : E′〉 ∈ C
Λ\ψ; ·; · `l′ E′ ÷A Def. Well-formed Conf.
E′ evalue
or C, 〈l : ...〉, 〈l′ : E′〉 \ ψ =⇒ C ′, 〈l : ...〉, 〈l′ : E′′〉 \ ψ′

IH (accessibility)

In the latter case we are done.
If E′ evalue then
C, 〈l : let dia x = dia l inF 〉 \ ψ

=⇒ C, 〈l : l′′〉, 〈l′ : E′〉, 〈l′′ : 〈〈E′/x〉〉F 〉 \ ψ′ Reduction (rule syncl)

If M = r′ then
ψ `a r′ / l Inversion (res)
Process 〈r′ : M ′〉 ∈ C
Λ\ψ; ·; · `r′/ M ′ : ♦A Def. Well-formed Conf.
M ′ tvalue
or C, 〈l : ...〉, 〈r′ : M ′〉 \ ψ =⇒ C ′, 〈l : ...〉, 〈r′ : M ′′〉 \ ψ′

IH (accessibility)

In the latter case we are done.
If M ′ tvalue then:
C, 〈l : let dia x = r′ inN〉 \ ψ =⇒ C, 〈l : let dia x =M ′ inN〉 \ ψ′

Reduction (rule syncr′)

�

6.6 Termination

Because the basic calculus of proof terms has no primitive fixpoint construct
nor are recursive types allowed, it is reasonable to suspect that the oper-
ational semantics (C \ ψ =⇒ C ′ \ ψ′) is terminating. Furthermore, the
possibility of cyclic, non-terminating process configurations, such as 〈r : r〉,
is specifically ruled out by the requirement that ψ specify a well-founded
accessibility relation. In this section, we establish termination of such well-
formed process configurations using the method of logical relations.

Sangiorgi has also applied logical relations successfully in proving termi-

32

nation for a fragment of the Pi calculus [14]. He considers only “functional”
processes; in our case, the restriction on accessibility ψ plays a similar role in
forcing termination. Though his work encouraged us to believe that logical
relations could be applied in the setting of a process calculus, the details of
our definitions and proof are quite different.

6.6.1 Definitions

The normal forms under reduction are a subset of what were termed values in
prior sections. Though process labels were treated as values in some settings
(delaying synchronization), these labels cannot regarded as a proper normal
form, since a synchronization rule may apply. We say C \ ψ halts if all
reduction sequences from C \ ψ end with a process configuration in normal
form, that is, C has no infinite reduction sequences C \ ψ =⇒ C1 \ ψ1 =⇒
. . . . This behavioral criterion defines a subset of configurations for which
reduction (=⇒) is strongly normalizing.

In order to reason compositionally about the halting of configurations,
we introduce the logical predicates TJA(M) and T̄JA(E) defined on terms
Λ\ψ `J M : A and expressions Λ\ψ `J E ÷ A. Note that M or E may
be open with respect to process labels in Λ. We also assume the accessibil-
ity constraints ψ satisfy ψ csound. These predicates characterize a subset of
terms/expressions which halt when placed in a process and run in an envi-
ronment ψ `c C : Λ. Of course, M , E, and C must satisfy certain additional
conditions.

We now give definitions of TJA(M) and T̄JA(E) which are inductive in J
(ordered by accessibility) and type A (structurally). The auxiliary predi-
cates H(J,M) and H(J,E) are introduced as abbreviations. H(J,M) holds
if M halts when placed in a process and composed with any terminating
configuration C of the proper type. H(J,E) is the analogous condition for

33

expression E.

H(J,−) (defined for J of the form w or w/)
H(J,M) ≡def ∀C ∈ TJΛ\ψ . C, 〈r : M〉 \ ψ ∧ (r .= w) halts
H(J,E) ≡def ∀C ∈ TJΛ\ψ . C, 〈l : E〉 \ ψ ∧ (l .= w) halts

TJA(M) (defined for Λ\ψ `J M : A where J = r/)
TJA0

(M) ⇐⇒ H(J,M)
TJA→B(M) ⇐⇒ H(J,M) ∧ ∀N ∈ TA. T

J
B(M N)

TJ�A(M) ⇐⇒ H(J,M) ∧ TJA(let box u =M in u)
TJ♦A(M) ⇐⇒ H(J,M) ∧ T̄JA(let dia x =M in {x})

TJA(E) (defined for Λ\ψ `J E ÷A where J = l, J = l/)
T̄JA0

(E) ⇐⇒ H(J,E)
T̄JA→B(E) ⇐⇒ H(J,E) ∧ ∀N ∈ TJ/A . T̄JB(let dia x = diaE in {x N})
T̄J�A(E) ⇐⇒ H(J,E) ∧ T̄JA(let dia x = diaE in {let box u = x in u})
T̄J♦A(E) ⇐⇒ H(J,E) ∧ T̄JA(let dia x = diaE in (let dia y = x in {y}))

Expression termination T̄JA(E) is clearly related to the corresponding
predicate for terms TJA. Indeed, if we consider only the trivial expression
E = {M} then the criteria for concluding T̄JA({M}) is related to TJA(M) by
a kind of local expansion. But due to the syntactic distinctions between
terms and expressions, it is not clear how to combine TJA and T̄JA in a single
definition.

The predicate TJΛ\ψ(C) characterizes those configurations C consisting
solely of processes accessible from index J whose contents satisfy a termina-
tion predicate. No extraneous processes that are inaccessible under typing
(`J) at judgment index J are permitted. The form of quantification over r, l
relative to w is crucial to achieving an inductively well-founded definition.
Formally, TJΛ\ψ(C) is defined as:

T
w
Λ\ψ(C) ⇐⇒ ∀r ∈ Dom(C) . ψ `a r / w ∧ Tr/Λ(r)(C(r))

∧ ∀l ∈ Dom(C) .ψ `a w / l ∧ T̄lΛ(l)(C(l))
T
w/
Λ\ψ(C) ⇐⇒ ∀r ∈ Dom(C) . ψ `a r / w ∧ Tr/Λ(r)(C(r))

∧ @l ∈ Dom(C)

In the context of a fixed Λ\ψ where ψ is sound (acyclic), the predicates
TJA(M) and T̄JA(E) are inductively well-defined. There are two lexicographic
induction orderings, defined on pairs (w/,A) and (w,A), respectively. To
define the family of termination predicates for J = w/, each RHS of the

34

definition refers to termination predicates at prior labels r or at the same
w but with a smaller type. When J = w, each RHS refers to J = w/ (a
family of predicates known to be defined), or a subsequent label l, or at the
same w with a smaller type.

6.6.2 Global Soundness

We now argue that the termination predicates TJA(M) and T̄JA(E) have the
intended meaning, that is, they are sound with respect to halting.

Lemma 6.6 (Global Soundness) Assume ψ `c C : Λ for ψ csound.
If all processes r in C satisfy Tr/Λ(r)(C(r)) and all processes l in C satisfy
T̄lΛ(l)(C(l)), then C \ ψ halts.

Proof: Consider each process 〈r : M〉 in C. By assumption, we know
Tr/A (M). By definition of the termination predicate, ∀D ∈ Tr/Λ\ψ . D, 〈r :
M〉 halts. By the assumption that C is well-formed, and Λ\ψ `r/ M : A,
we know that process r is (potentially) dependent on some subset Cr of C,
specifically those r′ such that ψ `a r′/r. By the assumption that all C satisfy
a termination predicate, Tr/Λ\ψ(Cr). Hence Cr, 〈r : M〉 halts. The case of
a process 〈l : E〉 is similar, though Cl, the set of (potential) dependencies
may consist of both term and expression processes. We conclude that Cl, 〈l :
E〉 halts.

For each process, we have a halting fragment Cr, 〈r : M〉 or Cl, 〈l : E〉
of the entire configuration C. Note, however, that some of these fragments
may overlap and there may be no single fragment encompassing all processes
in C.

We argue that C halts by contradiction. Assume that C does not halt.
Then there exists an infinite reduction sequence S starting from C \ ψ.
For each fragment Cr, 〈r : M〉 or Cl, 〈l : E〉, there is a subsequence Sr or
Sl of S consisting of reduction steps which apply to that fragment. Due
to the way syncr, syncr′ and syncl preserve or duplicate processes, each
fragment is essentially independent even though some processes may be
members of more than one fragment. So each step in the infinite sequence S
is present in one or more of the subsequences Sr, Sl. New processes do not
arise spontaneously; all new processes are identified with one of the original
fragments, which are finite in number. Hence, by a counting argument, at
least one of the original fragments supports an infinite reduction sequence.
This contradicts the previous result that all such fragments halt. �

35

6.6.3 Admissibility

In order to show that all well-formed terms and expressions satisfy TA(M) or
T̄A(E), respectively, we must prove certain admissibility/type-closure prop-
erties hold for the predicates. Though for the pure lambda calculus, only
condition (1) is needed, the calculus of proof terms has a more varied struc-
ture requiring further closure conditions. Conditions (2 − 4) are related to
(1) by analogy and allow us to conclude that the various elimination forms
are terminating. Conditions (5− 7) allow us to conclude that the introduc-
tion forms for �A and ♦A, as well as {N} are terminating when the term
N or expression E is terminating. Conditions (8 − 10) account for process
labels w, which are terminating when the contents of process w is assumed
to be terminating.

To prove the lemma by induction on types, the statement of each prop-
erty must be generalized with an elimination context E . As with evaluation
contexts R,S, elimination contexts come in two varieties E , E ′. E [M] de-
notes a term, and E ′[M] and E ′[E] denote expressions.

Lemma 6.7 (Closure/Admissibility Conditions)

Elim. Context E ::= []term | E N | let box u = E in u
E ′ ::= []exp | let dia x = E in {x}

| let dia x = dia E ′ in {x N}
| let dia x = dia E ′ in {let box u = x in u}
| let dia x = dia E ′ in (let dia y = x in {y})

The following admissibility conditions hold. Due to the TJA(E []), T̄JA(E ′[])
distinction, expression variants exist for (1,2,6,8,9). In these cases, we
present only the term variant TJA(E []).

