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Abstract

The Paraphrase Database (PPDB; Ganitke-
vitch et al., 2013) is an extensive semantic re-
source, consisting of a list of phrase pairs with
(heuristic) confidence estimates. However, it
is still unclear how it can best be used, due to
the heuristic nature of the confidences and its
necessarily incomplete coverage. We propose
models to leverage the phrase pairs from the
PPDB to build parametric paraphrase models
that score paraphrase pairs more accurately
than the PPDB’s internal scores while simul-
taneously improving its coverage. They allow
for learning phrase embeddings as well as im-
proved word embeddings. Moreover, we in-
troduce two new, manually annotated datasets
to evaluate short-phrase paraphrasing mod-
els. Using our paraphrase model trained using
PPDB, we achieve state-of-the-art results on
standard word and bigram similarity tasks and
beat strong baselines on our new short phrase
paraphrase tasi@

Introduction

ment (Bosma and Callison-Burch, 2007), and ma-
chine translation (Marton et al., 2009).

One component of many such systems is a para-
phrase table containing pairs of text snippets, usu-
ally automatically generated, that have the same
meaning. The most recent work in this area is
the Paraphrase Database (PPDB; Ganitkevitch et
al., 2013), a collection of confidence-rated para-
phrases created using the pivoting technique of
[Bannard and Callison-Burch (2005) over large par-
allel corpora. The PPDB is a massive resource, con-
taining 220 million paraphrase pairs. It captures
many short paraphrases that would be difficult to ob-
tain using any other resource. For example, the pair
{we must do our utmasive must make every effort
has little lexical overlap but is present in PPDB. The
PPDB has recently been used for monolingual align-
ment (Yao et al., 2013), for predicting sentence sim-
ilarity (Bjerva et al., 2014), and to improve the cov-
erage of FrameNet (Rastogi and Van Durme, 2014).

Though already effective for multiple NLP tasks,
we note some drawbacks of PPDB. The first is
lack of coverage: to use the PPDB to compare two

Paraphrase detectBn is the task of analyz- phrases, both must be in the database. The second
ing two segments of text and determining ifis that PPDB is a nonparametric paraphrase model,
they have the same meaning despite differencége number of parameters (phrase pairs) grows with
in structure and wording. It is useful for the size of the dataset used to build it. In practice,
a variety of NLP tasks like question answerdt can become unwieldy to work with as the size of
ing (Rinaldi et al., 2003; Fader et al., 2013), semarthe database increases. A third concern is that the
tic parsing [(Berant and Liang, 2014), textual entailconfidence estimates in PPDB are a heuristic com-
'We release our datasets, code, and trained models on tﬁ(lenatlon of features, ar_1d their -quall-ty 'S unclear_.
authors’ websites. We address these issues in this work by intro-
“This version differs from the previous one with the inclu-ducing ways to use PPDB to construct paramet-

sion of Appendix A, which contains details about new highefjc paraphrase models. First we show that initial
dimensional embeddings we have released. These embeddinsci(sI _gram word vectors (Mikolov et al,, 2013a) can
achieve human-level performance on SL999 and WS353. P-9 -

3Sed Androutsopoulos and Malakasiotis (2010) for a survep€ fine-tuned for the paraphrase task by training
on approaches for detecting paraphrases. on word pairs from PPDB. We call themaRrA-
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GRAM word vectors. We find additive composition We release the new datasets, complete with anno-
of PARAGRAM vectors to be a simple but effectivetation instructions and raw annotations, as well as
way to embed phrases for short-phrase paraphraser code and the trained modls.

tasks. We find improved performance by training a

recursive neural network (RNN; Socher et al., 2010% Related Work

directly on phrase pairs frqm PPDB. There is a vast literature on representing words as
We show that our resulting word and phrase réRjeciors,  The intuition of most methods to cre-

resentations are effective on a wide variety of taskSyo these vectors (or embeddings) is that similar

including two new datasets that we introduce. Thg  .4s have similar context§ (Firth, 1957). Ear-
first, Annotated-PPDB, contains pairs from PPDBje, odels made use of latent semantic analysis

that were scored by human annotators. It can be us dSA) (Deerwester et al., 1990). Recently, more So-
to evaluate paraphrase models for short phrases. Weisticated neural models, work originating with
use it to show that the phrase embeddings produc engio et al. 3), have been gaining popular-

by our methods are significantly more indicative o ty (Mikolov et al., 2013a{ Pennington et al., 2014).

paraphrasability than the original heuristic scoringraqe embeddings are now being used in new ways
used by Ganitkevitch et al. (2013). Thus we use theg yhey are being tailored to specific downstream
power of PPDB to improve its contents. tasks [(Bansal et al., 2014).

Our _second data_set, ML_-P_ara_phrase, IS @ re- pprase representations can be created from
annotation of the bigram similarity corpus fromyord vectors using compositional models.  Sim-

Mitchell and Lapata (2010). The task was origiple pyt effective compositional models were stud-
nally developed to measure semantic similarity ofy by Mitchell and Lapata[(2008{ 2010) and
bigrams, but some annotations are not congruepiacoe and Lapata (2012). They compared a va-
with the functional similarity central to paraphraseriety of binary operations on word vectors and
relationships.  Our re-annotation can be used %Q,nd that simple point-wise multiplication of
assess paraphrasing capability of bigram composiypiicit vector representations performed very
tional models. well. Other works like Zanzotto et al. (2010) and
In summary, we make the following contributions: [Baroni and Zamparelli (2010) also explored compo-
Provide new PARAGRAM word vectors, learned sition using models based on operations of vectors
using PPDB, that achieve state-of-the-art pem@nd matrices.

formance on the SimLex-999 lexical similarity More recent work has shown that the

task [(Hill' et al., 2014p) and lead to improved perforextremely  efficient neural embeddings of
mance in sentiment analysis. [Mikolov et al. (2013a) also do well on compo-

