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Abstract

The Paraphrase Database (PPDB; Ganitke-
vitch et al., 2013) is an extensive semantic re-
source, consisting of a list of phrase pairs with
(heuristic) confidence estimates. However, it
is still unclear how it can best be used, due to
the heuristic nature of the confidences and its
necessarily incomplete coverage. We propose
models to leverage the phrase pairs from the
PPDB to build parametric paraphrase models
that score paraphrase pairs more accurately
than the PPDB’s internal scores while simul-
taneously improving its coverage. They allow
for learning phrase embeddings as well as im-
proved word embeddings. Moreover, we in-
troduce two new, manually annotated datasets
to evaluate short-phrase paraphrasing mod-
els. Using our paraphrase model trained using
PPDB, we achieve state-of-the-art results on
standard word and bigram similarity tasks and
beat strong baselines on our new short phrase
paraphrase tasks.1,2

1 Introduction

Paraphrase detection3 is the task of analyz-
ing two segments of text and determining if
they have the same meaning despite differences
in structure and wording. It is useful for
a variety of NLP tasks like question answer-
ing (Rinaldi et al., 2003; Fader et al., 2013), seman-
tic parsing (Berant and Liang, 2014), textual entail-

1We release our datasets, code, and trained models on the
authors’ websites.

2This version differs from the previous one with the inclu-
sion of Appendix A, which contains details about new higher
dimensional embeddings we have released. These embeddings
achieve human-level performance on SL999 and WS353.

3See Androutsopoulos and Malakasiotis (2010) for a survey
on approaches for detecting paraphrases.

ment (Bosma and Callison-Burch, 2007), and ma-
chine translation (Marton et al., 2009).

One component of many such systems is a para-
phrase table containing pairs of text snippets, usu-
ally automatically generated, that have the same
meaning. The most recent work in this area is
the Paraphrase Database (PPDB; Ganitkevitch et
al., 2013), a collection of confidence-rated para-
phrases created using the pivoting technique of
Bannard and Callison-Burch (2005) over large par-
allel corpora. The PPDB is a massive resource, con-
taining 220 million paraphrase pairs. It captures
many short paraphrases that would be difficult to ob-
tain using any other resource. For example, the pair
{we must do our utmost, we must make every effort}
has little lexical overlap but is present in PPDB. The
PPDB has recently been used for monolingual align-
ment (Yao et al., 2013), for predicting sentence sim-
ilarity (Bjerva et al., 2014), and to improve the cov-
erage of FrameNet (Rastogi and Van Durme, 2014).

Though already effective for multiple NLP tasks,
we note some drawbacks of PPDB. The first is
lack of coverage: to use the PPDB to compare two
phrases, both must be in the database. The second
is that PPDB is a nonparametric paraphrase model;
the number of parameters (phrase pairs) grows with
the size of the dataset used to build it. In practice,
it can become unwieldy to work with as the size of
the database increases. A third concern is that the
confidence estimates in PPDB are a heuristic com-
bination of features, and their quality is unclear.

We address these issues in this work by intro-
ducing ways to use PPDB to construct paramet-
ric paraphrase models. First we show that initial
skip-gram word vectors (Mikolov et al., 2013a) can
be fine-tuned for the paraphrase task by training
on word pairs from PPDB. We call themPARA-

http://arxiv.org/submit/1336299/pdf


GRAM word vectors. We find additive composition
of PARAGRAM vectors to be a simple but effective
way to embed phrases for short-phrase paraphrase
tasks. We find improved performance by training a
recursive neural network (RNN; Socher et al., 2010)
directly on phrase pairs from PPDB.

We show that our resulting word and phrase rep-
resentations are effective on a wide variety of tasks,
including two new datasets that we introduce. The
first, Annotated-PPDB, contains pairs from PPDB
that were scored by human annotators. It can be used
to evaluate paraphrase models for short phrases. We
use it to show that the phrase embeddings produced
by our methods are significantly more indicative of
paraphrasability than the original heuristic scoring
used by Ganitkevitch et al. (2013). Thus we use the
power of PPDB to improve its contents.

Our second dataset, ML-Paraphrase, is a re-
annotation of the bigram similarity corpus from
Mitchell and Lapata (2010). The task was origi-
nally developed to measure semantic similarity of
bigrams, but some annotations are not congruent
with the functional similarity central to paraphrase
relationships. Our re-annotation can be used to
assess paraphrasing capability of bigram composi-
tional models.
In summary, we make the following contributions:

Provide new PARAGRAM word vectors, learned
using PPDB, that achieve state-of-the-art per-
formance on the SimLex-999 lexical similarity
task (Hill et al., 2014b) and lead to improved perfor-
mance in sentiment analysis.

Provide ways to use PPDB to embed phrases.We
compare additive and RNN composition ofPARA-
GRAM vectors. Both can improve PPDB by re-
ranking the paraphrases in PPDB to improve corre-
lations with human judgments. They can be used as
concise parameterizations of PPDB, thereby vastly
increasing its coverage. We also perform a qualita-
tive analysis of the differences between additive and
RNN composition.

Introduce two new datasets. The first contains
PPDB phrase pairs and evaluates how well models
can measure the quality of short paraphrases. The
second is a new annotation of the bigram similar-
ity task in Mitchell and Lapata (2010) that makes it
suitable for evaluating bigram paraphrases.