(1) ∀N ∈ TJA . TJB(E [[N/x]M]) ⇒ ∀N ∈ TJA . TJB(E [(λx : A .M) N])
(2) ∀N ∈ TJ/A . TJB(E [[[N/u]]M]) ⇒ ∀N ∈ TJ�A . TJB(E [let box u =N inM])
(3) ∀N ∈ TJ/A . T̄JB(E ′[[[N/u]]F]) ⇒ ∀N ∈ TJ�A . T̄JB(E ′[let box u =N inF])
(4) ∀E ∈ T̄JA . T̄JB(E ′[〈〈E/x〉〉F]) ⇒ ∀N ∈ TJ♦A . T̄JB(E ′[let dia x =N inF])
(5) ∀N ∈ TJA . T̄JB(E ′[[N/x]F]) ⇒ ∀N ∈ TJA . T̄JB(E ′[let dia x = dia {N} inF])
(6) ∀N ∈ TJ/A . TJB(E [[[N/u]]M]) ⇒ ∀N ∈ TJ/A . TJB(E [let box u = boxN inM])
(7) ∀E ∈ T̄JA . T̄JB(E ′[〈〈E/x〉〉F]) ⇒ ∀E ∈ T̄JA . T̄JB(E ′[let dia x = diaE inF])
(8) ∀N ∈ Tw/A . Tw/B (E [N]) ⇒ ∀r :: A ∈ Λ . ψ `a r / w ⇒ Tw/B (E [r])
(9) ∀N ∈ TwA . TwB(E [N]) ⇒ ∀r :: A ∈ Λ . ψ `a r / w ⇒ TwB(E [r])
(10) ∀E ∈ T̄wA . T̄wB(E ′[E]) ⇒ ∀l ÷A ∈ Λ . ψ `a w / l⇒ T̄wB(E ′[l])

36

Proof: Each can be proved by induction on type B. In the base case
when B = A0, the definitions of TJA and T̄JA are purely behavioral (expressed
as the abbreviation H(J,−)). By assuming that the compound term in the
conclusion does not halt, we arrive at a contradiction of the assumptions.
The term in the conclusion must halt if we assume the components of that
term halt. The same form of argument about the behavior of terms applies
at all types, and we omit proofs of H(J,−) in subsequent cases. For the
cases B = A1 → A2, B = �A1, or B = ♦A1, we assume the admissibility
condition holds for smaller types A1 and A2. The definitions of elimination
contexts E , E ′ are specifically crafted to allow induction to succeed in these
cases.7

Case: B = A0 (base type)

Cond: (1)

∀N ∈ TJA . TA0(E [[N/x]M]) Assumption
Let: N ∈ TJA
H(J,N) and H(J, E [[N/x]M]) Def. TJA, T

J
A0

(*) Assume not: H(J, E [(λx : A .M) N])
(*) this contradicts H(J,N) or H(J, E [[N/x]M]) Def. =⇒
H(J, E [(λx : A .M) N]) by Contradiction
∀N ∈ TJA . TJA0

(E [(λx : A .M) N]) Def. TJA0

Cond: (2-7) similar to (1).

Cond: (8)

∀N ∈ Tw/A . Tw/A0
(E [N]) Assumption

Let: N ∈ Tw/A
∀C ∈ Tw/Λ\ψ . C, 〈r

′ : E [N]〉 \ ψ ∧ (r′ .= w) halts Def. Tw/A0

≡ H(w/, E [N])
Let: r :: A ∈ Λ
ψ `a r / w Assumption
Let: C ∈ Tw/Λ\ψ
〈r : M〉 ∈ C and Tr/A (M) Def. Tw/Λ\ψ
(*) Assume not: C, 〈r′ : E [r]〉 \ ψ ∧ (r′ .= w) halts
(*) This contradicts H(w/, E [N]) or Tr/A (M) Def. =⇒

7Note that there is a degree of informality in the reasoning about halting of subterms
(or subexpressions) H(J,M) (or H(J,E)) and halting of compound terms/expressions
under =⇒. The relevant lines are marked with (*). This should be clarified in a future
revision.

37

H(w/, E [r]) by Contradiction
∀r :: A ∈ Λ . ψ `a r / w ⇒ Tw/A0

(E [r])

Cond: (9-10) similar to (8).

Case: B = �A1

Cond: (1)

∀N ∈ TJA . TJ�A1
(E [[N/x]M]) Assumption

∀N ∈ TJA . TJA1
(let box u = E [[N/x]M] in u) Def. TJ�A1

∀N ∈ TA . TA1(let box u = E [(λx : A .M) N] in u) IH (A1)
∀N ∈ TJA . TJ�A1

(E [(λx : A .M) N]) Def. TJ�A1

Cond: (2)

∀N ∈ TJ/A . TJ�A1
(E [[[N/u]]M]) Assumption

∀N ∈ TJ/A . TJA1
(let box u = E [[[N/u]]M] in u) Def. TJ�A1

∀N ∈ TJ�A . TJA1
(let box u = E [let box u =N inM] in u) IH (A1)

∀N ∈ TJ�A . TJ�A1
(E [let box u =N inM]) Def. TJ�A1

Cond: (3-7) similar to above.

Cond: (8)

∀N ∈ Tw/A . Tw/�A1
(E [N]) Assumption

∀N ∈ Tw/A . Tw/A1
(let box u = E [N] in u) Def. Tw/�A1

∀r :: A ∈ Λ . ψ `a r / w ⇒ Tw/A1
(let box u = E [r] in u) IH (A1)

∀r :: A ∈ Λ . ψ `a r / w ⇒ Tw/�A1
(E [r]) Def. Tw/�A1

Cond: (9-10)

Case: B = ♦A1

Cond: (1-6) similar to prior cases.

Cond: (7)

∀E ∈ T̄JA . T̄J♦A1
(E ′[〈〈E/x〉〉F]) Assumption

Let: F ′ = (let dia y = x in y)
∀E ∈ T̄JA . T̄JA1

(let dia x = dia E ′[〈〈E/x〉〉F] inF ′) Def. T̄J♦A1

∀E ∈ T̄JA . T̄JA1
(let dia x = dia E ′[let dia x = diaE inF] inF ′)

IH A1

∀E ∈ T̄JA . T̄J♦A1
(E ′[let dia x = diaE inF]) Def. T̄J♦A1

38

Cond: (8-10) similar to prior cases.

Case: B = A1 → A2 similar to B = �A1 and B = ♦A1.

�

6.6.4 The Fundamental Property

We show that all well-formed terms (∆; Γ `J M : A) satisfy TJA(σM) when
elements of the substitution σ are assumed to be terminating. An anal-
ogous property holds for expressions E. Note that σ satisfies the typing
assumptions ∆; Γ and may consist of several forms of substitution – [[M/u]],
[N/x] or 〈〈E/y〉〉, depending on ∆; Γ and the form of typing judgment. When
TJ/∆(u)(M), TJΓ(x)(N), and T̄JΓ(y)(E), respectively, for all M,N,E components
of σ, we write TJ∆;Γ(σ), meaning σ satisfies the termination conditons for
contexts ∆; Γ at J .

Lemma 6.8 (Fundamental Property of Logical Relation) Assume TJ∆;Γ(σ).
That is, σ is a substitution operator satisfying typing assumptions ∆; Γ
with terminating bindings. If ∆; Γ `J M : A then TJA(σ(M)). And if
∆; Γ `w F ÷ A or ∆; x1 : A1 `w/ F ÷ A then T̄wA(σ(F)). The precise
form of σ depends on ∆; Γ and the form of typing judgment `J as detailed
below:

∆; Γ `w N : A
∧ σ = [[M1/u1]] . . . [[Mj/uj]][N1/x1] . . . [Nk/xk]
∧ ∀i . Tw/∆(ui)

(Mi) ∧ ∀i . TwΓ(xi)
(Ni) ⇒ TwA(σ(N))

∆; Γ `w F ÷A
∧ σ = [[M1/u1]] . . . [[Mj/uj]][N1/x1] . . . [Nk/xk]
∧ ∀i . Tw/∆(ui)

(Mi) ∧ ∀i . TwΓ(xi)
(Ni) ⇒ T̄wA(σ(F))

∆; · `w/ N : A
∧ σ = [[M1/u1]] . . . [[Mj/uj]]
∧ ∀i . Tw/∆(ui)

(Mi) ⇒ Tw/A (σ(N))

∆; x1 : A1 `w/ F ÷A
∧ σ = [[M1/u1]] . . . [[Mj/uj]]〈〈E1/x1〉〉
∧ ∀i . Tw/∆(ui)

(Mi) ∧ T̄wA1
(E1) ⇒ T̄wA(σ(F))

Proof: By induction on typing derivations, making extensive use of ad-
missibility conditions (1-10). Some representative cases are presented.

39

Case:

∆; Γ, x : A,Γ′ `J x : A
hyp

TJ∆;Γ(σ) Assumption
TJA(σ(x)) Immediate

Case:

Λ = Λ1, l
′ ÷A,Λ2 ψ `a w / l′

Λ\ψ; ∆; Γ `w l′ ÷A
loc

ψ `a w / l′ Assumption
T̄wA(l′) Admissibility (10)

Case:

∆; Γ, x : A `J M : B
∆; Γ `J λx : A .M : A→ B

→ I

∆; Γ, x : A `J M : B Assumption
TJ∆;Γ(σ) Assumption
∀N ∈ TJA . TJB(σ([N/x]M)) IH
∀N ∈ TJA . TJB(σ((λx : A .M) N)) Admissibility (1)
TJA→B(σ(λx : A .M)) Def. TJA→B

Case:

∆; Γ `J M : A
∆; Γ `J {M} ÷A

poss

∆; Γ `J M : A Assumption
TJ∆;Γ(σ) Assumption
TJA(σ(M)) IH
T̄JA(σ({M})) Admissibility (5)

Case:

∆; · `J/ M : A
∆; Γ `J boxM : �A �I

40

∆; · `J/ M : A Assumption
TJ/∆;·(σ) Assumption
TJ/A (σ(M)) IH
TJ�A(σ(boxM)) Admissibility (6)

Case:

∆; Γ `J E ÷A
∆; Γ `J diaE : ♦A ♦I

∆; Γ `J E ÷A Assumption
TJ∆;Γ(σ) Assumption
T̄JA(σ(E)) IH
T♦A(σ(diaE)) Admissibility (7)

Case:

∆; Γ `J M : A→ B ∆; Γ `J N : A
∆; Γ `J M N : B → E

∆; Γ `J M : A→ B Assumption
∆; Γ `J N : A Assumption
TJ∆;Γ(σ) Assumption
TJA→B(σ(M)) IH
TJA(σ(N)) IH
TJB(σ(M N)) Def. TJA→B

Case:

∆; Γ `J M : �A ∆, u :: A; Γ `J F ÷B
∆; Γ `J let box u =M inF ÷B �Ep

∆; Γ `J M : �A Assumption
∆, u :: A; Γ `J F ÷B Assumption
TJ∆;Γ(σ) Assumption
TJ�A(σ(M)) IH
∀N ∈ TJ/A . T̄JB(σ([[N/u]]F)) IH
∀N ∈ TJ�A . T̄JB(σ(let box u =N inF)) Admissibility (3)
T̄JB(σ(let box u =M inF)) Directly

Case:

∆; Γ `J M : ♦A ∆; x : A `J/ F ÷B
∆; Γ `J let dia x =M inF ÷B ♦E

41

∆; Γ `J M : ♦A Assumption
∆; x : A `J/ F ÷B Assumption
σ1 = [[M1/u1]] . . . and σ2 = [N1/x1] . . . Assumption
TJ∆;Γ(σ1σ2) and TJ∆;·(σ1) Assumption
TJ♦A(σ1σ2(M)) IH
∀E ∈ T̄JA . T̄JB(σ1(〈〈E/x〉〉F)) IH
∀N ∈ TJ♦A . T̄JB(σ1(let dia x =N inF)) Admissibility (4)
T̄JB(σ1σ2(let dia x =M inF)) Directly

�

Theorem 6.3 (Strong Normalization) If ψ `c C : Λ then C halts.