Provide ways to use PPDB to embed phrasesve sitional tasks simply by adding the word vectors

compare additive and RNN composition RARA- (Mikolov et al., 2013b). | Hashimoto et al. (2014)
GRAM vectors. Both can improve PPDB by re-introduced an alternative word embedding and

ranking the paraphrases in PPDB to improve corr&ompositional model based on predice_alte-argument
lations with human judgments. They can be used &¥ructures that does well on two simple com-

concise parameterizations of PPDB, thereby vastReSition tasks, including the one introduced by

increasing its coverage. We also perform a qualita/itchell and Lapata (2010).

tive analysis of the differences between additive and An alternative approach to composition, used by
RNN composition. [Socher et al. (2011), is to train a recursive neural

, . network (RNN) whose structure is defined by a bi-
Introduce two new datasets The first contains . ; . :
arized parse tree. In particular, they trained their

PPDB phrase pairs and evaluates how well mode NN as an unsupervised autoencoder. The RNN

can measure the quality of short paraphrases. The "

. . . . captures the latent structure of composition. Recent
second is a new annotation of the bigram Slmllar\'/vork has shown that this model struggles in tasks in-
ity task in/Mitchell and Lapata (2010) that makes it 99

suitable for evaluating bigram paraphrases. “available on the authors’ websites




volving compositionality|(Blacoe and Lapata, 2012; Annotated-PPDB was created in a multi-step pro-
[Hashimoto et al., 2014). However, we found suc- cess (outlined below) involving various automatic
cess using RNNs in aupervisedsetting, similar filtering steps followed by crowdsourced human an-
to [Socher et al. (2014), who used RNNs to learnotation. One of the aims for our dataset was to col-
representations for image descriptions. The objedect a variety of paraphrase types—we wanted to in-
tive function we used in this work was motivatedclude pairs that were non-trivial to recognize as well
by their multimodal objective function for learning as those with a range of similarity and length. We fo-
joint image-sentence representations. cused on phrase pairs with limited lexical overlap to
Lastly, the PPDB has been used along with othetvoid including those with only trivial differences.
resources to learn word embeddings for several We started with candidate phrases extracted from
tasks, including semantic similarity, language modthe first 10M pairs in the XXL version of the PPDB
eling, predicting human judgments, and classifiand then executed the following stés.
cation (Yu and Dredze, 2014; Faruqui et al., 2015)ilter phrases for quality: Only those phrases
Concurrently with our work, it has also been usedvhose tokens were in our vocabulary were retaﬁled.
to construct paraphrase models for short phraséext, all duplicate paraphrase pairs were removed,

(Yu and Dredze, 2015). in PPDB, these are distinct pairs that contain the
same two phrases with the order swapped.
3 New Paraphrase Datasets Filter by lexical overlap: Next, we calculated the

word overlap scorén each phrase pair and then re-
We created two novel datasets: (1) Annotatedained only those pairs that had a score of less than
PPDB, a subset of phrase pairs from PPDB whicb.5. By word overlap scorewe mean the fraction
are annotated according to how strongly they remf tokens in the smaller of the phrases with Leven-
resent a paraphrase relationship, and (2) MLshtein distance< 1 to a token in the larger of the
Paraphrase, a re-annotation of the bigram similaritghrases. This was done to exclude less interesting
dataset from Mitchell and Lapata (2010), again arphrase pairs likgmy dad hagd my father hagl or
notated for strength of paraphrase relationship.  (ballistic missilesof ballistic missilesthat only dif-

fer in a synonym or the addition of a single word.
3.1 Annotated-PPDB Select range of paraphrasabilities:To balance our

Our motivation for creating Annotated-PPDB Wasdataset with both clear paraphrases and erroneous

to establish a way to evaluate compositional parap-ﬁ'rslln PfP?B,fyve Sla(l)rlT\]/lp'qu' SI’O?]O examples f:]om ten
phrase models onshort phrases Most ex- chunks of the first initial phrase pairs where a

isting paraphrase tasks focus on words, ”kghunk is defined as 1M phrase pairs.

SimLex-999 [(Hill et al., 2014b), or entire sentencesseIeCt range of phrase lengthsWe then selected
such as the Microsoft Research Paraphrase chr-500 phrases from each 5000-example sample that
pus (Dolan et al.. 2004; Ouirk et al., 2004). To OUIen_compa_ssed_a wide range of phrgse lengths. To do
knowledge, there are no datasets that focus on tH%'S’ We first binned the phrase pairs by thefiec-
paraphrasability of short phrases. Thus, we cré'—Ve size Letn, be the numper of t_okens of length
ated Annotated-PPDB so that researchers can foc geater than one character in the first phraser_apd

on local compositional phenomena and measure t c §ame_for the second phrase. T.henetfiec'qve
performance of models directly—avoiding the need“€'S defined asnax(ny, n2). The bins contained

to do so indirectly in a sentence-level task. Model82S ofeffective sizef 3, 4, and 5 or more, and 500
that have strong performance on Annotated-PPDB °Note that the confidence scores for phrase pairs in PPDB
can be used to provide more accurate confidené&® based on a weighted combination of features with weights

scores for the paraphrases in the PPDB as well as rde_termined heuristically. The confidence scores were used t
parap pﬁace the phrase pairs into their respective sets (S, M, L, XL

duce the need for large paraphrase tables altogethgg | etc.), where each larger set subsumes all smaller ones.
"Throughout, our vocabulary is defined as the most common
SWe also replicated this approach and found training to b&00K word types in English Wikipedia, following tokenizati
time-consuming even using low-dimensional word vectors. and lowercasing (sef).




pairs were selected from each bin. This gave us a Score Rangg| MD | % of Data
total of 15,000 phrase pairs. [1,2) 0.66 8.1

Prune to 3,000: 3,000 phrase pairs were then se- gi; é'gg gg'g
lected randomly from the 15,000 remaining pairs to [4’5] 059! 369

)

form an initial dataset, Annotated-PPDB-3K. The

phrases were selected so that every phrase in thable 1. An analysis of Annotated-PPDB-3K extracted from

dataset was unique. PPDB. The statistics shown are for the splits of the datardeco
ing to the average score by workers. MD denotes mean devia-