We release the new datasets, complete with anno-
tation instructions and raw annotations, as well as
our code and the trained models.4

2 Related Work

There is a vast literature on representing words as
vectors. The intuition of most methods to cre-
ate these vectors (or embeddings) is that similar
words have similar contexts (Firth, 1957). Ear-
lier models made use of latent semantic analysis
(LSA) (Deerwester et al., 1990). Recently, more so-
phisticated neural models, work originating with
(Bengio et al., 2003), have been gaining popular-
ity (Mikolov et al., 2013a; Pennington et al., 2014).
These embeddings are now being used in new ways
as they are being tailored to specific downstream
tasks (Bansal et al., 2014).

Phrase representations can be created from
word vectors using compositional models. Sim-
ple but effective compositional models were stud-
ied by Mitchell and Lapata (2008; 2010) and
Blacoe and Lapata (2012). They compared a va-
riety of binary operations on word vectors and
found that simple point-wise multiplication of
explicit vector representations performed very
well. Other works like Zanzotto et al. (2010) and
Baroni and Zamparelli (2010) also explored compo-
sition using models based on operations of vectors
and matrices.

More recent work has shown that the
extremely efficient neural embeddings of
Mikolov et al. (2013a) also do well on compo-
sitional tasks simply by adding the word vectors
(Mikolov et al., 2013b). Hashimoto et al. (2014)
introduced an alternative word embedding and
compositional model based on predicate-argument
structures that does well on two simple com-
position tasks, including the one introduced by
Mitchell and Lapata (2010).

An alternative approach to composition, used by
Socher et al. (2011), is to train a recursive neural
network (RNN) whose structure is defined by a bi-
narized parse tree. In particular, they trained their
RNN as an unsupervised autoencoder. The RNN
captures the latent structure of composition. Recent
work has shown that this model struggles in tasks in-

4available on the authors’ websites



volving compositionality (Blacoe and Lapata, 2012;
Hashimoto et al., 2014).5 However, we found suc-
cess using RNNs in asupervisedsetting, similar
to Socher et al. (2014), who used RNNs to learn
representations for image descriptions. The objec-
tive function we used in this work was motivated
by their multimodal objective function for learning
joint image-sentence representations.

Lastly, the PPDB has been used along with other
resources to learn word embeddings for several
tasks, including semantic similarity, language mod-
eling, predicting human judgments, and classifi-
cation (Yu and Dredze, 2014; Faruqui et al., 2015).
Concurrently with our work, it has also been used
to construct paraphrase models for short phrases
(Yu and Dredze, 2015).

3 New Paraphrase Datasets

We created two novel datasets: (1) Annotated-
PPDB, a subset of phrase pairs from PPDB which
are annotated according to how strongly they rep-
resent a paraphrase relationship, and (2) ML-
Paraphrase, a re-annotation of the bigram similarity
dataset from Mitchell and Lapata (2010), again an-
notated for strength of paraphrase relationship.

3.1 Annotated-PPDB

Our motivation for creating Annotated-PPDB was
to establish a way to evaluate compositional para-
phrase models onshort phrases. Most ex-
isting paraphrase tasks focus on words, like
SimLex-999 (Hill et al., 2014b), or entire sentences,
such as the Microsoft Research Paraphrase Cor-
pus (Dolan et al., 2004; Quirk et al., 2004). To our
knowledge, there are no datasets that focus on the
paraphrasability of short phrases. Thus, we cre-
ated Annotated-PPDB so that researchers can focus
on local compositional phenomena and measure the
performance of models directly—avoiding the need
to do so indirectly in a sentence-level task. Models
that have strong performance on Annotated-PPDB
can be used to provide more accurate confidence
scores for the paraphrases in the PPDB as well as re-
duce the need for large paraphrase tables altogether.

5We also replicated this approach and found training to be
time-consuming even using low-dimensional word vectors.

Annotated-PPDB was created in a multi-step pro-
cess (outlined below) involving various automatic
filtering steps followed by crowdsourced human an-
notation. One of the aims for our dataset was to col-
lect a variety of paraphrase types—we wanted to in-
clude pairs that were non-trivial to recognize as well
as those with a range of similarity and length. We fo-
cused on phrase pairs with limited lexical overlap to
avoid including those with only trivial differences.

We started with candidate phrases extracted from
the first 10M pairs in the XXL version of the PPDB
and then executed the following steps.6

Filter phrases for quality: Only those phrases
whose tokens were in our vocabulary were retained.7

Next, all duplicate paraphrase pairs were removed;
in PPDB, these are distinct pairs that contain the
same two phrases with the order swapped.
Filter by lexical overlap: Next, we calculated the
word overlap scorein each phrase pair and then re-
tained only those pairs that had a score of less than
0.5. By word overlap score, we mean the fraction
of tokens in the smaller of the phrases with Leven-
shtein distance≤ 1 to a token in the larger of the
phrases. This was done to exclude less interesting
phrase pairs like〈my dad had, my father had〉 or
〈ballistic missiles, of ballistic missiles〉 that only dif-
fer in a synonym or the addition of a single word.
Select range of paraphrasabilities:To balance our
dataset with both clear paraphrases and erroneous
pairs in PPDB, we sampled 5,000 examples from ten
chunks of the first 10M initial phrase pairs where a
chunk is defined as 1M phrase pairs.
Select range of phrase lengths:We then selected
1,500 phrases from each 5000-example sample that
encompassed a wide range of phrase lengths. To do
this, we first binned the phrase pairs by theireffec-
tive size. Let n1 be the number of tokens of length
greater than one character in the first phrase andn2

the same for the second phrase. Then theeffective
sizeis defined asmax(n1, n2). The bins contained
pairs ofeffective sizeof 3, 4, and 5 or more, and 500