Proof: By definition, ψ `c C : Λ implies all processes in C are well-
formed. By the fundamental property lemma, processes r satisfy Tr/Λ(r)(C(r))
and processes l satisfy T̄lΛ(l)(C(l)). By the global soundness lemma, we
conclude C halts. �

6.7 Confluence

Reduction on configurations C \ ψ =⇒ ψ′ \ C ′ is nondeterministic. For any
configuration C, there may be a choice of process on which to focus, as well
as a choice of performing some optional synchronization step(s) (with syncr
or syncr′). Though nondeterministic, the operational semantics is confluent
modulo a certain notion of equivalence on process configurations C. We
will define this equivalence in such a way as to capture precisely the effects
of these nondeterministic synchronization steps. Differences in the form of
constraints ψ will be ignored, hence C \ ψ =⇒ C ′ \ ψ′ is abbreviated as
C =⇒ C ′.

Equivalence at the level of terms (and expressions) is defined by the
judgment [M]C ≡ [N]D, meaning that “M (interpreted relative to C) is
equivalent to N (relative to D)”. There is an implicit side condition that
C ≡ D, but C and D are not required to be identical. We write simply
M ≡ N when the configurations (C, D) are clear from context. Equivalence
of expressions is written as [E]C ≡ [F]D. The M ≡ N relation is simulta-
neous structural congruence defined by the following axioms and rules (the

42

congruence rules are omitted).

[x]C ≡ [x]D
eqhyp

[u]C ≡ [u]D
eqhyp∗

[r]C ≡ [r]D
eqres

[l]C ≡ [l]D
eqloc

〈r : V 〉 ∈ C V tvalue [V]C ≡ [V ′]D
[r]C ≡ [V ′]D

trans

〈r : V 〉 ∈ D V tvalue [V ′]C ≡ [V]D
[V ′]C ≡ [r]D

trans′

The trans and trans′ rules govern equivalence of labels r and values V ′

(which may be some other form of term value). The intuition is that syn-
chronization on labels r (rule syncr or syncr′) can be applied at any time.
Therefore each label r should be considered interchangeable and equivalent
with the corresponding term value in process 〈r : V 〉. On the other hand,
location labels l are only equivalent under eqloc. We do not consider l equiv-
alent to V ∗ in another process, since rule syncl is applied deterministically
(within a process) and our goal is to capture precisely the unpredictable
aspects of synchronization with equivalence.

Reflexivity is admissible for (≡), as are symmetry and transitivity. Re-
flexivity arises from the structural congruence rules (omitted above) and
axioms eqhyp, eqhyp∗, etc. The form of trans and trans′ rules were chosen
to incorporate symmetry and transitivity.

Lemma 6.9 Under the definition of M ≡ N (and E ≡ F), reflexivity,
symmetry, and transitivity of ≡ are admissible.

Proof: Reflexivity by straightforward induction on the structure of terms
and expressions. Symmetry and transitivity by induction on derivations
[M]C ≡ [N]D. �

Equivalence for process configurations (C ≡ D) is simply defined as
pairwise equivalence of processes. For convenience, we will assume that C
and D use identical labels for equivalent processes so that processes are
comparable without establishing a mapping between labels of C and those
of D.

C ≡ D ⇐⇒ S = Dom(C) = Dom(D)
∧ ∀(r ∈ S) . [C(r)]C ≡ [D(r)]D
∧ ∀(l ∈ S) . [C(l)]C ≡ [D(l)]D

43

This strong notion of pairwise equivalence is helpful in proving confluence,
though an outside observer may only care about equivalence for a distin-
guished “main” process.

6.7.1 Properties of Equivalence

Derivations of [M]C ≡ [N]D are not uniquely invertible, since several rules
(namely eqres, trans and trans′), apply to terms of the form r. However,
we can identify certain cases based on the form of M and N .

Lemma 6.10 (Inversion of Equivalence) If [E]C ≡ [F]D then corre-
sponding subterms or subexpressions of E and F are equivalent or E =
l = F . If [M]C ≡ [N]D then one of the following holds:

(1) Neither M nor N is a label (r) and either corresponding subterms
or subexpressions of M and N are equivalent (a congruence rule was
used) or M = N (rule eqhyp or eqhyp∗ was used).

(2) M = r = N (rule eqres was used).

(3) M = r and there is a process 〈r : V 〉 in C such that V ≡ N (rule
trans). Or N = r and there is a process 〈r : V 〉 in D such that
M ≡ V (rule trans′).

Proof: direct, considering cases of [M]C ≡ [N]D judgment. �

Equivalence (≡) is a logical relation in that it relates terms (or expres-
sions) with the same typing properties.

Lemma 6.11 (Typed Equivalence) Assume C ≡ D where both ψ `c C : Λ
and ψ ` D : Λ. Under such Λ and ψ, if [M]C ≡ [N]D and Λ\ψ; ∆; Γ `J M : A
then Λ\ψ; ∆; Γ `J N : A. Also, if [E]C ≡ [F]D and Λ\ψ; ∆; Γ `J E ÷A
then Λ\ψ; ∆; Γ `J F ÷A.

Proof: by induction on derivation [M]C ≡ [N]D (or [E]C ≡ [F]D for expres-
sions). The cases involving labels r are shown:

Case:

〈r : V 〉 ∈ C V tvalue [V]C ≡ [V ′]D
[r]C ≡ [V ′]D

trans

44

ψ `c C : Λ Assumption
〈r : V 〉 ∈ C Assumption
Λ\ψ; ·; · `r/ V : A Definition
[V]C ≡ [V ′]D Assumption
Λ\ψ; ·; · `r/ V ′ : A IH

Case:

〈r : V 〉 ∈ D V tvalue [V ′]C ≡ [V]D
[V ′]C ≡ [r]D

trans′

ψ `c D : Λ Assumption
〈r : V 〉 ∈ D Assumption
Λ\ψ; ·; · `r/ V : A Definition
[V ′]C ≡ [V]D Assumption
Λ\ψ; ·; · `r/ V ′ : A Symmetry, IH

�

Equivalence is compatible with the definition of term and expression
values, in the sense that values are equivalent to other values.

Lemma 6.12 (Equivalence of Values) If M tvalue and [M]C ≡ [N]D
then N tvalue. If E evalue and [E]C ≡ [F]D then F tvalue.

Proof: For term values, the proof is by induction on derivations of M ≡
N , considering cases consistent with M tvalue. The analogous proof for
expression values is also straightforward, and relies on the property we just
established for equivalence of term values. �

Equivalence is compatible with substitution in the sense that substi-
tution applied to equivalent terms or expressions yields equivalent results.
Note that all terms, expressions, and process configurations are assumed to
be well-formed.

Lemma 6.13 (Equivalence Compatible with Substitution) If C and
C ′ are well-formed and C ≡ C ′ then the following hold:

[M]C ≡ [M ′]C′ ∧ [N]C ≡ [N ′]C′ =⇒ [[M/x]N]C ≡ [[M ′/x]N ′]C′
[M]C ≡ [M ′]C′ ∧ [F]C ≡ [F ′]C′ =⇒ [[M/x]F]C ≡ [[M ′/x]F ′]C′
[M]C ≡ [M ′]C′ ∧ [N]C ≡ [N ′]C′ =⇒ [[[M/u]]N]C ≡ [[[M ′/u]]N ′]C′
[M]C ≡ [M ′]C′ ∧ [F]C ≡ [F ′]C′ =⇒ [[[M/u]]F]C ≡ [[[M ′/u]]F ′]C′

[E]C ≡ [E′]C′ ∧ [F]C ≡ [F ′]C′ =⇒ [〈〈E/x〉〉F]C ≡ [〈〈E′/x〉〉F ′]C′

45

Proof ([M/x]N and [M/x]F): by induction on the derivation [N]C ≡
[N ′]C′ (or [F]C ≡ [F ′]C′). Some representative base cases are shown:

Case:

[r]C ≡ [r]C′
eqres

[M/x]r = r and [M ′/x]r = r Definition
[[M/x]r]C ≡ [[M ′/x]r]C′ Equivalence (rule eqres)

Case:

[l]C ≡ [l]C′
eqloc

[M/x]l = l and [M ′/x]l = l Definition
[[M/x]l]C ≡ [[M ′/x]l]C′ Equivalence (rule eqloc)

Case:

〈r : V 〉 ∈ C V tvalue [V]C ≡ [V ′]C′
[r]C ≡ [V ′]C′

trans

[M/x]r = r Definition
〈r : V 〉 ∈ C and V tvalue and [V]C ≡ [V ′]C′ Assumption
Λ\ψ; ·; · `r/ V : A Def. Well-formed Conf.
Λ\ψ; ·; · `r/ V ′ : A Equiv. Typed
[M ′/x]V ′ = V ′ Subst. on Closed Term
[[M/x]r]C ≡ [[M ′/x]V ′]C′ Equivalence (rule trans)

�

Proof ([[M/u]]N and [[M/u]]F): by induction on the derivation [N]C ≡
[N ′]C′ (or [F]C ≡ [F ′]C′). The proof is straightforward and quite similar to
the case of ordinary substitution ([M/x]N and [M/x]F). �

Proof (〈〈E/x〉〉F): by induction on the derivation [E]C ≡ [E′]C′ , making
use of the equivalence result for term substitution established above. A few
representative cases are show:

Case:

[l]C ≡ [l]C′
eqloc

46

〈〈l/x〉〉F = let dia x = dia l inF
and 〈〈l/x〉〉F ′ = let dia x = dia l inF ′ Definition
[l]C ≡ [l]C′ Assumption
[F]C ≡ [F ′]C′ Assumption
[dia l]C ≡ [dia l]C′ Equivalence (cong. rule)
[〈〈l/x〉〉F]C ≡ [〈〈l/x〉〉F ′]C′ Equivalence (cong. rule)

Case:

[M]C ≡ [M ′]C′
[{M}]C ≡ [{M ′}]C′

eqposs

〈〈{M}/x〉〉F = [M/x]F Definition
〈〈{M ′}/x〉〉F ′ = [M ′/x]F ′ Definition
[M]C ≡ [M ′]C′ and [F]C ≡ [F ′]C′ Assumption
[[M/x]F]C ≡ [[M ′/x]F ′]C′ Compatibility with Subst.
[〈〈{M}/x〉〉F]C ≡ [〈〈{M ′}/x〉〉F ′]C′ Definition

Case:

[M]C ≡ [M ′]C′ [E]C ≡ [E′]C′
[let dia x =M inE]C ≡ [let dia x =M inE]C′

eq♦E

〈〈let dia x =M inE/x〉〉F = let dia x =M in 〈〈E/x〉〉F Definition
[F]C ≡ [F ′]C′ Assumption
[M]C ≡ [M ′]C′ and [E]C ≡ [E′]C′ Assumption
[〈〈E/x〉〉F]C ≡ [〈〈E′/x〉〉F ′]C′ IH (derivation)
[〈〈let dia x =M inE/x〉〉F]C ≡ [〈〈let dia x =M inE/x〉〉F ′]C′

Equivalence (cong. rule)

�

Equivalence is also compatible with the formation of evaluation con-
texts, in the sense that decompositions R[M ′] are related to “equivalent”
decompositions R′[N ′].

Lemma 6.14 If M ≡ N and N = R[N ′] then there exists R′ and M ′ such
that M = R′[M ′] and M ′ ≡ N ′. If E ≡ F and F = S[N ′] then there exists
S ′ and M ′ such that E = S ′[M ′] and M ′ ≡ N ′.