Annotate with Mechanical Turk: The dataset was tion and % of Data refers to the percentage of our dataset that

then rated on a scale from 1-5 using Amazon Mefell into each range.

chanical Turk, where a score of 5 denoted phrases

that are equivalent in a large number of contexts, 32 ML-Paraphrase

meant that the phrases had some overlap in meapur second newly-annotated dataset,
ing, and 1 indicated that the phrases were dissimilayiL-Paraphrase, is based on the bigram
or contradictory in some way (e.gcan not adopt similarity  task  originally  introduced by
andis able to accept [Mitchell and Lapata (2010); we refer to the

We only permitted workers whose location was irPriginal annotations as the ML dataset.
the United States and who had done at least 1,000 The ML dataset consists of human similarity rat-
HITS with a 99% acceptance rate. Each exampli@gs for three types of bigrams: adjective-noun (JN),
was labeled by 5 annotators and their scores wer@un-noun (NN), and verb-noun (VN). Through
averaged to produce the final rating. Tdble 1 showsanual inspection, we found that the annotations
some statistics of the data. Overall, the annotatetlere not consistent with the notion of similarity
data had a mean deviation (I\/&@f 0.80. Tabldll central to paraphrase tasks. For instarteksvision
shows that overall, workers found the phrases to Igetandtelevision programmaere the highest rated
of high quality, as more than two-thirds of the pairgphrases in the NN section (based on average anno-
had an average score of at least 3. Also from the Té&ator score). Similarly, one of the highest ranked JN
ble, we can see that workers had stronger agreemgidtirs wasolder manandelderly woman This indi-
on very low and very high quality pairs and werecates that the annotations reflect topical similarity in
less certain in the middle of the range. addition to capturing functional or definitional simi-

Prune to 1,260: To create our final dataset, anty:

Annotated-PPDB, we selected 1,260 phrase pairSTherefore, we had the data re-annotated by two
from the 3,000 annotations. We did this by first bin&uthors of this paper who are native English speak-
ning the phrases into 3 categories: those with scor€63 The bigrams were labeled on a scale from 1-
in the interval[1,2.5), those with scores in the in- © Where 5 denotes phrases that are equivalent in a
terval[2.5, 3.5], and those with scores in the intervallarge number of contexts, 3 indicates the phrases are
(3.5,5]. We took the 420 phrase pairs with the lowFoughly equivalent in a narrow set of contexts, and
est MD in each bin, as these have the most agreé-means the phrases are not at all equivalent in any

ment about their label, to form Annotated-PPDB. context. Following annotation, we collapsed the rat-

These 1,260 examples were then randomly spllb?g scale by merging 4s and 5s together and 1s and

into a development set of 260 examples and a test & toggther. for the d h _ 5
of 1,000 examples. The development set had an MD Stat_lstlcs or the data are shown in TaEI,e - we
of 0.61 and the test set had an MD of 0.60, indicatinggow inter-annotator Spearmarand Cohen's: in

the final dataset had pairs of higher agreement th lumns 2 and 3, ind@cating substantial agreement
the initial 3.000. on the JN and VN portions but only moderate agree-

ment on NN. In fact, when evaluating our NN anno-

8MD is similar to standard deviation, but uses absolute value °We tried using Mechanical Turk here, but due to such short
instead of squared value and thus is both more intuitive @sgl | phrases, with few having the paraphrase relationship, everk
sensitive to outliers. did not perform well on the task.



Data|| IA p | IA x | ML comp.p | ML Humanp 4.1 Objective Functions

JN 0.87 | 0.79 0.56 0.52 . . ..
NN 064 | 058 038 0.49 We now present objective functions for training on

VN 0.73| 073 0.55 0.55 pairs extracted from PPDB. The training data con-

sists of (possibly noisy) pairs taken directly from the

Table 2: Inter-annotator agreement of ML-Paraphrase amd co original PPDB. In subsequent sections, we discuss
parison with ML dataset. Columns 2 and 3 show the interhow we extract training pairs for particular tasks.

annotator agreement between the two annotators meastted wi e .
Spearmarp and Cohen’ss. Column 4 shows the between We assume our training data consists of aXef

ML-Paraphrase and all of the ML dataset. The last column iPhrase pairgzq, z2), wherez; andz; are assumed
the average humamon the ML dataset. to be paraphrases. To learn the model parame-

ters (V, b, W,,), we minimize our objective function
tations against those from the original ML data (colover the data using AdaGrad (Duchietal., 2011)
umn 4), we findp to be 0.38, well below the averagewith mini-batches. The objective function follows:
human correlation of 0.49 (final column) reported by
Mitchell and Lapata and also surpassed by pointwise mi 1 ( Z
(

multiplication [Mitchell and Lapata, 2010). This w,b,W. | X|
suggests that the original NN portion, more so than
the others, favored a notion of similarity more re- max(0,6 — g(z1) - g(x2) + g(1) - g(t1))

lated to association than paraphrase. + max(0,5 — g(a1) - g(w) + gla2) - g(tg)))

- Ww”2
1)

z1,x2)EX

4 Paraphrase Models + A (W12 4 11611 + Aw, |Wos

initial

We now present parametric paraphrase models ance] ) dx larizati i
discuss training. Our goal is to embed phrases int§ereAw 3? . V_‘;_w Iare rggu a;)rlzcz;ld|_on par?_me_ers,
a low-dimensional space such that cosine similari%wmmal Is the initial word embedding matrix, is

in the space corresponds to the strength of the pa € mgrgln (set tofl |”n all IOf ou(ri exp(_arlments), f‘nd
phrase relationship between phrases. ty andt, are carefully-selectedegative examples