6Note that the confidence scores for phrase pairs in PPDB
are based on a weighted combination of features with weights
determined heuristically. The confidence scores were used to
place the phrase pairs into their respective sets (S, M, L, XL,
XXL, etc.), where each larger set subsumes all smaller ones.

7Throughout, our vocabulary is defined as the most common
100K word types in English Wikipedia, following tokenization
and lowercasing (see§5).



pairs were selected from each bin. This gave us a
total of 15,000 phrase pairs.

Prune to 3,000: 3,000 phrase pairs were then se-
lected randomly from the 15,000 remaining pairs to
form an initial dataset, Annotated-PPDB-3K. The
phrases were selected so that every phrase in the
dataset was unique.

Annotate with Mechanical Turk: The dataset was
then rated on a scale from 1-5 using Amazon Me-
chanical Turk, where a score of 5 denoted phrases
that are equivalent in a large number of contexts, 3
meant that the phrases had some overlap in mean-
ing, and 1 indicated that the phrases were dissimilar
or contradictory in some way (e.g.,can not adopt
andis able to accept).

We only permitted workers whose location was in
the United States and who had done at least 1,000
HITS with a 99% acceptance rate. Each example
was labeled by 5 annotators and their scores were
averaged to produce the final rating. Table 1 shows
some statistics of the data. Overall, the annotated
data had a mean deviation (MD)8 of 0.80. Table 1
shows that overall, workers found the phrases to be
of high quality, as more than two-thirds of the pairs
had an average score of at least 3. Also from the Ta-
ble, we can see that workers had stronger agreement
on very low and very high quality pairs and were
less certain in the middle of the range.

Prune to 1,260: To create our final dataset,
Annotated-PPDB, we selected 1,260 phrase pairs
from the 3,000 annotations. We did this by first bin-
ning the phrases into 3 categories: those with scores
in the interval[1, 2.5), those with scores in the in-
terval[2.5, 3.5], and those with scores in the interval
(3.5, 5]. We took the 420 phrase pairs with the low-
est MD in each bin, as these have the most agree-
ment about their label, to form Annotated-PPDB.

These 1,260 examples were then randomly split
into a development set of 260 examples and a test set
of 1,000 examples. The development set had an MD
of 0.61 and the test set had an MD of 0.60, indicating
the final dataset had pairs of higher agreement than
the initial 3,000.

8MD is similar to standard deviation, but uses absolute value
instead of squared value and thus is both more intuitive and less
sensitive to outliers.

Score Range MD % of Data
[1, 2) 0.66 8.1
[2, 3) 1.05 20.0
[3, 4) 0.93 34.9
[4, 5] 0.59 36.9

Table 1: An analysis of Annotated-PPDB-3K extracted from
PPDB. The statistics shown are for the splits of the data accord-
ing to the average score by workers. MD denotes mean devia-
tion and % of Data refers to the percentage of our dataset that
fell into each range.

3.2 ML-Paraphrase

Our second newly-annotated dataset,
ML-Paraphrase, is based on the bigram
similarity task originally introduced by
Mitchell and Lapata (2010); we refer to the
original annotations as the ML dataset.

The ML dataset consists of human similarity rat-
ings for three types of bigrams: adjective-noun (JN),
noun-noun (NN), and verb-noun (VN). Through
manual inspection, we found that the annotations
were not consistent with the notion of similarity
central to paraphrase tasks. For instance,television
setandtelevision programmewere the highest rated
phrases in the NN section (based on average anno-
tator score). Similarly, one of the highest ranked JN
pairs wasolder manandelderly woman. This indi-
cates that the annotations reflect topical similarity in
addition to capturing functional or definitional simi-
larity.

Therefore, we had the data re-annotated by two
authors of this paper who are native English speak-
ers.9 The bigrams were labeled on a scale from 1-
5 where 5 denotes phrases that are equivalent in a
large number of contexts, 3 indicates the phrases are
roughly equivalent in a narrow set of contexts, and
1 means the phrases are not at all equivalent in any
context. Following annotation, we collapsed the rat-
ing scale by merging 4s and 5s together and 1s and
2s together.

Statistics for the data are shown in Table 2. We
show inter-annotator Spearmanρ and Cohen’sκ in
columns 2 and 3, indicating substantial agreement
on the JN and VN portions but only moderate agree-
ment on NN. In fact, when evaluating our NN anno-

9We tried using Mechanical Turk here, but due to such short
phrases, with few having the paraphrase relationship, workers
did not perform well on the task.