Proof: By induction on the structure of evaluation contexts. We note
that only case (1) of the equivalence inversion lemma applies when either
M or N is not a value. A representative case is shown:

47

Case: R[N ′] = V1 R′[N ′]

M ≡ V1 R′[N ′] Assumption
M = V ′1 M2 and V ′1 ≡ V1 and M2 ≡ R′[N ′] Inversion
There exists R′′[] such that M2 = R′′[M ′] and M ′ ≡ N ′ IH
M = V ′1 R′′[M ′] = R′′′[M ′] and M ′ ≡ N ′ Def. of Ev. Context

�

6.7.2 Equivalence and Reduction

We can now proceed to analyze the interaction between equivalence and
reduction in certain restricted cases. A number of lemmas are proved which
will be of use later in establishing the confluence result.

The first of these is that equivalence (C ≡ D) does, in fact, capture the
synchronization steps which we wish to ignore.

Lemma 6.15 (Synchronization Preserves Equivalence Class) For well-
formed configurations C, if C =⇒ D is made via the rule syncr or syncr′,
then C ≡ D.

Note that the converse of this property does not hold in general, because
reduction can only occur in certain contexts S[] or R[], not in arbitrary
locations of the term or expression. Thus equivalence does not imply con-
vertibility of terms in one direction or the other.

Proof: direct, considering the two reduction rules syncr and syncr′. The
case of syncr′ is shown:

Case:

V tvalue
〈r′ : V 〉, 〈l : S[r′]〉 \ ψ =⇒ 〈r′ : V 〉, 〈l : S[V]〉 \ ψ syncr′

[V]C ≡ [V]D Reflexivity
[r′]C ≡ [V]D Equivalence (rule trans)
[S[r′]]C ≡ [S[V]]D Equivalence (cong. rule(s))
C ≡ D Definition

�

48

Though equivalent terms M and N are not always convertible to syn-
tactically equal forms, if we restrict our attention to values, it is clear that
we can perform a series of synchronization steps to reach observationally
equivalent terms.8

Observational equivalence [M]C ≡o [N]D is defined on term and expres-
sion values. It is stronger than general equivalence, that is, M ≡o N implies
M ≡ N . Essentially, M ≡o N requires that M ≡ N and both M and N
have the same top-level form.

[r]C ≡o [r]D

[M]C ≡ [N]D
[λx : A .M]C ≡o [λx : A .N]D

[M]C ≡ [N]D
[boxM]C ≡o [boxN]D

[l]C ≡o [l]D

[V]C ≡o [V]D
[{V }]C ≡o [{V }]D

[E]C ≡ [F]D
[diaE]C ≡o [diaF]D

Lemma 6.16 (Equivalence of Values implies Weak Convertibility)
If M tvalue and [M]C ≡ [N]D then M and N are convertible to
observationally equivalent forms [M ′]C ≡o [N ′]D via reduction sequences
C, 〈r : M〉 =⇒∗ C, 〈r : M ′〉 and D, 〈r : N〉 =⇒∗ D, 〈r : N ′〉. For ex-
pressions, if E evalue and [E]C ≡ [F]D then E and F are convertible to
observationally equivalent forms [E′]C ≡o [F ′]D via C, 〈l : E〉 =⇒∗ C, 〈l : E′〉
and D, 〈l : F 〉 =⇒∗ D, 〈l : F ′〉

Proof (M ≡ N): by induction on the derivation [M]C ≡ [N]D, con-
sidering cases which are compatible with M tvalue and N tvalue. Only
the cases corresponding to trans and trans′ involve non-trivial reduction
sequences.

Case:

[r]C ≡ [r]D
eqres

r ≡o r (no reduction steps are required) Definition

Case:

〈r : V 〉 ∈ C V tvalue [V]C ≡ [V ′]D
[r]C ≡ [V ′]D

trans

8The restriction to values limits the scope of this lemma, making the proof manageable.
We will later show confluence holds for arbitrary terms.

49

〈r : V 〉 ∈ C and V tvalue Assumption
C, 〈r′ : r〉 =⇒ C, 〈r′ : V 〉 Reduction (rule syncr)
[V]C ≡ [V ′]D Assumption
V ′ tvalue Assumption

C, 〈r′ : V 〉 =⇒∗ C, 〈r′ : M ′〉
and D, 〈r′ : V ′〉 =⇒∗ D, 〈r′ : N ′〉
such that M ′ ≡o N ′ IH

�

Proof (E ≡ F): by cases on the derivation [E]C ≡ [F]D, assuming the
property holds for all term values. �

Within a process 〈r : M〉 or 〈l : E〉, the decomposition of M into
R[M ′] (or E into S[M] or S[E′]) is not uniquely determined (in a strict
sense). Typically, values are not allowed to be redices, but our semantics
makes an exception for result labels, R[r′] via the syncr rule (and S[r′]
via syncr′). This exception leads to many possible decompositions of a
term, and hence many possible reduction steps within a single process. We
will show that all of these choices (except one) correspond to optional syn-
chronization steps. We note that redices have the forms: ((λx : A .M ′) V2),
(let box u = boxM inN), (let box u = boxM inF), (let dia x = diaE inF),
or (r′).

Lemma 6.17 (Unique Evaluation Contexts (excluding redices r))
Any well-formed term M (or expression E) is either a value or has at
most one decomposition as R[M ′] (or S[M ′], S[E′]) where M ′ and E′

are redices and M ′ 6= r. If redices M ′ = r are also considered, then there
will be one or more such decompositions.

Proof: by a straightforward induction on the structure of terms and
expressions. Only the form of function application (M N) allows more than
one decomposition (when redices r′ are considered). We summarize the

50

possibilities for decomposing (M N) in the table below:

Form of (M N) Form of V Reduction(s) Context Extension(s)

(1a) (λx : A .M ′) V V = r app R[λx : A .M ′ V]→ R′[V]
(1b) V 6= r app

(2a) V N V = r R[V N]→ R′[V]
R[V N]→ R′[N]

(2b) V = λx : A .M ′ R[V N]→ R′[N]

(3) M N (none) R[M N]→ R′[M]

Metavariable V denotes a term value. Cases (1a) and (2a) are the source of
nondeterminism. In (1a), we can treat ((λx : A .M) r) as a redex, applying
rule app, or we can further decompose this term as R′[r], synchronizing on
r. In (2a), we can decompose the term two ways, focusing either on the
function position (R′[r]) or the argument position (R′[N]). If we disal-
low decompositions R′[r] then this nondeterminism in cases (1a) and (2a)
disappears, and at most one decomposition of (M N) possible. The term
(r V) will be the critical case in which no decomposition exists, synchroniza-
tion being mandatory in such cases. Now if we also permit decompositions
R′[r], there will be one or more such decompositions. All but one of these
decompositions will correspond to optional synchronizations via rule syncr
or syncr′. �

6.7.3 Properties α and β

We now proceed to analyze how equivalence C ≡ D interacts with arbitrary
reduction steps (C =⇒ C ′). We follow Huet’s [10] strategy of decomposing
global confluence into two properties, α and β. Informally, property α states
that local confluence holds for two independent reduction steps starting from
a single configuration, and property β states that a single reduction step
on a configuration C can be emulated in an equivalent configuration D,
preserving equivalence between C and D. The full generality of Huet’s α
and β are not needed; we present stronger analogues of α and β which are
also satisfied by the operational semantics.

Lemma 6.18 ((β): Reduction on ≡ Configurations) If C ≡ P and
C =⇒ D, then there exists Q such that P =⇒∗ Q.

51

C ≡ P ∧ C =⇒ D =⇒ ∃Q . P =⇒∗ Q ∧ D ≡ Q

Proof: Without loss of generality, we may assume C has the form C, 〈r :
M〉 (or C, 〈l : E〉) and that the reduction C =⇒ D acts on process r (or l).
The proof is by cases on the judgment C =⇒ D. Some representative cases
are shown:

Case:

V1 = (λx : A .M ′) V2 tvalue

〈l : S[V1 V2]〉 \ ψ =⇒ 〈l : S[[V2/x]M ′]〉 \ ψ app′

〈l : F 〉 ∈ P and S[V1 V2] ≡ F Assumption, Definition
S[V1 V2] ≡ S ′[V ′1 V ′2]
and V1 V2 ≡ V ′1 V ′2 Equiv. and Ev. Context Lemma
V1 ≡ V ′1 and V2 ≡ V ′2 Inversion (cong. rule)
V ′1 = λx : A .M ′′ or V ′1 = r Inversion Lemma

Subcase: V ′1 = λx : A .M ′′

〈l : S ′[V ′1 V ′2]〉 =⇒ 〈l : S ′[[V ′2/x]M ′′]〉 Reduction (rule app)
M ′ ≡M ′′ Inversion (cong. rule)
[V2/x]M ′ ≡ [V ′2/x]M ′′ Substitution Prop.
S[[V2/x]M ′] ≡ S ′[[V ′2/x]M ′′] Equivalence (cong. rule(s))
Hence D ≡ Q

Subcase: V ′1 = r

〈r : V 〉 ∈ P and λx : A .M ′ ≡ V Inversion (rule trans′)
〈r : V 〉 =⇒∗ 〈r : λx : A .M ′′〉 and λx : A .M ′ ≡o λx : A .M ′′

Convertibility Lemma
λx : A .M ′ ≡ λx : A .M ′′ Definition (≡o)
〈r : λx : A .M ′′〉, 〈l : S ′[V ′1 V ′2]〉

=⇒ 〈r : λx : A .M ′′〉, 〈l : S ′[λx : A .M ′′ V ′2]〉
Reduction (rule syncr′)

Then proceed as in case V ′1 = λx : A .M ′′.

Case:
V tvalue

〈r′ : V 〉, 〈l : S[r′]〉 \ ψ =⇒ 〈r′ : V 〉, 〈l : S[V]〉 \ ψ syncr′

C ≡ P Assumption
C ≡ D Synch. Pres. Equivalence
D ≡ P Symmetry, Transitivity

52

Case:

V = boxM r′ fresh
ψ′ = ψ ∧ (r′ / l) ∧ (

∧
{ri / r′ | ψ `a ri / l})

〈l : S[let box u =V inN]〉 \ ψ =⇒ 〈r′ : M〉, 〈l : S[[[r′/u]]N]〉 \ ψ′ letbox
′

〈l : E〉 ∈ P and S[let box u =V inN] ≡ E Assumption, Definition
E = S ′[let box u =V ′ inN ′] Equiv. and Ev. Context Lemma
V ≡ V ′ and N ≡ N ′ Inversion (cong. rule)
V = boxM Assumption
V ′ = boxM ′ or V ′ = r Inversion Lemma

Subcase: V ′ = boxM ′

〈l : S ′[let box u = boxM ′ inN ′]〉 =⇒ 〈r′ : M ′〉, 〈l : S ′[[[r′/u]]N ′]〉
Reduction (rule letbox′)

M ≡M ′ Inversion (cong. rule)
r′ ≡ r′ Equivalence (rule eqloc)
N ≡ N ′ Assumption, Reflexivity
[[r′/u]]N ≡ [[r′/u]]N ′ Substitution Prop.
S[[[r′/u]]N] ≡ S ′[[[r′/u]]N ′] Equivalence (cong. rule(s))
Hence D ≡ Q

Subcase: V ′ = r

〈r : V ′′〉 ∈ P and boxM ≡ V ′′ Inversion (rule trans′)
〈r : V ′′〉 =⇒∗ 〈r : boxM ′〉 and boxM ≡o boxM ′ Convertibility Lemma
boxM ≡ boxM ′ Definition of ≡o
〈r : boxM ′〉, 〈l : S ′[let box u = r inN ′]〉

=⇒ 〈r : boxM ′〉, 〈l : S[let box u = boxM ′ inN ′]〉
Reduction (rule syncr′)

Then proceed as in case V ′ = boxM ′.