. .. taken from a mini-batch during optimization.
We use a recursive neural network (RNN) similar - : N
The intuition for this objective is that we want

to thgt used by Socher et f"‘" (2(]).14).. We first use fAe two phrases to be more similar to each other
constituent parser to obtain a binarized parse of . . . .
(%(xl) - g(x2)) than either is to their respective neg-

phrase.  For p_hrasp  We cqmpute its vectog(p) .ative exampleg; andto, by a margin of at least.
through recursive computation on the parse. That s,

if phrasep is the yield of a parent node in a parseSelecting Negative Examples To selectt; andts

tree, and phrases andc, are the yields of its two in Eq.[1, we simply chose the most similar phrase in

child nodes, we defing(p) recursively as follows: the mini-batch (other than those in the given phrase
pair). E.g., for choosing; for a given(zy, z5):

9(p) = f(Wlg(e1); g(ca)] + b) t1 = argmax g(x1) - g(t)
t:(t, ) €Xp\{(z1,22)}

where f is an element-wise activation functionwhereX;, C X is the current mini-batch. That is,
(tanh), [g(c1); g(c2)] € R*" is the concatenation we want to choose a negative exampléhat is sim-

of the child vectors}¥ € R™*?" is the composi- ilar to z; according to the current model parameters.
tion matrix, b € R" is the offset, anch is the di- The downside of this approach is that we may oc-
mensionality of the word embeddings. If noge casionally choose a phrasethat is actually a true
has no children (i.e., it is a single token), we defin@araphrase of;. We also tried a strategy in which
g(p) = W&p), where W, is the word embedding we selected the least similar phrase that would trig-
matrix in which particular word vectors are indexedger an update (i.eg(t;) - g(z;) > g(x1)-g(z2) —9),
using superscripts. The trainable parameters of thmit we found the simpler strategy above to work bet-
model arelV, b, andW,,,. ter and used it for all experiments reported below.




Discussion The objective in E.]1 is similartoone 5 Experiments — Word Paraphrasing

used by Socher et al. (2014), but with several differ-

ences. Their objective compared text and projectéd/e first present experiments on learning lexi-
images. They also did not update the underlyingal paraphrasability. = We train on word pairs
word embeddings; we do so here, and in a way sudlom PPDB and evaluate on the SimLex-999
that they are penalized from deviating from their ini-dataset (Hill et al., 2014b), achieving the best results
tialization. Also for a given(zy,z5), they do not reported to date.

select a single; andt, as we do, but use the en-

tire training set, which can be very expensive with & 1 Training Procedure

large training dataset.

We also experimented with a simpler objectiveTO Iear_n yvord vectors that reflect paraphrasability,
that sought to directly minimize the squared L2We optimized Ed:IZ There are many tunable hyper-
norm betweeny(z1) andg(z») in each pair, along parameters w!th this opjggtlve, so.to make training
with the same regularization terms as in [g. 1tractable we fixed the initial leamning rates for the
One problem with this objective function is that theVord embeddings to 0.5 and the margito 1. Then
global minimum is and is achieved simply by driv- W€ did a coarse grid search over a parameter space
ing the parameters t0. We obtained much better O Aw,, and the mini-batch size. We considered
results using the objective in Hg. 1. Aw,, values in{10~2,107%,...,10~7,0} and mini-

batch sizes in{100, 250, 500, 1000 We trained
Training Word Paraphrase Models To train just for 20 epochs for each set of hyperparameters using
word vectors on word paraphrase pairs (again froftdaGrad|(Duchi et al., 2011).
PPDB), we used the same objective function as For all experiments, we initialized our word
above, but simply dropped the composition termsg/ectors with skip-gram vectors trained using
This gave us an objective that bears some similaritgor d2vec (Mikolov et al., 2013a). The vectors
to the skip-gram objective with negative samplingvere trained on English Wikipedia (tokenized and
in wor d2vec (Mikolov et al., 2013h). Both seek lowercased, yielding 1.8B toker@. We used a
to maximize the dot products of certain word pairgvindow size of 5 and a minimum count cut-off of
while minimizing the dot products of others. This60, producing vectors for approximately 270K word

objective function is: types. We retained vectors for only the 100K most
frequent words, averaging the rest to obtain a single
) vector for unknown words. We will refer to this set
min—— max 0.5 — W @) .y (z2) of the 100K most frequent words as aarcabulary.
(2 e wi g
Z1,T2

+ WD) W)y 4 max0,s — WED w4 5.2 Extracting Training Data

anz ) For training, we extracted word pairs from the lexi-
cal XL section of PPDB. We used the XL data for
all experiments, including those for phrases. We
It is like Eq.[1 except with word vectors replacingused XL instead of XXL because XL has better qual-
the RNN composition function and with the regular-ity overall while still being large enough so that we
ization terms on thé&” andb removed. could be selective in choosing training pairs. There
We further found we could improve this model byare a total of 548,085 pairs. We removed 174,766
incorporating constraints. From our training pairsthat either contained numerical digits or words not
for a given wordw, we assembled all other wordsin our vocabulary. We then removed 260,425 re-
that were paired with it in PPDB and all of their lem-dundant pairs, leaving us with a final training set of
mas. These were then used as constraints during th&2,894 word pairs.
pairing process: a wortlcould only be paired with
w if it was not in its list of assembled words. 0We used the December 2, 2013 snapshot.

initial

W Wéﬁh) o W



Model n SL999p annotator agreement fram Hill et al. (201@).
skip-gram 25 |1 0.21 The table illustrates that, by training on PPDB,
skip-gram 1000]| 0.38 we can surpass the previous best correlations on
PARAGRAM ws 25 0.56 SL999 by 4-6% absolute, achieving the best results
+ constraints 25 0.58 . .

Fill et al. (2014D) 500 0.446 repor'_[ed to_date. We also find that we can train
IHill et al. (20143) ) 0.52 low-dimensional word vectors that exceed the per-
inter-annotator agreement N/A 0.67 formance of much larger vectors. This is very use-

ful as using large vectors can increase both time and

task obtained by performing hyperparameter tuning based on d for d
2 WS-S—WS-R and treating SL999 as a held-out test set. 10 9€nerate word vectors to use for downstream

is word vector dimensionality. A indicates statistical signifi- applications, we chose hyperparameters so as to
cance f < 0.05) over the 1000-dimensional skip-gram vectorsmaximize performance on S|_9_ These word
vectors, which we refer to asARAGRAM vectors,
had ap of 0.57 on SL999. We use them as initial
5.3 Tuning and Evaluation word vectors for the remainder of the paper.