Data IA ρ IA κ ML comp.ρ ML Humanρ
JN 0.87 0.79 0.56 0.52
NN 0.64 0.58 0.38 0.49
VN 0.73 0.73 0.55 0.55

Table 2: Inter-annotator agreement of ML-Paraphrase and com-
parison with ML dataset. Columns 2 and 3 show the inter-
annotator agreement between the two annotators measured with
Spearmanρ and Cohen’sκ. Column 4 shows theρ between
ML-Paraphrase and all of the ML dataset. The last column is
the average humanρ on the ML dataset.

tations against those from the original ML data (col-
umn 4), we findρ to be 0.38, well below the average
human correlation of 0.49 (final column) reported by
Mitchell and Lapata and also surpassed by pointwise
multiplication (Mitchell and Lapata, 2010). This
suggests that the original NN portion, more so than
the others, favored a notion of similarity more re-
lated to association than paraphrase.

4 Paraphrase Models

We now present parametric paraphrase models and
discuss training. Our goal is to embed phrases into
a low-dimensional space such that cosine similarity
in the space corresponds to the strength of the para-
phrase relationship between phrases.

We use a recursive neural network (RNN) similar
to that used by Socher et al. (2014). We first use a
constituent parser to obtain a binarized parse of a
phrase. For phrasep, we compute its vectorg(p)
through recursive computation on the parse. That is,
if phrasep is the yield of a parent node in a parse
tree, and phrasesc1 andc2 are the yields of its two
child nodes, we defineg(p) recursively as follows:

g(p) = f(W [g(c1); g(c2)] + b)

where f is an element-wise activation function
(tanh), [g(c1); g(c2)] ∈ R

2n is the concatenation
of the child vectors,W ∈ R

n×2n is the composi-
tion matrix, b ∈ R

n is the offset, andn is the di-
mensionality of the word embeddings. If nodep
has no children (i.e., it is a single token), we define
g(p) = W

(p)
w , whereWw is the word embedding

matrix in which particular word vectors are indexed
using superscripts. The trainable parameters of the
model areW , b, andWw.

4.1 Objective Functions

We now present objective functions for training on
pairs extracted from PPDB. The training data con-
sists of (possibly noisy) pairs taken directly from the
original PPDB. In subsequent sections, we discuss
how we extract training pairs for particular tasks.

We assume our training data consists of a setX of
phrase pairs〈x1, x2〉, wherex1 andx2 are assumed
to be paraphrases. To learn the model parame-
ters (W, b,Ww), we minimize our objective function
over the data using AdaGrad (Duchi et al., 2011)
with mini-batches. The objective function follows:

min
W,b,Ww

1

|X|

(

∑

〈x1,x2〉∈X

max(0, δ − g(x1) · g(x2) + g(x1) · g(t1))

+ max(0, δ − g(x1) · g(x2) + g(x2) · g(t2))

)

+ λW (‖W‖2 + ‖b‖2) + λWw ‖Wwinitial
−Ww‖

2

(1)

whereλW andλWw are regularization parameters,
Wwinitial

is the initial word embedding matrix,δ is
themargin (set to1 in all of our experiments), and
t1 and t2 are carefully-selectednegative examples
taken from a mini-batch during optimization.

The intuition for this objective is that we want
the two phrases to be more similar to each other
(g(x1) · g(x2)) than either is to their respective neg-
ative examplest1 andt2, by a margin of at leastδ.

Selecting Negative Examples To selectt1 andt2
in Eq. 1, we simply chose the most similar phrase in
the mini-batch (other than those in the given phrase
pair). E.g., for choosingt1 for a given〈x1, x2〉:

t1 = argmax
t:〈t,·〉∈Xb\{〈x1,x2〉}

g(x1) · g(t)

whereXb ⊆ X is the current mini-batch. That is,
we want to choose a negative exampleti that is sim-
ilar to xi according to the current model parameters.
The downside of this approach is that we may oc-
casionally choose a phraseti that is actually a true
paraphrase ofxi. We also tried a strategy in which
we selected the least similar phrase that would trig-
ger an update (i.e.,g(ti) ·g(xi) > g(x1) ·g(x2)−δ),
but we found the simpler strategy above to work bet-
ter and used it for all experiments reported below.



Discussion The objective in Eq. 1 is similar to one
used by Socher et al. (2014), but with several differ-
ences. Their objective compared text and projected
images. They also did not update the underlying
word embeddings; we do so here, and in a way such
that they are penalized from deviating from their ini-
tialization. Also for a given〈x1, x2〉, they do not
select a singlet1 and t2 as we do, but use the en-
tire training set, which can be very expensive with a
large training dataset.

We also experimented with a simpler objective
that sought to directly minimize the squared L2-
norm betweeng(x1) andg(x2) in each pair, along
with the same regularization terms as in Eq. 1.
One problem with this objective function is that the
global minimum is0 and is achieved simply by driv-
ing the parameters to0. We obtained much better
results using the objective in Eq. 1.