Case:

V = dia l′ V ∗ evalue l′′ fresh ψ′ = ψ ∧ (l′ .= l′′)
〈l : let dia x =V inF 〉, 〈l′ : V ∗〉 \ ψ

=⇒ 〈l : l′′〉, 〈l′ : V ∗〉, 〈l′′ : 〈〈V ∗/x〉〉F 〉 \ ψ′
syncl

〈l : E〉 ∈ P and let dia x =V inF ≡ E Assumption, Definition
〈l′ : V ∗′〉 ∈ P and V ∗ ≡ V ∗′ Assumption, Definition

53

E = let dia x =V ′ inF ′ Inversion
V ≡ V ′ and F ≡ F ′ Inversion (cong. rule)
V = dia l′ Assumption
V ′ = dia l′ or V ′ = r Inversion Lemma

Subcase: V ′ = dia l′

〈l : let dia x =V ′ inF ′〉, 〈l′ : V ∗′〉
=⇒ 〈l : l′′〉, 〈l′ : V ∗′〉, 〈l′′ : 〈〈V ∗′/x〉〉F ′〉

Reduction (rule syncl)
l′′ ≡ l′′ Equivalence (rule eqloc)
V ∗ ≡ V ∗′ Assumption, Reflexivity
〈〈V ∗/x〉〉F ≡ 〈〈V ∗′/x〉〉F ′ Substitution Prop.
Hence D ≡ Q

Subcase: V ′ = r

〈r : V ′′〉 ∈ P and dia l′ ≡ V ′′ Inversion (rule trans′)
〈r : V ′′〉 =⇒∗ 〈r : dia l′〉 and dia l′ ≡o dia l′ Convertibility Lemma
dia l′ ≡ dia l′ Definition of ≡o
〈r : dia l′〉, 〈l : let dia x = r inF ′〉

=⇒ 〈r : dia l′〉, 〈l : let dia x = dia l′ inF ′〉
Reduction (rule syncr′)

Then proceed as in case V ′ = dia l′.

�

Lemma 6.19 ((α): Local Confluence (modulo ≡)) If C =⇒ C1 and
C =⇒ C2, then there exist D and D′ (where D ≡ D′) such that C1 =⇒∗ D
and C2 =⇒∗ D′.

C =⇒ C1 ∧ C =⇒ C2 =⇒ ∃D,D′ . D ≡ D′ ∧ C1 =⇒∗ D ∧ C2 =⇒∗ D′

Proof: We will consider pairs of such transitions C
α(w)
=⇒ C1 and C

β(σ)
=⇒ C2,

where α(w) denotes application of rule α to process w. The reduction rules
fall naturally into certain classes (silent, local, and spawn) with properties
as stated in the table below. The forms of C and C ′ are given for reduction
of a process 〈r : M〉 though of course reduction of a process 〈l : E〉 is also
possible.

54

Class Rule Form of C and C ′

Silent syncr, syncr′ C ≡ C ′
Local app, app′, letdia C = C1, 〈r : M〉 ∧ C ′ = C1, 〈r : M ′〉
Spawn letbox, letbox′, letboxp, syncl C = C1, 〈r : M〉 ∧ C ′ = C1, 〈r : M ′〉, C2

Not all combinations of two transitions C
α(w)
=⇒ C1 and C

β(w′)
=⇒ C2 are

possible. Because evaluation contexts are uniquely determined (excluding
synchronization contexts such as R[r′]), in many cases α(w) and β(w′)
occur in separate processes (w 6= w′). We argue that reductions in separate
processes do not interfere and that equivalence can be re-established by
performing reductions β(w′) and α(w) on C1 and C2, respectively. We
consider a few representative combinations the three classes of reduction
steps:

(Silent, Silent) In this case, C
α(w)
=⇒ C1 and C

β(w′)
=⇒ C2. Now C ≡ C1 and C ≡

C2 by the lemma stating that synchronization preserves equivalence.
We conclude C1 ≡ C2 by symmetry and transitivity, with no further
reduction steps required. The result holds even if w = w′, that is, if α
and β apply to the same process w.

(Silent, Local) Without loss of generality, assume C αw=⇒ C1 is the silent step. Then
C ≡ C1. By the lemma regarding reduction on equivalent configura-

tions, we can replicate the effect of C
β(w′)
=⇒ C2, with some sequence

of reductions C1 =⇒∗ D such that D ≡ C2. The same result holds if
w = w′.

(Silent, Spawn) Similar to (Silent,Local).

(Local, Local) We assume C
α(w)
=⇒ C1 and C

β(w′)
=⇒ C2. By the lemma stating that

evaluation contexts are “uniquely” determined (excluding redices r),
a combination of two local reductions is only possible if they occur in
separate processes (w 6= w′). Hence it will be possible to perform α(w)

to make a step C2
α(w)
=⇒ D and β(w′) to make a step C1

β(w′)
=⇒ D. This is

because C1 and C2 remain syntactically identical to C except for the
particular processes (w,w′) affected by the initial steps C =⇒ C1 and
C =⇒ C2. Since the second step will be made in a different process, it
remains applicable. Both sequences αβ and βα yield the same result
D.

55

(Local, Spawn) As before, α(w) and β(w′) must occur in separate processes. Perform-

ing C
β(w′)
=⇒ C2 spawns a new process with a fresh label. This new

process will not interfere with reduction step α(w) because it has a

fresh label. Hence C2
α(w)
=⇒ D. It will also be possible to make the

transition C1
β(w′)
=⇒ D, choosing the same fresh label for the newly

spawned process. As before, α and β commute, yielding the same
result configuration D.

(Spawn, Spawn) This case is similar to (Local,Spawn) except that two new processes

are created. Assume C
α(w)
=⇒ C1 and C

β(w′)
=⇒ C2. In the case of letbox

(and variants), these new processes do not interfere with C1
β(w′)
=⇒ D

nor with C2
α(w)
=⇒ D. In the case of two syncl reductions, the fact that

we duplicate the process 〈l′ : V ∗〉 is essential to ensure that α and β
do not interfere.

6.7.4 Global Confluence

Having established property α (Local Confluence) and β (Reduction on
Equivalent Configurations), we claim that the conjunction of these two are
sufficient for global confluence (modulo ≡). Therefore, the operational se-
mantics satisfies:

Theorem 6.4 (Global Confluence (modulo ≡)) Assume ψ csound and
both C and P are well-formed (ψ `c C : Λ and ψ `c P : Λ). Then the fol-
lowing confluence property holds:

C ≡ P ∧ C =⇒∗ C ′ ∧ P =⇒∗ P ′

=⇒ ∃D,Q . D ≡ Q ∧ C ′ =⇒∗ D ∧ P ′ =⇒∗ Q

Proof: see [10]. Note that =⇒ satisfies the condition that all reduction
sequences terminate. The strong normalization theorem applies because ψ
is assumed to be sound. �

7 Why Modal Types?

Since the laws of modal logic are designed to characterize structures in which
truth of propositions is localized, it is quite natural that constructive modal
logic be based on proof objects with varying locality and mobility. The

56

proofs of A valid are freely mobile terms, proofs of A true are locally
available terms, and proofs of A poss represent remote, immobile terms.
We hope to convince the reader that modal logic proof terms are a sort of
universal calculus for distributed computation in the sense that the typing
principles and much of the operational behavior of other distributed pro-
gramming languages can be projected into modal logic and understood in
terms of general logical principles.

Safe, statically typed, languages for distributed computation usually
adopt at least some of the typing principles of modal logic. For example, the
definition of valid proof terms (∆; · `M : A) in modal logic captures the idea
that valid (mobile) terms may depend only on other valid (mobile) terms.
Adoption of this principle seems inevitable, since operationally speaking,
when moving an arbitrary term, bindings for its free variables must also be
moved. Some languages place additional restrictions on the form of terms to
be made mobile, allowing only values of function type (closures) to be mar-
shaled, or in the extreme case, that only certain types of parameter value
can be marshaled (requiring that the code be predistributed).

The principle that a valid (mobile) term is also available here (∆; Γ ` u :
A) reflects the idea that we can receive the result of a remote computation
or interact with a proxy as if the remote entity were local. Though the
calculus of modal logic distinguishes u from other terms, one can also hide
this distinction. Some languages do not adopt the operational semantics of
synchronization, instead, the remote term is represented by a local proxy.
If the proxy implementation is powerful enough, behaving exactly as a local
term would, this strategy is logically equivalent to synchronization.

Finally, the possibility fragment modal logic reflects the idea that some
entities are immobile and possibly remote. The typing principle ♦E de-
scribes how we may use such resources by sending mobile code to a particu-
lar location. Since we did not assume symmetry in accessibility, we cannot
receive the result of such a computation. Furthermore, we may only use
resources from a single location at a time, since these entities cannot be
combined (♦A×♦B ; ♦(A×B)). These principles resemble the concept of
“one way” method calls sent to a remote object, or the behavior of a mobile
process which chooses to move to a location with some known resources. Ex-
plicit recognition of these principles (separate from necessity) is more rare,
since moving to a particular location is a special case of general mobility.
Also, it is often possible to hide the fact that a resource is immobile and
remote by implementing a local proxy.

Recognizing such principles in other distributed languages is often com-
plicated by the fact that the spatial modalities are hidden, and conversions

57

between local and mobile terms are made implicitly. Often, rather than
providing a general mechanism such as �I (the definition of necessity) to
make terms mobile, only certain forms of code (for example closures of type
A → B) can be made mobile as long as such code depends only on values
of “marshalable” type. The assertion “A is a marshalable type” then corre-
sponds to selective adoption of a non-logical axiom A→ �A (only for type
A). Values of types B, for which such a marshaling axiom does not exist,
are then effectively immobile.

It is often tempting to try to hide the logical distinctions between remote
mobile, local, and remote immobile entities when designing and implement-
ing a distributed language. However, there are some negative consequences
of such an abstraction. Operationally, blurring these boundaries requires a
heroic effort to make remote things appear to be local (and the converse).
Simply marshaling everything by copying can lead to semantic anomalies,
and overuse of proxies leads to inefficiency and unpredictable performance.
Perhaps the best balance of abstraction and precision could be achieved
when the calculus of modal logic is treated as an intermediate language.
Another possibility is to use typing principles from modal logic in a locality
analysis framework to recover the distinction between remote and local en-
tities by type inference (see [12] for an example). These sorts of approaches
could lead to a better understanding of distributed programs or more ef-
ficient implementations even if such distinctions are never revealed to the
programmer.

8 Practical Programming with � & ♦

We must keep in mind that there are two reasons to program with modal
types �A and ♦A — safety and concurrency. From a logical point of view,
boxM , diaE and their elimination forms provide a safe way to work with a
mix of mobile and immobile entities. Though the generalized language does
not have any primitive localized terms, we can see that locality of term values
is respected by observing the typing principles for mobile code (�I and ♦E).
Since these constructs require mobile code to be closed with respect to Γ,
we will never be forced to marshal arbitrary term values at runtime. From a
behavioral point of view, the use of � has a secondary effect of introducing
concurrency. Mobility is somewhat intertwined with concurrency because we
assume each abstract “location” has an independent capability to perform
computation.