Hyperparameters were tuned using the Wordsim—3§§5 Sentiment Analysis

(WS353) dataset (Finkelstein et al., 2001), specifi-

cally its similarity (WS-S) and relatedness (WSAS an extrinsic evaluation pf OWARAGRAM word

R) partitions [(Agirre et al., 2009). In particular, weVectors, we used them in a convolutional neu-

tuned to maximize2xWS-S correlation minus the ral network (CNN) for sentiment analysis. We

WS-R correlation. The idea was to reward vector§sed the simple CNN from Kim (2014) and the

with high similarity and relatively low relatedness,binary sentence-level sentiment analysis task from

in order to target the paraphrase relationship. ~ [Socher etal. (2013). We used the standard data
After tuning, we evaluated the best hy_spllts, removing examples with a neutral rating.

perparameters on the SimLex-999 (SL999 e trained on all constituents in the training set
dataset [(Hill etal. 2014b). We chose SL999 a hile only using full sentences from development

our primary test set as it most closely evaluateggdsizjé’g;\fg%lus train/development/test sizes of
the paraphrase relationship. Even though WS-% ’ e

is a close approximation to this relationship, it '€ CNN usesn-gramfilters, each ofwhichis an
does not include pairs that are merely associatél * 7 Vector. The CNN computes the inner product

and assigned low scores, which SL999 does (s@€Ween ann-gram filter and eachn-gram in an
discussion in Hill et al., 2014b). example, retaining the maximum match (so-called

. . . “max-pooling”). The score of the match is a single
Note that for all experiments we used cosine sim-. o i
I L . dimension in a feature vector for the example, which
ilarity as our similarity metric and evaluated the sta- . . S . .
. o . ._is then associated with a weight in a linear classifier
tistical significance of dependent correlations usin

. gsed to predict positive or negative sentiment.
the one-tailed method cf (Steiger, 1980). Whilep_m )14) usedm—gram filters of sev-

eral lengths, we only used unigram filters. We
5.4 Results also fixed the word vectors during learning (called

Table[3 shows results on SL999 when improvingStatic” by Kim). After learning, the unigram fil-
gzers correspond to locations in the fixed word vec-

the initial word vectors by training on word pairs

from PPDB, both with and without constraints. The©" SPace. The learned classifier weights represent
“PARAGRAM 5" FOWS show results when tuning to how strongly each location corresponds to positive

maximize2xWS-S— WS-R. We also show results ©" negative sentiment. We expect this static CNN to

ip- i | Sy pe— . . o
for strong_ skip gram bas_ellnes and the best resu LIFiT 6t al. (2014%) did not report the dimensionality of the
from the literature, including the state-of-the-art revectors that led to their state-of-the-art results.

sults from[Hill et al. (2014a) as well as the inter- *2We did not use constraints during training.




word vectors| n | accuracy (%) {10,1,1071,1073,...,107%} to reflect our in-

skip-gram | 25 77.0 creased confidence in the initial vectors. We trained
skip-gram | 50 79.6 only for 5 epochs for each set of parameters. For
PARAGRAM | 25 80.9 baselines, we used the same initial skip-gram

Table 4: Test set accuracies when comparing embeddiny€ctors as in Sectidd 5.
in a static CNN on the binary sentiment analysis task from

[Socher et al. (2013). 6.2 Evaluation and Baselines

be more effective if the word vector space separatd®" all experiments, we again used cosine similarity
positive and negative sentiment. as our similarity metric and evaluated the statistical

In our experiments, we compared baseline skipidnificance using the method of (Steiger, 1980).

gram embeddings to oWARAGRAM vectors. We A baseline used in all compositional experi-
used AdaGrad learning rate of 0.1, mini-batches dP€Nts is vector addition of skip-gram (GRRA-
size 10, and a dropout rate of 0.5. We used 200 uffRAM) word vectors.  Unlike explicit word vec-

igram filters and rectified linear units as the actival0rS: Where point-wise multiplication acts as a con-

tion (applied to the filter output- filter bias). We Iunction of features and performs well on composi-
trained for 30 epochs, predicting labels on the ddlon tasks|(Mitchell and Lapata, 2008), using addi-
velopment set after each set of 3,000 examples. Wi@n With skip-gram vectors, (Mikolov et al., 2013b)
recorded the highest development accuracy and us3}fs better performance than multiplication.
those parameters to predict labels on the te_st set. 6.3 Bigram Paraphrasability

Results are shown in Tablé 4. We see improve-
ments over the baselines when USiPGRAGRAM 10 evaluate our ability to paraphrase bigrams, we

vectors, even exceeding the performance of highegonsider the original bigram similarity task from
dimensional skip-gram vectors. [Mitchell and Lapata (2010) as well as our newly-

annotated version of it: ML-Paraphrase.