Training Word Paraphrase Models To train just
word vectors on word paraphrase pairs (again from
PPDB), we used the same objective function as
above, but simply dropped the composition terms.
This gave us an objective that bears some similarity
to the skip-gram objective with negative sampling
in word2vec (Mikolov et al., 2013a). Both seek
to maximize the dot products of certain word pairs
while minimizing the dot products of others. This
objective function is:

min
Ww

1

|X|

(

∑

〈x1,x2〉∈X

max(0, δ −W (x1)
w ·W (x2)

w

+W (x1)
w ·W (t1)

w ) + max(0, δ −W (x1)
w ·W (x2)

w +

W (x2)
w ·W (t2)

w )

)

+ λWw ‖Wwinitial
−Ww‖

2 (2)

It is like Eq. 1 except with word vectors replacing
the RNN composition function and with the regular-
ization terms on theW andb removed.

We further found we could improve this model by
incorporating constraints. From our training pairs,
for a given wordw, we assembled all other words
that were paired with it in PPDB and all of their lem-
mas. These were then used as constraints during the
pairing process: a wordt could only be paired with
w if it was not in its list of assembled words.

5 Experiments – Word Paraphrasing

We first present experiments on learning lexi-
cal paraphrasability. We train on word pairs
from PPDB and evaluate on the SimLex-999
dataset (Hill et al., 2014b), achieving the best results
reported to date.

5.1 Training Procedure

To learn word vectors that reflect paraphrasability,
we optimized Eq. 2. There are many tunable hyper-
parameters with this objective, so to make training
tractable we fixed the initial learning rates for the
word embeddings to 0.5 and the marginδ to 1. Then
we did a coarse grid search over a parameter space
for λWw and the mini-batch size. We considered
λWw values in{10−2, 10−3, ..., 10−7, 0} and mini-
batch sizes in{100, 250, 500, 1000}. We trained
for 20 epochs for each set of hyperparameters using
AdaGrad (Duchi et al., 2011).

For all experiments, we initialized our word
vectors with skip-gram vectors trained using
word2vec (Mikolov et al., 2013a). The vectors
were trained on English Wikipedia (tokenized and
lowercased, yielding 1.8B tokens).10 We used a
window size of 5 and a minimum count cut-off of
60, producing vectors for approximately 270K word
types. We retained vectors for only the 100K most
frequent words, averaging the rest to obtain a single
vector for unknown words. We will refer to this set
of the 100K most frequent words as ourvocabulary.

5.2 Extracting Training Data

For training, we extracted word pairs from the lexi-
cal XL section of PPDB. We used the XL data for
all experiments, including those for phrases. We
used XL instead of XXL because XL has better qual-
ity overall while still being large enough so that we
could be selective in choosing training pairs. There
are a total of 548,085 pairs. We removed 174,766
that either contained numerical digits or words not
in our vocabulary. We then removed 260,425 re-
dundant pairs, leaving us with a final training set of
112,894 word pairs.

10We used the December 2, 2013 snapshot.



Model n SL999ρ
skip-gram 25 0.21
skip-gram 1000 0.38
PARAGRAM WS 25 0.56∗

+ constraints 25 0.58∗

Hill et al. (2014b) 200 0.446
Hill et al. (2014a) - 0.52
inter-annotator agreement N/A 0.67

Table 3: Results on the SimLex-999 (SL999) word similarity
task obtained by performing hyperparameter tuning based on
2×WS-S−WS-R and treating SL999 as a held-out test set.n

is word vector dimensionality. A∗ indicates statistical signifi-
cance (p < 0.05) over the 1000-dimensional skip-gram vectors.

5.3 Tuning and Evaluation

Hyperparameters were tuned using the wordsim-353
(WS353) dataset (Finkelstein et al., 2001), specifi-
cally its similarity (WS-S) and relatedness (WS-
R) partitions (Agirre et al., 2009). In particular, we
tuned to maximize2×WS-S correlation minus the
WS-R correlation. The idea was to reward vectors
with high similarity and relatively low relatedness,
in order to target the paraphrase relationship.

After tuning, we evaluated the best hy-
perparameters on the SimLex-999 (SL999)
dataset (Hill et al., 2014b). We chose SL999 as
our primary test set as it most closely evaluates
the paraphrase relationship. Even though WS-S
is a close approximation to this relationship, it
does not include pairs that are merely associated
and assigned low scores, which SL999 does (see
discussion in Hill et al., 2014b).

Note that for all experiments we used cosine sim-
ilarity as our similarity metric and evaluated the sta-
tistical significance of dependent correlations using
the one-tailed method of (Steiger, 1980).

5.4 Results

Table 3 shows results on SL999 when improving
the initial word vectors by training on word pairs
from PPDB, both with and without constraints. The
“ PARAGRAM WS” rows show results when tuning to
maximize2×WS-S− WS-R. We also show results
for strong skip-gram baselines and the best results
from the literature, including the state-of-the-art re-
sults from Hill et al. (2014a) as well as the inter-

annotator agreement from Hill et al. (2014b).11

The table illustrates that, by training on PPDB,
we can surpass the previous best correlations on
SL999 by 4-6% absolute, achieving the best results
reported to date. We also find that we can train
low-dimensional word vectors that exceed the per-
formance of much larger vectors. This is very use-
ful as using large vectors can increase both time and
memory consumption in NLP applications.

To generate word vectors to use for downstream
applications, we chose hyperparameters so as to
maximize performance on SL999.12 These word
vectors, which we refer to asPARAGRAM vectors,
had aρ of 0.57 on SL999. We use them as initial
word vectors for the remainder of the paper.