The calculus of proof terms supports two distinct programming styles.

58

The necessity fragment allows one to build boxed terms, spawn these terms
for evaluation at an arbitrary location, and receive the result of such a
remote computation as a local value. On the other hand, the possibility
fragment allows one to compute locally with an expression of the form {M}
or jump to some other location (denoted by l) where a remote resource
is available. The two programming styles are not incompatible because
let box u =M inF allows one to embed spawning of terms in the context of
a jumping computation. However, programs which perform any such jumps
will be expressions E ÷A due to the typing rules governing possibility.

8.1 Runtime Environments

In some cases one may want to program under the assumption that some
library code, localized resources, or other information about the environment
will be provided at runtime. In these cases, open programs can be typed
under some initial assumptions ∆0; Γ0. If we assume such an open program
is placed as the process 〈w0 : P 〉, then the realizations of hypotheses in
∆0; Γ0 should abide by the following restrictions:

Hypothesis Typing Form of Constraints

u :: A Λ0\ψ0 `r/ M : A ψ0 `a ri / r ∧ ψ0 `a r / w0

x : A Λ0\ψ0 `w0 M : A ψ0 `a ri / w0 ∧ ψ0 `a w0 / li

We require that realizations of valid hypotheses u :: A be typed under the
quantified typing judgment Λ0\ψ0 `r/ M : A, whereas the locally true hy-
potheses x : A are only required to be well-formed at the particular location
w0. Realizing u :: A at r may impose some constraints on the location of r
relative to some number of ri on which it depends. Realizing x : A at w0

imposes constraints on the location w0 relative to some number of ri and li
on which it depends. Consequently, we see that programs 〈w0 : P 〉 must be
placed (conceptually) in a certain relation to the resources on which they
depend. We also note that location labels l, corresponding to hypotheses of
logical possibility, are not allowed to occur in realizations of u :: A. It is,
however, possible to provide a location label in a realization of x : A.

We can then place closed terms corresponding to u, as independent pro-
cesses of the form 〈ri : Mi〉, substituting labels ri for u and terms for x into
the program. It is also possible to substitute realizations of u :: A directly if
desired. This leads to an initial configuration 〈r1 : M1〉, 〈r2 : M2〉, . . . , 〈w0 : P 〉 \ ψ0.

To complete the picture, we should also consider processes of the form
〈li : V ∗i 〉 and their meaning. Such processes are a way to represent remote

59

localized resources present in the runtime environment. They are useful in
conjunction with hypotheses x : ♦A realized by (dia li). By using x : ♦A,
the program can then jump to the location li and resume computation in a
setting where a term of type A is locally available.

Generally, a configuration will consist of processes of both kinds. Ini-
tially, processes 〈ri : Mi〉 can be viewed as globally available, mobile re-
sources, and processes 〈lj : EJ〉 as localized resources, fixed to a particular
location. The program is introduced as a process 〈w0 : P 〉.

〈r1 : M1〉, . . . , 〈ri : Mi〉, 〈w0 : P 〉, 〈l1 : Ej〉, . . . , 〈lj : Ej〉 \ ψ0

As the process configuration evolves, additional processes 〈r : M〉 can be
spawned. These 〈r : M〉 are mobile and can be placed at distinct locations,
though the scope of r is not global as before. Duplicates of processes 〈l :
E〉 are created as the program P jumps between locations l, though all
duplicates of a particular 〈l : E〉 should be regarded as sharing the same
fixed location.

To take full advantage of localized resources present in the runtime envi-
ronment, it will be necessary to encode the resources at each location as an
assumption x : ♦(A1×A2× . . .×Ak). Further jumps to other locations will
only be allowed if one or more resources in ♦(A1×A2× . . .) permit it, since
the typing rule for ♦E requires we drop all other locally true assumptions
Γ. For example ♦(A1 × A2 × ♦(B1 × B2)) would allow a program to go to
the location of (A1×A2×♦(B1×B2)) perform some computation with A1

and A2, then jump to the location of (B1×B2) and continue. In the general
case, a directed acyclic graph of locations and resources can be encoded with
possibility and products.9

8.2 Definition of Recursion

Many interesting distributed programs require recursion to specify. These
programs can be characterized as having a variable degree of parallelism.
That is, they may “unroll” at runtime to a tree-structured or looping form
of computation involving a variable, possibly unbounded number of worlds.
Corresponding to the distinction between valid, mobile hypotheses (u :: A)
and local hypotheses (x : A), we introduce two forms of fixpoint over terms.
fixv (u :: A) .M is referred to as valid or mobile fixpoint and fix (x : A) .M

9This limitation is due to the requirement that accessibility constraints be acyclic. We
are considering how best to represent sets of interaccessible locations, so that more flexible
jumping behavior can be supported.

60

as local fixpoint.

∆; Γ, x : A `M : A
∆; Γ ` fix (x : A) .M : A

fix

∆, u :: A; · `M : A
∆; Γ ` fixv (u :: A) .M : A

fixv

Clearly, the addition of fix (x : A) .M disturbs the logical properties of the
language, since ` fix (x : A) . x : A for any type A. The usual caveats
about recursion apply, namely that ill-founded “proofs” of this sort will not
terminate under evaluation. At first it might seem that fixv is a redundant
derivable rule. Indeed, it is possible to provide a definition for fixv (x ::
A) .M as a proof schema:

box (fixv (u :: A) .M) ≡ fix (y : �A) . let box u = y in (boxM)

However, when one considers the behavior of such terms under evaluation,
it becomes clear that this is not a desirable way to define recursion over
valid terms. For example, the simple fixpoint fixv (u :: A→ A) . λx : A .M
never terminates. The problem is that the behavior assigned to letbox and
letdia is too eager in unwinding the recursion. Hence we must extend the
operational semantics for each flavor of recursion, defining it in such a way
that the unwinding is performed lazily.

〈r : R[fix (x : A) .M]〉 \ ψ =⇒ 〈r : R[[fix (x : A) .M/x]M]〉 \ ψ fix

〈r : R[fixv (u :: A) .M]〉 \ ψ =⇒ 〈r : R[[[fixv (u :: A) .M/u]]M]〉 \ ψ fixv

There are, of course, variants fix′ and fix′v for reducing fixpoint terms in
an expression evaluation context (such as S[fix (x : A) .M]). Type preser-
vation and progress proofs for the operational semantics can be extended
to account for fixpoint. In the case of the progress theorem, we note that
fixpoint is not a value, but that we can always apply one of the rules fix or
fixv. In the case of the type preservation theorem, a substitution property
will ensure proper typing of the result.

One may also consider recursion over expressions. For reasons of con-
ceptual economy and uniformity, we adopt an approach of encoding such
fixpoints with fixv or fix. For example, fixv (loop :: ♦A) . diaE binds a
fixpoint variable (loop :: ♦A) in E. In the body E, the one can use the

61

idiom let dia result = loop inFl to perform a recursive jump to an un-
rolled copy of E. When and if E terminates without making such a nested
jump, we continue with Fl. Note that the fixpoint body must be Γ-closed,
a consequence of using (loop :: ♦A) rather than a local fixpoint variable
(loop : ♦A).

let c =
fixv loop .

dia
(* fixpoint body *)
...
(* recursive call *)
let dia result = loop in

(* continuation after return *)
Fl

in

let dia result = c in Fc

The fixpoint body occurring before the recursive call might consist of a
sequence of local computations (let dia x = dia {M} in . . .) or jumps to
other locations (let dia x = dia l′ in . . .) It seems clear that valid or mobile
fixpoint over (u :: ♦A) is a useful idiom. But local fixpoints fix (x : ♦A) . diaE
do not seem to be useful, since the scope of (x : ♦A) is so limited.

8.3 Globally Accessible Locations

Fixpoint over expressions should allow us to jump repeatedly between dis-
tinct locations represented by a set of globally mobile hypotheses (vi :: ♦Ai)
in ∆. But how can such mobile assumptions of type ♦Ai be realized? Es-
sentially, the difficulty is that we can conclude Λ\ψ `w dia l : ♦A, but not
Λ\ψ `w/ dia l : ♦A. To make the latter conclusion sound, we must know
that l is accessible from any other location.

In prior development, we imposed a condition that accessibility (ψ `a
w/w′) be sound (acyclic) so that recursion among processes could not arise.
We now make an exception to this condition for a class of globally accessible
locations. We introduce new forms of accessibility constraint as follows.
These formulae have the obvious meanings under constraint entailment.

Constraint φ, ψ ::= . . . | ∀w . w / l | ∀w . r / w

Σ `a ∀w . w / l
Σ `a w / l [w] Σ `a ∀w . r / w

Σ `a r / w [w]

62

The two inference rules are parametric in w allowing us to instantiate the
quantifier with any world w. Note that there is no introduction form for
∀w . w / l. This is by design; the constraint ∀w . w / l is a primitive assertion
about l that must be introduced explicitly.

Given the new form of constraint ∀w . w / l, we can now express a new
typing rule for labels l.

Λ = Λ1, l
′ ÷A,Λ2 ψ `a ∀w . w / l′

Λ\ψ; ∆; Γ `w/ l′ ÷A
uloc

The rule permits typing of l in the context of a mobile term or expression,
where such occurrences were not typeable before. For example, we may now
conclude Λ\ψ; ∆; · `w/ dia l : ♦A, which allows us to realize assumptions
u :: ♦A in ∆0.

Recursion among processes is now permitted under configuration typing.
For example 〈l : l′〉, 〈l′ : l〉 is permitted under ψ = ∀w . w / l ∧ ∀w . w / l′. But
it is intended that this feature be used judiciously to represent the initial
distributed environment in which a program runs. As mentioned above, such
locations l could hold bindings for global resources (vi :: ♦Ai). Programmers
cannot create such cyclic structures, since none of the rules of the operational
semantics introduce this form of constraint.

8.4 Axioms of Modal Logic (S4)

Below are reproduced the axioms of S4, together with their realizations
as proof terms. It is interesting to consider what behaviors such proofs

63

correspond to in the setting of distributed computation.

` S ≡ λx : A→ B → C . λy : A→ B . λz : A . (x z)(y z)
: ((A→ B → C)→ (A→ B)→ A→ C)
` K ≡ λx : A . λy : B . x
: (A→ (B → A))
` DB ≡ λx : �(A→ B) . λy : �A . let box u = x in (let box v = y in box (u v))
: �(A→ B)→ (�A→ �B)
` RB ≡ λx : �A . let box u = x in u
: (�A→ A)
` S4 ≡ λx : �A . let box u = x in box box u
: (�A→ ��A)
` RD ≡ λx : A . dia {x}
: (A→ ♦A)
` TD ≡ λx : ♦♦A . dia (let dia y = x in (let dia z = y in {z}))
: (♦♦A→ ♦A)
` DD ≡ λx : �(A→ B) . let box u = x in (λy : ♦A . dia (let dia z = y in {u z}))
: �(A→ B)→ (♦A→ ♦B)

Axiom RB captures the behavior of spawning a boxed term for evalua-
tion, and receiving the value of that computation for local use. Axiom DD
shows us how to apply a boxed (mobile) function to a localized term of type
♦A. The function �(A → B) is made mobile with letbox, then it can be
received as u and applied {u z} to the localized value z of type A.