6 Experiments — Compositional

Paraphrasing Extracting Training Data Training data for

these tasks was extracted from the XL por-
In this section, we describe experiments on a varietyon of PPDB. The bigram similarity task from
of compositional phrase-based paraphrasing tasRditchell and Lapata (2010) contains three types of
We start with the simplest case of bigrams, and thebigrams: adjective-noun (JN), noun-noun (NN), and
proceed to short phrases. For all tasks, we agauerb-noun (VN). We aimed to collect pairs from
train on appropriate data from PPDB and test oRPDB that mirrored these three types of bigrams.
various evaluation datasets, including our two novel We found parsing to be unreliable on such
datasets (Annotated-PPDB and ML-Paraphrase). short segments of text, so we used a POS tag-
ger (Manning et al., 2014) to tag the tokens in each
phrase. We then used the word alignments in PPDB
We trained our models by optimizing Ed. 1 usingo extract bigrams for training. For JN and NN,
AdaGrad [(Duchi et al., 2011). We fixed the initialwe extracted pairs containing aligned, adjacent to-
learning rates to 0.5 for the word embeddings ankiens in the two phrases with the appropriate part-
0.05 for the composition parameters, and the maof-speech tag. Thus we extracted pairs ljleasy
gin to 1. Then we did a coarse grid search over b, simple task for the JN section antown meet-
parameter space foyy, , Ay, and mini-batch size. ing, town counci) for the NN section. We used a
For A\w,, our search space again consistedifferent strategy for extracting training data for the
of {1072,1073,..,1077,0}, for Ay it was VN subset: we took aligned VN tokens and took the
{10-1,1072,1073,0}, and we explored batch closest noun after the verb. This was done to approx-
sizes of{100, 250, 500, 1000, 2000 When ini- imate the direct object that would have been ide-
tializing with PARAGRAM vectors, the search ally extracted with a dependency parse. An example
space for Ay, was shifted upwards to be from this section igachieve goalachieve aim.

6.1 Training Procedure




Model [Mitchell and Lapata (2010) Bigrams ML-Paraphrase
word vectors n. comp. JN NN VN Avg JN NN VN | Avg
skip-gram 25 + 0.36 0.44 | 0.36 0.39 0.32 |[0.35|0.42 |0.36
PARAGRAM 25 + 0.44 | 0.34 | 048 0.42 0.50° |0.29 | 0.58% | 0.46
PARAGRAM 25 RNN || 0.51*T | 0.40° | 0.50* | 0.47 0.57% | 0.44 | 0.55° |0.52
[Hashimoto et al. (2014) 0.49 0.45 | 0.46 0.47 0.38 [0.39 |0.45 |0.41
[Mitchell and Lapata (2010) 0.46 0.49 | 0.38 0.44 - - - -
Human - - - - 0.87 |0.64 |0.73 |0.75

Table 5: Results on the test section of the bigram simild&sk off Mitchell and Lapata (20110) and our newly annotatediua
(ML-Paraphrase). () shows the word vector dimensionality and (“‘comp.”) shotes tomposition function used: “+" is vector
addition and “RNN” is the recursive neural network. The *igates statistically significanp(< 0.05) over the skip-gram model,
1 statistically significant over thePARAGRAM, +} model, and; statistically significant over Hashimoto et al. (2014).

We removed phrase pairs that (1) contained wordsubset of the data that posed difficulty was the NN
not in our vocabulary, (2) were redundant with othsection of the ML dataset. We suspect this is due
ers, (3) contained brackets, or (4) had Levenshteio the reasons discussed in Secfion 3.2; for our ML-
distance< 1. The final criterion helps to ensure thatParaphrase dataset, by contrast, we do see gains on
we train on phrase pairs with non-trivial differencesthe NN section.

The final training data consisted of 133,997 JN pairs, We also outperform the strong baseline of adding
62,640 VN pairs and 35,601 NN pairs. 1000-dimensional skip-gram embeddings, a model
with 40 times the number of parameters, on our ML-

Baselines In addition to RNN models, we report Paraphrase dataset. This baseline had correlations of

base!lnes that use vector Qddmon as the cqmposm 45, 0.43, and 0.47 on the JN, NN, and VN parti-
function, both with our skip-gram embeddings and. .
ions, with an average of 0.45—below the average

PARAGRAM embeddings from Sectign 5. o Of the RNN (0.52) and even theARAGRAM, +}
We also compare to several results from PrioL S del (0.46)

work. When doing so, we took thebestcorrela- Interestingly, the type of vectors used to initial
tions for each data subset. That is, the JN and NN re- gy, yp

sults front Mitchell and Lapata (2010) use their mul '€ the RNN has a significant effect on performance.

tiplicative model and the VN results use their dila-" e '”'t';:'ze using the Zl\‘;"Ld'Fr,”e”S'r?”a' Sg'p'gratm
tion model. From Hashimoto et al. (2014) we use ectors, the average on -raraphrase drops 1o

their PAS-CLBLM Add and PAS-CLBLM Adg, 043 Pelow even th¢PARAGRAM, +} model.
models. We note that their vector dimensionalitie%_4 Phrase Paraphrasability

are larger than ours, using= 2000 and50 respec- _ _ o
tively. In this section we show that by training a

_ model based on filtered phrase pairs in PPDB,
Results Results are shown in Tabld 5. We rewe can actually distinguish between quality para-
port results on the test portion of the originalphrases and poor paraphrases in PPDB better

Mitchell and Lapata (2010) dataset (ML) as well aghan the original heuristic scoring scheme from
the entirety of our newly-annotated dataset (MLiGanitkevitch et al. (2013).

Paraphrase). RNN results on ML were tuned on the

respective development sections and RNN results gxtracting Training Data As before, training

ML-Paraphrase were tuned on the entire ML datasedata was extracted from the XL section of PPDB.
Our RNN model outperforms results from the lit-Similar to the procedure to create our Annotated-

erature on most sections in both datasets and its &vPDB dataset, phrases were filtered such that only

erage correlations are among the h|gs‘[he one those with aword overlap scoreof less than 0.5
_— _ _ “were kept. We also removed redundant phrases and
BThe results obtained here differ from those reported i

|[Hashimoto et al. (2014) as we scored their vectors with '?hrases that contained to_kens not in O_UI’ vocabu_lary.
newer Python implementation of Spearmathat handles ties | N€ phrases were then binned according to tekir
(Hashimoto, P.C.). fective sizeand 20,000 examples were selected from




bins of effective sizesf 3, 4, and more than 5, cre- GRAM vectors). By using th@ARAGRAM vectors
ating a training set of 60,000 examples. Care was initialize the RNN, we reach a correlation of 0.40,
taken to ensure that none of our training pairs washich is better than the PPDB confidence estimates
also present in our development and test sets. by 15% absolute.