5.5 Sentiment Analysis

As an extrinsic evaluation of ourPARAGRAM word
vectors, we used them in a convolutional neu-
ral network (CNN) for sentiment analysis. We
used the simple CNN from Kim (2014) and the
binary sentence-level sentiment analysis task from
Socher et al. (2013). We used the standard data
splits, removing examples with a neutral rating.
We trained on all constituents in the training set
while only using full sentences from development
and test, giving us train/development/test sizes of
67,349/872/1,821.

The CNN usesm-gram filters, each of which is an
m×n vector. The CNN computes the inner product
between anm-gram filter and eachm-gram in an
example, retaining the maximum match (so-called
“max-pooling”). The score of the match is a single
dimension in a feature vector for the example, which
is then associated with a weight in a linear classifier
used to predict positive or negative sentiment.

While Kim (2014) usedm-gram filters of sev-
eral lengths, we only used unigram filters. We
also fixed the word vectors during learning (called
“static” by Kim). After learning, the unigram fil-
ters correspond to locations in the fixed word vec-
tor space. The learned classifier weights represent
how strongly each location corresponds to positive
or negative sentiment. We expect this static CNN to

11Hill et al. (2014a) did not report the dimensionality of the
vectors that led to their state-of-the-art results.

12We did not use constraints during training.



word vectors n accuracy (%)
skip-gram 25 77.0
skip-gram 50 79.6
PARAGRAM 25 80.9

Table 4: Test set accuracies when comparing embeddings
in a static CNN on the binary sentiment analysis task from
Socher et al. (2013).

be more effective if the word vector space separates
positive and negative sentiment.

In our experiments, we compared baseline skip-
gram embeddings to ourPARAGRAM vectors. We
used AdaGrad learning rate of 0.1, mini-batches of
size 10, and a dropout rate of 0.5. We used 200 un-
igram filters and rectified linear units as the activa-
tion (applied to the filter output+ filter bias). We
trained for 30 epochs, predicting labels on the de-
velopment set after each set of 3,000 examples. We
recorded the highest development accuracy and used
those parameters to predict labels on the test set.

Results are shown in Table 4. We see improve-
ments over the baselines when usingPARAGRAM

vectors, even exceeding the performance of higher-
dimensional skip-gram vectors.

6 Experiments – Compositional
Paraphrasing

In this section, we describe experiments on a variety
of compositional phrase-based paraphrasing tasks.
We start with the simplest case of bigrams, and then
proceed to short phrases. For all tasks, we again
train on appropriate data from PPDB and test on
various evaluation datasets, including our two novel
datasets (Annotated-PPDB and ML-Paraphrase).

6.1 Training Procedure

We trained our models by optimizing Eq. 1 using
AdaGrad (Duchi et al., 2011). We fixed the initial
learning rates to 0.5 for the word embeddings and
0.05 for the composition parameters, and the mar-
gin to 1. Then we did a coarse grid search over a
parameter space forλWw , λW , and mini-batch size.

For λWw , our search space again consisted
of {10−2, 10−3, ..., 10−7, 0}, for λW it was
{10−1, 10−2, 10−3, 0}, and we explored batch
sizes of{100, 250, 500, 1000, 2000}. When ini-
tializing with PARAGRAM vectors, the search
space for λWw was shifted upwards to be

{10, 1, 10−1 , 10−3, ..., 10−6} to reflect our in-
creased confidence in the initial vectors. We trained
only for 5 epochs for each set of parameters. For
baselines, we used the same initial skip-gram
vectors as in Section 5.

6.2 Evaluation and Baselines

For all experiments, we again used cosine similarity
as our similarity metric and evaluated the statistical
significance using the method of (Steiger, 1980).

A baseline used in all compositional experi-
ments is vector addition of skip-gram (orPARA-
GRAM) word vectors. Unlike explicit word vec-
tors, where point-wise multiplication acts as a con-
junction of features and performs well on composi-
tion tasks (Mitchell and Lapata, 2008), using addi-
tion with skip-gram vectors (Mikolov et al., 2013b)
gives better performance than multiplication.

6.3 Bigram Paraphrasability

To evaluate our ability to paraphrase bigrams, we
consider the original bigram similarity task from
Mitchell and Lapata (2010) as well as our newly-
annotated version of it: ML-Paraphrase.

Extracting Training Data Training data for
these tasks was extracted from the XL por-
tion of PPDB. The bigram similarity task from
Mitchell and Lapata (2010) contains three types of
bigrams: adjective-noun (JN), noun-noun (NN), and
verb-noun (VN). We aimed to collect pairs from
PPDB that mirrored these three types of bigrams.

We found parsing to be unreliable on such
short segments of text, so we used a POS tag-
ger (Manning et al., 2014) to tag the tokens in each
phrase. We then used the word alignments in PPDB
to extract bigrams for training. For JN and NN,
we extracted pairs containing aligned, adjacent to-
kens in the two phrases with the appropriate part-
of-speech tag. Thus we extracted pairs like〈easy
job, simple task〉 for the JN section and〈town meet-
ing, town council〉 for the NN section. We used a
different strategy for extracting training data for the
VN subset: we took aligned VN tokens and took the
closest noun after the verb. This was done to approx-
imate the direct object that would have been ide-
ally extracted with a dependency parse. An example
from this section is〈achieve goal, achieve aim〉.