We may compose axioms DB and RB to obtain �(A→ B)→ �A→ B.
Axiom DB constructs a boxed term applying the function �(A → B) to
a mobile argument �A. Axiom RB then spawns the function application,
making the result B available. Note that the axioms relating to ♦ do not
exhibit behavior immediately, because diaE is a value encapsulating a lo-
calized computation. The value of such expressions is obtained by forcing
evaluation with let dia x =M inF , causing a shift in our perspective. Un-
derstood in this way, axiom TD (or a generalization) shows how to encap-
sulate a series of such “jumps” between locations as a single one.

8.5 Example (Marshalling)

A marshalling function A → �A can be implemented for any observable
type A. However, such a function may be very large and/or inefficient. Some
primitive marshalling functions on integers, floating point, and string values
can be provided without changing the logical character of the system. They
preserve type safety since the structure of most simple term values does not

64

permit any dependency on other values or local machine state. The following
example shows how to lift a primitive function marshall int::int -> � int
to operate on lists of integers.

let box (marshal int list::int list -> � (int list)) =
box

fix marshall . λ lst .
case lst of

nil => box nil
| cons(x,tl) =>

let box vx = marshall int x in
let box vtl = marshall tl in

box cons(vx,vtl)

In cases such as this, when the boxed term is already a value, it would be
highly desirable to inline the operation let box u = boxV in (. . .). By this
we mean simply performing the substitution [[V/u]] without generating an
intermediate process. This is consistent with the intuition that �A captures
mobility – the value V may move, but is not forced to move to some remote
location.

8.6 Example (Concurrency)

Consider a program for computing the nth Fibonacci number recursively.
Additionally, we would like to have each recursive call evaluated at a dif-
ferent location, achieving concurrency by distributing the work. A basic
implementation of fib is given below:

fix fib : int → int .
λ n : int .

if (n < 2) then n
else (fib (n-1)) + (fib (n-2))

This term is well-typed, having type int → int. It does not, however,
exhibit the desired parallelism. To achieve the sort of arbitrary mobility
that will allow each recursive call to be evaluated independently, it is clear
we should look to box and let box u =M inN . We will have to decorate
the type of fib with � to achieve the proper effect. One way to achieve
distributed evaluation is as follows:

65

fixv fib :: �int → int .
λ n : �int .

let box u = n in
if (u < 2) then u
else

let box a = box (fib (box (u - 1))) in
let box b = box (fib (box (u - 2))) in
a + b

This realization of fib is at type �int→ int. Note that it is necessary
to use recursion over valid terms (fixv (u :: A) .M) because we want fib
to be available at any world we see fit to spawn (box (fib (box (u− 1)))).
Now when fib is applied to a boxed integer (fib (box 2)), the process
configuration evolves as follows:

〈r0 : fib (box 2)〉
=⇒∗ 〈r0 : let box u = box 2 in . . .〉
=⇒ 〈r0 : if (r1 < 2)...〉, 〈r1 : 2〉
=⇒∗ 〈r0 : r2 + r3〉, 〈r1 : 2〉, 〈r2 : fib box (r1 − 1)〉, 〈r3 : fib box (r1 − 2)〉
=⇒∗ 〈r0 : r2 + r3〉, 〈r1 : 2〉, 〈r2 : if (r4 < 2)...〉, 〈r3 : if (r5 < 2)...〉, 〈r4 : r1 − 1〉, 〈r5 : r1 − 2〉
=⇒∗ 〈r0 : r2 + r3〉, 〈r1 : 2〉, 〈r2 : if (r4 < 2)...〉, 〈r3 : if (r5 < 2)...〉, 〈r4 : 1〉, 〈r5 : 0〉
=⇒∗ 〈r0 : r2 + r3〉, 〈r1 : 2〉, 〈r2 : r4〉, 〈r3 : r5〉, 〈r4 : 1〉, 〈r5 : 0〉
=⇒∗ 〈r0 : r2 + r3〉, 〈r1 : 2〉, 〈r2 : 1〉, 〈r3 : 0〉, 〈r4 : 1〉, 〈r5 : 0〉
=⇒∗ 〈r0 : 1 + 0〉, 〈r1 : 2〉, 〈r2 : 1〉, 〈r3 : 0〉, 〈r4 : 1〉, 〈r5 : 0〉
=⇒ 〈r0 : 1〉, 〈r1 : 2〉, 〈r2 : 1〉, 〈r3 : 0〉, 〈r4 : 1〉, 〈r5 : 0〉

Note that the pattern let box a = box (fib ...) in ... is used to spawn two
applications of fib for concurrent evaluation. The results of both branches
must be received (with the syncr rule) before evaluation of (a + b) can
proceed.

8.7 Example (Localized Resources)

In the possibility fragment of the language there is no actual movement with-
out primitive remote resources ♦A represented by dia l. In this example,
we use each ♦A to describing some location or environment providing I/O
primitives encapsulated as functions A → ©B. Here ©B is the monadic
type of computations producing B. One could give a detailed account of the
integration of effects with � and ♦, but we do not do so here. In this exam-
ple, the particular I/O operations relate to submitting print jobs, querying

66

for the status of a job, reading local files, etc. Assume the following variables
in the global context ∆:

server:: ♦{submit: doc -> ©job, wait: job -> ©string}

home:: ♦{read doc: string -> ©doc, write: string -> ©unit}

Variable server represents a place where two primitive effects are avail-
able: submit and wait. Variable home represents a location where we
can read doc (read a document from a file) or write messages to the con-
sole. Given bindings for these mobile variables, and marshalling functions
marshall string : string -> �string and marshal doc : doc -> �doc,
we can write the following program which prints a document remotely. The
© elimination construct let comp x =M inE denotes sequential composi-
tion of M with E. That is, the computation denoted by M is evaluated to
produce a value V which is bound to x in E.

let dia h env = home in

let (remote print:doc -> ♦ unit) =
λ x .

dia
let box p = marshal doc x in
let dia s env = server in
let comp j = s env.submit p in
let comp s = s env.wait j in
let box sv = marshal string s in
let dia h env = home in
let comp = h env.write sv in

{()}
in

let comp d = val (h env.read doc ‘‘filename’’) in
let dia = remote print d in

{()}

Note that the use of ♦ and/or© imposes a sequential style of programming.
The function remote print executes a sequence of effects (let comp) and
jumps (let dia) causing the document d to be printed remotely and a status
message written on the home console. Marshalling functions marshal doc
and marshal string are used to make the document and the status message
portable between locations. Also note that j : job, a local handle used to

67

refer to print jobs, disappears from scope when we jump to home. If type
job is held abstract, the value of j cannot be removed from the location
server.

9 Related Work

Fundamentally, our work is an attempt to uncover simple, logical principles
underlying distributed computation. We believe the critical questions are
these: What are the local resources that distinguish locations from one
another? And where may fragments of code (which might depend on these
resources) be executed safely? One can address these questions either in
the setting of a new primitive calculus for distributed computation, or by
considering what runtime support structures are necessary to implement
mobility in a more conventional programming language. We have chosen the
former, believing that the foundational approach will yield clear principles
and more generally applicable results. But it is also important to consider
when and how logical principles show up in applied settings.

Jia and Walker [11] have taken such a foundational approach in their
work on λrpc , a calculus for distributed computation. The methodology and
motivation behind λrpc is quite similar to this work; the authors adopt a spa-
tial interpretation of modal logic, reading propositions as types and proof
terms as programs. However, the logical basis of their calculus extends be-
yond a minimal pure modal logic, incorporating certain hybrid logic features
that allow worlds and the accessibility relation to be referenced explicitly as
places and edge names. Jia and Walker reach similar conclusions about the
meaning of �A and ♦A types and their role in a distributed computation.
But differences between their logical formalism and that of Pfenning and
Davies [13] lead naturally to a qualitatively different programming model
from the calculus of S4 we develop in this paper. These differences are
discussed in detail below.

Other researchers adopting the foundational approach have based their
work on a process calculus, such as the Pi or join calculus. These sorts of
calculi model the connectivity of processes, but not location and localized
resources in an explicit sense. A notion of location is then added to the
operational semantics, the language is extended with one or more primitives
for mobility, and (optionally) restrictions are imposed on how and where
a process may safely move. Since process calculi usually allow changing
the scope of channel names by name passing and scope extrusion, some
means of restricting or monitoring the flow of names is crucial. Without

68

such restrictions, all names are potentially mobile and one cannot enforce
any stable notion of locality. Cardelli and Gordon [6, 7] restrict mobil-
ity with a specification-logic (with classical semantics) for ambient calculus
terms. Hennessy, et. al. [9] take a type-based, constructive approach in
which names are inherently associated with a location. We explain these
approaches below.

Issues of mobility and locality also arise when one considers how to in-
terpret a more conventional programming language in a distributed setting.
We discuss a type-based locality analysis framework due to Moreira [12] for
determining which values (and references in particular) “escape” to other lo-
cations. Though the essence of locality and mobility is somewhat obscured
in this setting, some of the principles of modal logic seem to show up in
restricted forms.

9.1 λrpc Calculus

As mentioned above, the most closely related work is the λrpc calculus de-
veloped independently and concurrently by Jia and Walker [11]. The type
system of λrpc is also inspired by a spatial interpretation of modal logic,
though it is an extension of S5 (not S4) with some hybrid-logic features.
The hybrid-logic aspect of the λrpc type system, which introduces explicit
worlds and edge names, makes comparison to a standard modal logic diffi-
cult. We also believe these features have consequences for the generality or
portability of programs across different runtime environments.

The terms of λrpc are intrinsically typed and annotated throughout with
types τ , places p, and edge names n. By drawing place names from set P , a
program may refer to some finite number of sites for computation, with the
roles of these sites being assigned by the programmer. Loosening this limi-
tation somewhat, Jia and Walker introduce the edge names which give the
programmer flexibility in naming locations z.n defined relative to z. That is,
z.n denotes the place obtained by following edge n from z. So given a root
location p0, and edge names ni drawn from a set N the programmer can
refer to an infinite variety of locations p0.ni, p0.nj , p0.ni.nj , etc. However,
the structure of computations is still quite rigid in that all computation oc-
curs at a definite location, be it specified absolutely (p) or relatively (z.n).
For example, the � elimination construct (bc e1 at z as x in e2) is la-
beled with z, specifying the location at which e1, having type �τ , is to be
evaluated. Most other terms of the language are similarly annotated.

So the type system and operational semantics of λrpc make it a very
expressive calculus, allowing the programmer to place terms and perform

69

computations in particular locations. This aspect of the calculus allows one
to implement algorithms specialized to a particular number of nodes or net-
work topology. Thus it seems that λrpc and our calculus of S4 solve different
problems. λrpc is a more precise, low-level language which, by design, re-
veals aspects of the distributed environment to the programmer. On the
other hand, our calculus assumes very little about the runtime environment
and hides such details from the programmer. In our calculus, definite loca-
tions are represented as ui :: ♦Ai, representing resources of type Ai at some
abstract, hidden locations.

9.2 Mobile Ambients

The ambient calculus, as developed by Cardelli and Gordon [5], is a novel
form of process calculus based on ambients (locations) rather than channels.
The ambient notation n[. . .] allows representation of location in process con-
figurations. Simultaneously, ambients facilitate communication by providing
a space in which processes may exchange messages (replacing the concept
of channels).