) . We again consider addition of 1000-dimensional
Baselines We compare our models with Strongskip-gram embeddings as a baseline, and they con-

lexical baselines. The firsstrict word overlapis oo perform strongly( = 0.37). The RNN ini-

the percentage of words in the smaller phrase thﬁ&lized withPARAGRAM vectors does reach a higher

are also in the larger phrase. We also include a Veﬁ'(o.40), but the difference is not statistically signif-

sion where the words are lemmatized prior to th?cant ( — 0.16). Thus we can achieve similarly-
calculation. strong results with far fewer parameters.

We also train a support vector regression model g 1a5) also illustrates the importance of initial-
(epsilon-SVR)[(Chang and Lin, 2011) on the 33 feay,i o,y RNN model with appropriate word embed-

tures that are included for each phrase pairin PPD%ings. An RNN initialized with skip-gram vectors
We scaled the features such that each lies in the iﬂés a modest of 0.22, well below the) of the RNN

terval [_1_’ 1] _and tuned the ﬂrameters us_ing 5'fOanitialized with PARAGRAM vectors. Clearly, ini-
cross validation on our dev set\We then trained on 17 ation is important when optimizing non-convex

the entire dey se_t after finding the best IC)erforrmn%bjectives like ours, but it is noteworthy that our best
¢ ande combination and evaluated on the test set g 1ts came from first improving the word vectors

Annotated-PPDB. and then learning the composition model, rather than
jointly learning both from scratch.

Model
word vectors n comp. || Annotated-PPDE 7 Qualitative Analysis
skip-gram 25 + 0.20
PARAGRAM 25 + 0.32
PARAGRAM 25 RNN 0.40+1 Score Rangg| + | RNN
[Ganitkevitch et al. (2013) 0.25 E’ gg igg igg
word overlap (strict) 0.26 [3’4) 0.87 0.85
word overlap (lemmatizeg 0.20 [4’ 5] 0'43 0'47
PPDB+SVR 0.33 : . :

Table 7: Average absolute error of addition and RNN models

Table 6: Spearman correlation on Annotated-PPDB. The on different ranges of gold scores.

indicates statistically significantp( < 0.05) over the skip-
gram model, thef indicates statistically significant over the o .
{PARAGRAM, +} model, and thet indicates statistically sig- e performed a qualitative analysis to uncover
nificant over PPDB+SVR. sources of error and determine differences between

Results We evaluated on our Annotated—PPDBa(jdmgPARAGRN\/I vectors and using an RNN ini-

dataset described HE.1. Tabld® shows the Spear-t'ahzed with them. To do so, we took the output
. both systems on Annotated-PPDB and mapped
man correlations on the 1000-example test set. RNN . L .
eir cosine similarities to the interval, 5]. We
t

models were tuned on the development set of 2 :
P en computed their absolute error as compared to
examples. All other methods had no hyperparamc?ﬁe gold ratings
ters and therefore required no tuning. '
We note that the confidence estimates from Table[T shows how the average of these absolute

Ganitkevitch et al (2013) reach aof 0.25 on the errors changes with the magnitude of the gold rat
- . . ings. The RNN performs better (has lower average

test set, similar to the results of strict overlap. While o ) .
bsolute error) for less similar pairs. Vector addi-

25-dimensional skip-gram embeddings only reac - . .
0.20, we can improve this to 0.32 by fine-tuningiﬁon only does better on the most similar pairs. This

them using PPDB (thereby obtaining 0BARA- gpresumably because the most positive pairs have
high word overlap and so can be represented effec-

We tuned both parameters ovg—'°,27° ... 201, tively with a simpler model.




Index Phrase 1 | Phrase 2 Length Ratio| Overlap Ratig| Gold | RNN | +
1 scheduled to be held i that will take place in 1.0 0.4 46 | 29 |44
2 according to the paper|,the newspaper reported that 0.8 0.5 46 | 28 |4.1
3 at no cost to without charge to 0.75 1.0 48 | 3.1 |4.6
4 's surname family name of 0.67 1.0 44 | 28 |4.1
5 could have an impact on may influence 0.4 0.5 46 | 4.2 |3.2
6 to participate actively to play an active role 0.6 0.67 50| 4.8 [4.0
7 earliest opportunity early as possible 0.67 0.0 44 | 43 |29
8 does not exceed is no more than 0.75 0.0 50| 48 |35

Table 8: lllustrative phrase pairs from Annotated-PPDBhwgold similarity> 4. The last three columns show the gold similarity
score, the similarity score of the RNN model, and the sintjlacore of vector addition. We note that addition perforpester
when the pairs have high length ratio (rows 1-2) or overlaip (eows 3—4) while the RNN does better when those valuesosre
(rows 5-6 and 7-8 respectively). Boldface indicates smath®r compared to gold scores.

To further investigate the differences between Length Ratio [0,0.6] | (0.6,0.8] | (0.8,1]
these models, we removed those pairs with gold Positive Examples|| -22.4 10.0 355
scores in[2,4], in order to focus on pairs with ex- | Negative Exampleg  -9.9 | -11.1 | -12.2
treme scores. We identified two factors that dis Both -13.0 6.4 -2.0
tinguished the performance between the two mod-__Overlap Ratio [0, 1.2 21]
els: length ratio and the amount of lexical overlap l\ljssgi\i/veeEE);ZTnplleei '141-53 77% 11%‘(1)
We did not find evidence that non-compositional ' ¢9 Both P 106 53 0.0

phrases, such as idioms, were a source of error as
these were not found in ML-Paraphrase and only apable 9: Comparison of the addition and RNN model on phrase
pear rarely in Annotated-PPDB. pairs of different overlap and length ratios. The valueshia t

- : : able are the percent change in absolute error from theiaddit
We define length ratio as simply the number 0f'nodel to the RNN model. Negative examples are defined as

tokens in the smaller phrase divided by the r]umbedairs from Annotated-PPDB whose gold score is less than 2 and
of tokens in the larger phrase. Overlap ratio is theositive examples are those with scores greater than 4h"Bot
number ofequivalent tokensn the phrase pair di- refers to both negative and positive examples.

vided by the number of tokens in the smaller of the

two phrases. Equivalent tokensre defined as to-

kens that are either exact matches or are paired up|ih ratio. Examples from Annotated-PPDB illustrat-

the lexical portion of PPDB used to train theRA-  jng these trends on positive examples are shown in
GRAM vectors. Table[8.