Model Mitchell and Lapata (2010) Bigrams ML-Paraphrase
word vectors n comp. JN NN VN Avg JN NN VN Avg
skip-gram 25 + 0.36 0.44 0.36 0.39 0.32 0.35 0.42 0.36
PARAGRAM 25 + 0.44∗ 0.34 0.48∗ 0.42 0.50∗ 0.29 0.58∗‡ 0.46
PARAGRAM 25 RNN 0.51∗† 0.40† 0.50∗‡ 0.47 0.57∗‡ 0.44† 0.55∗ 0.52

Hashimoto et al. (2014) 0.49 0.45 0.46 0.47 0.38 0.39 0.45 0.41
Mitchell and Lapata (2010) 0.46 0.49 0.38 0.44 - - - -
Human - - - - 0.87 0.64 0.73 0.75

Table 5: Results on the test section of the bigram similaritytask of Mitchell and Lapata (2010) and our newly annotated version
(ML-Paraphrase). (n) shows the word vector dimensionality and (“comp.”) shows the composition function used: “+” is vector
addition and “RNN” is the recursive neural network. The * indicates statistically significant (p < 0.05) over the skip-gram model,
† statistically significant over the{PARAGRAM, +} model, and‡ statistically significant over Hashimoto et al. (2014).

We removed phrase pairs that (1) contained words
not in our vocabulary, (2) were redundant with oth-
ers, (3) contained brackets, or (4) had Levenshtein
distance≤ 1. The final criterion helps to ensure that
we train on phrase pairs with non-trivial differences.
The final training data consisted of 133,997 JN pairs,
62,640 VN pairs and 35,601 NN pairs.

Baselines In addition to RNN models, we report
baselines that use vector addition as the composition
function, both with our skip-gram embeddings and
PARAGRAM embeddings from Section 5.

We also compare to several results from prior
work. When doing so, we took theirbestcorrela-
tions for each data subset. That is, the JN and NN re-
sults from Mitchell and Lapata (2010) use their mul-
tiplicative model and the VN results use their dila-
tion model. From Hashimoto et al. (2014) we used
their PAS-CLBLM Addl and PAS-CLBLM Addnl

models. We note that their vector dimensionalities
are larger than ours, usingn = 2000 and50 respec-
tively.

Results Results are shown in Table 5. We re-
port results on the test portion of the original
Mitchell and Lapata (2010) dataset (ML) as well as
the entirety of our newly-annotated dataset (ML-
Paraphrase). RNN results on ML were tuned on the
respective development sections and RNN results on
ML-Paraphrase were tuned on the entire ML dataset.

Our RNN model outperforms results from the lit-
erature on most sections in both datasets and its av-
erage correlations are among the highest.13 The one

13The results obtained here differ from those reported in
Hashimoto et al. (2014) as we scored their vectors with a
newer Python implementation of Spearmanρ that handles ties
(Hashimoto, P.C.).

subset of the data that posed difficulty was the NN
section of the ML dataset. We suspect this is due
to the reasons discussed in Section 3.2; for our ML-
Paraphrase dataset, by contrast, we do see gains on
the NN section.

We also outperform the strong baseline of adding
1000-dimensional skip-gram embeddings, a model
with 40 times the number of parameters, on our ML-
Paraphrase dataset. This baseline had correlations of
0.45, 0.43, and 0.47 on the JN, NN, and VN parti-
tions, with an average of 0.45—below the average
ρ of the RNN (0.52) and even the{PARAGRAM, +}
model (0.46).

Interestingly, the type of vectors used to initial-
ize the RNN has a significant effect on performance.
If we initialize using the 25-dimensional skip-gram
vectors, the averageρ on ML-Paraphrase drops to
0.43, below even the{PARAGRAM, +} model.

6.4 Phrase Paraphrasability

In this section we show that by training a
model based on filtered phrase pairs in PPDB,
we can actually distinguish between quality para-
phrases and poor paraphrases in PPDB better
than the original heuristic scoring scheme from
Ganitkevitch et al. (2013).

Extracting Training Data As before, training
data was extracted from the XL section of PPDB.
Similar to the procedure to create our Annotated-
PPDB dataset, phrases were filtered such that only
those with aword overlap scoreof less than 0.5
were kept. We also removed redundant phrases and
phrases that contained tokens not in our vocabulary.
The phrases were then binned according to theiref-
fective sizeand 20,000 examples were selected from



bins ofeffective sizesof 3, 4, and more than 5, cre-
ating a training set of 60,000 examples. Care was
taken to ensure that none of our training pairs was
also present in our development and test sets.

Baselines We compare our models with strong
lexical baselines. The first,strict word overlap, is
the percentage of words in the smaller phrase that
are also in the larger phrase. We also include a ver-
sion where the words are lemmatized prior to the
calculation.

We also train a support vector regression model
(epsilon-SVR) (Chang and Lin, 2011) on the 33 fea-
tures that are included for each phrase pair in PPDB.
We scaled the features such that each lies in the in-
terval [−1, 1] and tuned the parameters using 5-fold
cross validation on our dev set.14 We then trained on
the entire dev set after finding the best performing
C andǫ combination and evaluated on the test set of
Annotated-PPDB.