Cardelli, Ghelli, and Gordon developed a static type system for ambi-
ents [3, 4] which restricts ambient mobility. Ambients can be declared im-
mobile relative to others via name restriction (νn : AmbY Z

′
[ZT])P , where

type decorations Z ′ and Z control objective and subjective movements of
the ambient n. Since the authors view mobility as a declared behavioral
property extrinsic to the ambient names themselves, it is natural to allow
“immobile” ambients to move when contained inside mobile ones, for ex-
ample. This differs somewhat from our notions of mobility and immobility
which were derived from logical necessity and possibility. Mobility of terms
in our calculus is naturally an inherited property, in that mobile terms may
only depend on other mobile terms.

In subsequent papers [7, 1, 2], an “ambient logic” is developed to char-
acterize the behavior and spatial distribution of processes. Ambient logic is
not intended to be a system for assigning types to processes. Rather, it is
a language for making statements about a given process configuration (con-
sidered as a model for the logic). These propositions are then either satisfied
by the given model, or not, according to the semantics of the logic. Am-
bient logic includes modal operators �,♦ of both the spatial and temporal
variety which are interpreted by reference to spatial (hierarchical inclusion)
and temporal (reduction steps) notions of accessibility. The full ambient
logic is very precise, and allows one to specify undecidable properties of a
program. Verifying a formula in decidable fragments of ambient logic can

70

be accomplished by model-checking.
Notably, Cardelli and Gordon [6] have extended ambient logic with

propositions expressing hiding, revelation, and freshness of names in order
to characterize the scope and mobility of names. However, since processes
in the ambient calculus are not inherently required to preserve locality of
names, most name-hiding properties must be formulated and proved (by
model-checking) relative to a particular implementation.

9.3 DPI and Process Typing

Hennessy, et. al. have developed a variant of the Pi-calculus, called DPI,
suitable for exploring issues of locality and mobility. It extends the Pi-
calculus with a notation for process location, and a simple go l . P action
which moves P to location l where execution of P resumes.

The typing systems developed for this language are described in papers
by Hennessy, Riely, Yoshida, and others [9, 15, 8]. Their types and judg-
ments, though not modal (�,♦), do make reference to “worlds”, represented
with an ambient-like notation l[. . .].

Their typing system restricts the scope of names so that processes in
a location l are only allowed to access names declared in l. Names may
escape the scope of their declaration, but only as “existential” values n@l,
tagged with the location in which they are valid. In this manner, the authors
achieve a stable notion of which resources are available at which locations. In
fact, locations are characterized by “location types” loc{u1 : A, u2 : B, . . . },
which effectively internalize the set of bound names in scope at that location.
The authors also permit subtyping on location types which is similar to
record subtyping.

Informally speaking, we can find counterparts to some modal types in
the scheme of location types. For example, a term of type �A corresponds
to a process P which is well-formed in a location of type loc{} (the top
type of the location typing hierarchy). Such a process may move to any
location, since it depends on no local names. General terms of type ♦A
do not have a direct analogue in the DPI typing system, since processes
cannot be removed from the context in which they are well-formed, but for
the special case of channel names, ♦A corresponds to the use of existential
types A@L (there exists a location L in which A) to characterize channel
names which “escape” their original scope of definition.

Interestingly, the behavior of our let dia x =M inF construct defined
in this paper is quite similar to go l . P , in the sense that F (and P) are
being sent to a new location. The difference is that let dia x = diaE inF

71

allows F access only to the value of E, rather than all the resources in
scope at E’s location. This is a natural outcome, given that our language is
oriented toward evaluation rather than interaction.

9.4 Locality Analysis of References

As was discussed in one of the examples, it is possible to use the system
of modal types to localize references and prevent them from escaping the
location where they were created. Other work by Moreira [12] has addressed
this particular problem in detail, though not by taking the point of view that
references are localized. Instead, Moreira develops a type-based system for
locality analysis which can (in some cases) distinguish between references
used only locally, and those which escape to processes running on other
machines. Both forms of reference are considered permissible and are type-
safe, though access to a purely local reference can be optimized. In cases
when the analysis cannot infer with certainty that a reference is local, it is
conservatively assumed to be mobile.

Though we took the point of view that references are characterized by
logical possibility, some aspects of Moreira’s treatment of references can
be understood in the necessity fragment of modal logic. Assume, for a
moment, that one considers all reference cell primitives to be terms (and
hence potentially mobile or escaping). A reference cell could then be boxed
(box refM) and made available as a valid hypothesis u :: A ref. Such a u
would be a sort of explicitly escaping reference.

Since we were not particularly interested in tracking which terms were
mobile, the typing principle (∆, u :: A,∆′; Γ ` u : A) derived from S4’s
assumption of reflexivity was used. Shifting to a locality analysis requires
changing the properties of the logic to maintain the distinction between
validity and truth, disallowing �A→ A (at least for certain types A). Mor-
eira’s notion of labeled types then corresponds to the distinction between
ordinary typing ` M : A and a new explicit validity judgment ` M :: A.
Since reflexivity is thus eliminated, synchronization is no longer a logically
acceptable operational interpretation of the valid hypothesis u. The refer-
ence cell primitives must now interact with r :: A ref as a local proxy for
an escaped, mobile reference. The typing rules for primitive operations are
tricky, since updating a reference cell can become a back-channel way of
making terms mobile without box/letbox. It is possible to protect them, as
Moreira did, by distinguishing locality (M :: A versus M : A) when typing
the primitive operations. For example, we should not allow M :=N when
N : A is local but the reference M :: A ref is mobile.

72

Though shifting to mobile references and locality analysis required ad-
justments to the logic and calculus, some of Moreira’s typing principles
appear to have more direct analogues in modal logic. For example, the
esc? predicate for placing locality constraints on the free variables of func-
tion terms seems to be built into the typing rule for boxM as the idea
that proofs of A valid (mobile terms) can only depend on valid hypotheses
(other mobile terms).

Much of the complexity of locality analysis seems to arise from the re-
quirement that the distinction between local and escaping terms be trans-
parent to the programmer. The language of modal logic is a sort of primitive
calculus which makes such properties explicit. Entities with differing locality
and mobility have distinct syntactic forms and types, which is a conceptual
advantage, if not a practical one.

10 Conclusion and Future Work

Starting from an intuitionistic formulation of modal logic, we considered the
proof terms for that logic as a programming language. The classical notions
of worlds and accessibility were reflected concretely as processes 〈r : M〉
and 〈l : E〉 and accessibility constraints ψ, with accessibility governing the
dependencies between processes. At the term level, we found the natural
and type-sound operational interpretation for type �A to be a boxed (mo-
bile) term, with � elimination spawning such a mobile term for evaluation
at an arbitrary new location. The relationship between validity and truth,
characterized by A valid ` A true, corresponded to the ability to receive
the result of such a computation at all other accessible locations. The inter-
pretation of ♦A was as a local representation of a remote, immobile term.
When ♦A is derived through reflexivity (A true ` A poss), this is merely
a way of hiding locality, forcing a term to become immobile. In cases when
the encapsulated resource is truly remote, elimination of ♦A was interpreted
as a “jump” to the location of that resource for further computation.

We have shown that the modal types �A and ♦A are a safe and natural
way to mix mobility and localized resources in a distributed computation.
The necessity and possibility fragments of the language interact to enforce
some restrictions on how and where certain terms are available. Mobility
is permitted only for terms closed with respect to locally true hypotheses
(or almost so, in the case of let dia x =M inF). These restrictions on the
scope of locally true hypotheses (x : A) and the fact that we are not allowed
to pass arbitrarily from possibility to truth are the essential characteristics

73

of modal logic which ensure that local values never “escape” and become
mobile.

The core modal calculus of proof terms is a sort of schema for program-
ming with mobile and immobile things, but is underdeveloped with respect
to concrete examples of localized resources. While {M} and processes of
the form 〈l : {M}〉 can simulate a localized resource; this immobility is
self-imposed and not intrinsic to the term M . For any closed term M of
the pure language, we might conclude boxM : �A as well. It should be
valuable to explore extensions of the calculus with types types and terms
representing truly localized entities. We believe effectful computations are
a natural example to use, since the semantics of effects depend on a local
machine state which is often quite difficult to move or replicate at runtime.

Also in future work, we plan to consider role of world-structure and ac-
cessibility in more detail. Though the choice of S4 as a logical foundation
leads to greater generality than S5, in the sense that no assumption of sym-
metric accessibility is present, it remains to be seen whether this neutrality
has practical value. There is also a balance to be struck when deciding how
much of the underlying world-structure to reveal to programmers through
the language and its type system. If too much is revealed, programs can be-
come rigid and specialized to a particular topology of locations determined
by accessibility. If too little is revealed, programmers may be frustrated
by the inability to force collocation of processes or otherwise control the
layout of a distributed program. The relative utility of one system over
another is difficult to establish definitively, but might be argued through
experimentation and careful consideration of examples.

Acknowledgments: The author thanks Frank Pfenning for many discus-
sions and guidance on this topic as well as Tom Murphy, Robert Harper,
and Karl Crary for their feedback.

74

References

[1] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part I).
In Theoretical Aspects of Computer Software (TACS), volume 2215 of
LNCS, pages 1–37. Springer, October 2001.

[2] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part II).
In CONCUR, volume 2421 of LNCS, pages 209–225. Springer, August
2002.

[3] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types
for mobile ambients. In Jiri Wiedermann, Peter van Emde Boas,
and Mogens Nielsen, editors, Automata, Languagese and Programming,
26th International Colloquium (ICALP), volume 1644 of LNCS, pages
230–239. Springer, 1999.

[4] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types
for mobile ambients. Technical Report MSR-TR-99-32, Microsoft, June
1999.

[5] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations
of Software Science and Computation Structures (FOSSACS), volume
1378 of LNCS, pages 140–155. Springer-Verlag, 1998.

[6] Luca Cardelli and Andrew D. Gordon. Logical properties of name re-
striction. In Samson Abramsky, editor, Typed Lambda Calculi and Ap-
plications, volume 46-60 of LNCS, pages 46–60. Springer, May 2001.

[7] Luca Cardelli and Andrew D. Gordon. Ambient logic. Technical report,
Microsoft, 2002.

[8] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory
of access and mobility control in distributed systems. Technical Report
2002/01, University of Sussex, 2002.

[9] Matthew Hennessy and James Riely. Resource access control in systems
of mobile agents. Information and Computation, 173:82–120, 2002.

[10] Gérard Huet. Confluent reductions: Abstract properties and applica-
tions to term rewriting systems. JACM, 27(4):797–821, October 1980.

[11] Limin Jia and David Walker. Modal proofs as distributed programs.
Technical Report TR-671-03, Princeton University, August 2003.

75

[12] Álvaro Moreira. A Type-Based Locality Analysis for a Functional Dis-
tributed Language. PhD thesis, University of Edinburgh, 1999.

[13] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11(4):511–
540, August 2001.

[14] Davide Sangiorgi. Termination of processes. Applies method of log-
ical relations to prove termination for a fragment of the Pi calculus,
December 2001.

[15] Nobuko Yoshida and Matthew Hennessy. Assigning types to processes
(extended abstract). In IEEE Symposium on Logic in Computer Sci-
ence, pages 334–348. IEEE Computer Society Press, June 2000.

76