Table[9 shows how the performance of the mod-

els changes under different values of length ratio and Wlhen “Cé)ntﬂ,(,je”ng bOt?hp?tS:'V;Nar,:ld neglatlve ;X'
overlap ratic:] The values in this table are the per-arnlo es ("Both’), we see that the Excels on the

centage changes in absolute error when using tI%OSt difficult examples (large differences in phrase

RNN over thePARAGRAM vector addition model. length and less Iexu:_al_overlap). For easier exam-
les, the two fare similarly overall (-2.0 to 0.0%

So negative values indicate superior performance %1
g P P ange), but the RNN does much better on nega-

the RNN. . . : . S
. . tive examples. This aligns with the intuition that
A few trends emerge from this table. One is thaf ... .
o : addition should perform well when two paraphrastic
as the length ratio increases (i.e., the phrase pa

Irs . . -
. - rases have high lexical overlap and similar length.
are closer in length), addition surpasses the RN g P . g

. . ut when they are not paraphrases, simple addition
for positive examples. For negative examples, the

. 1S misled and the RNN's learned composition func-
trend is reversed. The same trend appears for oves . . .
ion better captures the relationship. This may sug-

5The bin delimiters were chosen to be uniform over thegeSt new architectures for modeling composition-

range of output values of the length ratio ([0.4,1] with ong-o  2lity differently depending on differences in length
lier data point removed) and overlap ratio ([0,1]). and amount of overlap.




Model n SL999 | WS353 | WS-S | WS-R

GloVe 300 || 0.376 | 0.579 | 0.630| 0.571
PARAGRAM3s00,WS353 300 0.667 0.769 0.814 | 0.730
PARAGRAMS300,51.999 300 0.685 0.720 0.779 | 0.652

inter-annotator agreement N/A 0.67 0.756 | N/A N/A

Table 10: Evaluation of 300 dimensionr@ARAGRAM vectors on SL999 and WS353. Note that the inter-annotati@eagentp
was calculated differently for WS353 and SL999. For SL98@, agreement was computed as the average pairwise camelati
between pairs of annotators, while for WS353, agreementwaputed as the average correlation between a single aonoith
the average over all other annotators. If one uses the atieermeasure of agreement for WS353, the agreement is,Gidh is

easily beaten by automatic methods (Hill et al., 2014b).

Model [Mitchell and Lapata (2010) Bigrams  ML-Paraphrase
word vectors n comp.|| JN NN VN Avg JN | NN | VN | Avg
GloVe 300 + 0.40 | 0.46 | 0.37 | 0.41 0.39(0.36|0.45/ 0.40

PARAGRAM3gg ws3s3 300  + 052 | 041 | 0.49 | 0.48 0.55(/0.42|0.55|0.51
PARAGRAM30 sr.og99 300  + 051 | 036 | 051 | 0.46 0.57(0.39| 0.59| 0.52

Table 11: Evaluation of 300 dimensiordRAGRAM vectors on the bigram tasks.

8 Conclusion Model
word vectors n  comp.|| Annotated-PPDB
We have shown how to leverage PPDB to learn| Glove ;’88 * g-ig
. i, PARAGRAM300,WS353 + .
state-of-the-art word embeddings and compositional PARAGRAM00 sLo0s 300 + 0.41

models for paraphrase tasks. Since PPDB was cr
ated automatically from parallel corpora, our model3able 12: Evaluation of 300 dimensioneARAGRAM vectors

are also built automatically. Only small amounts ofn Annotated-PPDB.

annotated data are used to tune hyperparameters.

We also introduced two new datasets to evalua$P Our original 25-dimension®ARAGRAM embed-
compositional models of short paraphrases, filling 8ings and modified our training procedure slightly in
gap in the NLP community, as currently there are n8"der to produce two sets of 300-dimensioraRA-
datasets created for this purpose. Successful md@RAM vectordl The vectors outperform our origi-
els on these datasets can then be used to extend fif 25-dimensionaPARAGRAM vectors on all tasks
coverage of, or provide an alternative to, PPDB. ~@nd achieve human-level performance on SL999 and

There remains a great deal of work to be don¥/S393. Moreover, when simply using vector ad-

in developing new composition models, whetheflition as a compositional model, they are both on
with new network architectures or distance funcPar With the RNN models we trained specifically for
tions. In this work. we based our composi-eaCh task. These results can be seen in TRbI€s10, 11,

tion function on constituent parse trees, but thig"dI2. - _

may not be the best approach—especially for short Theé main modification was to use higher-
phrases. Dependency syntax may be a better dimensional initial embeddings, in our case the
ternative [(Socher et al., 2014). Besides improvinge'[rained 300-dimensional GloVe embeddifis.
composition, another direction to explore is how to>"c€ PPDB only contains lowercased words, we ex-
use models for short phrases in sentence-level paf@cted only one GloVe vector per word type (regard-

word in the vocabulary. This is the vector for the

Appendix A most common casing of the word, and was used as

Increasing the dimension of word embeddings or "“BOth PARAGRAMs00,wsss3 ANAPARAGRAMs00 51999 VEC-
. . _...tors can be found on the authors’ websites.

training t,h_em_on more data can have a signifi- "We used the GloVe vectors trained on 840 bil-
cant positive impact on many tasks—both at thGyn tokens of Common Crawl data, available at

word level and on downstream tasks. We scaleit p: // nl p. st anf or d. edu/ pr oj ect s/ gl ove/


http://nlp.stanford.edu/projects/glove/
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