Model
word vectors n comp. Annotated-PPDB
skip-gram 25 + 0.20
PARAGRAM 25 + 0.32∗

PARAGRAM 25 RNN 0.40∗†‡

Ganitkevitch et al. (2013) 0.25
word overlap (strict) 0.26
word overlap (lemmatized) 0.20
PPDB+SVR 0.33

Table 6: Spearman correlation on Annotated-PPDB. The *
indicates statistically significant (p < 0.05) over the skip-
gram model, the† indicates statistically significant over the
{PARAGRAM, +} model, and the‡ indicates statistically sig-
nificant over PPDB+SVR.

Results We evaluated on our Annotated-PPDB
dataset described in§3.1. Table 6 shows the Spear-
man correlations on the 1000-example test set. RNN
models were tuned on the development set of 260
examples. All other methods had no hyperparame-
ters and therefore required no tuning.

We note that the confidence estimates from
Ganitkevitch et al. (2013) reach aρ of 0.25 on the
test set, similar to the results of strict overlap. While
25-dimensional skip-gram embeddings only reach
0.20, we can improve this to 0.32 by fine-tuning
them using PPDB (thereby obtaining ourPARA-

14We tuned both parameters over{2−10
, 2

−9
, ..., 2

10}.

GRAM vectors). By using thePARAGRAM vectors
to initialize the RNN, we reach a correlation of 0.40,
which is better than the PPDB confidence estimates
by 15% absolute.

We again consider addition of 1000-dimensional
skip-gram embeddings as a baseline, and they con-
tinue to perform strongly (ρ = 0.37). The RNN ini-
tialized withPARAGRAM vectors does reach a higher
ρ (0.40), but the difference is not statistically signif-
icant (p = 0.16). Thus we can achieve similarly-
strong results with far fewer parameters.

This task also illustrates the importance of initial-
izing our RNN model with appropriate word embed-
dings. An RNN initialized with skip-gram vectors
has a modestρ of 0.22, well below theρ of the RNN
initialized with PARAGRAM vectors. Clearly, ini-
tialization is important when optimizing non-convex
objectives like ours, but it is noteworthy that our best
results came from first improving the word vectors
and then learning the composition model, rather than
jointly learning both from scratch.

7 Qualitative Analysis

Score Range + RNN
[1, 2) 2.35 2.08
[2, 3) 1.56 1.38
[3, 4) 0.87 0.85
[4, 5] 0.43 0.47

Table 7: Average absolute error of addition and RNN models
on different ranges of gold scores.

We performed a qualitative analysis to uncover
sources of error and determine differences between
addingPARAGRAM vectors and using an RNN ini-
tialized with them. To do so, we took the output
of both systems on Annotated-PPDB and mapped
their cosine similarities to the interval[1, 5]. We
then computed their absolute error as compared to
the gold ratings.

Table 7 shows how the average of these absolute
errors changes with the magnitude of the gold rat-
ings. The RNN performs better (has lower average
absolute error) for less similar pairs. Vector addi-
tion only does better on the most similar pairs. This
is presumably because the most positive pairs have
high word overlap and so can be represented effec-
tively with a simpler model.



Index Phrase 1 Phrase 2 Length Ratio Overlap Ratio Gold RNN +
1 scheduled to be held in that will take place in 1.0 0.4 4.6 2.9 4.4
2 according to the paper ,the newspaper reported that 0.8 0.5 4.6 2.8 4.1

3 at no cost to without charge to 0.75 1.0 4.8 3.1 4.6
4 ’s surname family name of 0.67 1.0 4.4 2.8 4.1

5 could have an impact on may influence 0.4 0.5 4.6 4.2 3.2
6 to participate actively to play an active role 0.6 0.67 5.0 4.8 4.0

7 earliest opportunity early as possible 0.67 0.0 4.4 4.3 2.9
8 does not exceed is no more than 0.75 0.0 5.0 4.8 3.5

Table 8: Illustrative phrase pairs from Annotated-PPDB with gold similarity> 4. The last three columns show the gold similarity
score, the similarity score of the RNN model, and the similarity score of vector addition. We note that addition performsbetter
when the pairs have high length ratio (rows 1–2) or overlap ratio (rows 3–4) while the RNN does better when those values arelow
(rows 5–6 and 7–8 respectively). Boldface indicates smaller error compared to gold scores.

To further investigate the differences between
these models, we removed those pairs with gold
scores in[2, 4], in order to focus on pairs with ex-
treme scores. We identified two factors that dis-
tinguished the performance between the two mod-
els: length ratio and the amount of lexical overlap.
We did not find evidence that non-compositional
phrases, such as idioms, were a source of error as
these were not found in ML-Paraphrase and only ap-
pear rarely in Annotated-PPDB.

We define length ratio as simply the number of
tokens in the smaller phrase divided by the number
of tokens in the larger phrase. Overlap ratio is the
number ofequivalent tokensin the phrase pair di-
vided by the number of tokens in the smaller of the
two phrases.Equivalent tokensare defined as to-
kens that are either exact matches or are paired up in
the lexical portion of PPDB used to train thePARA-
GRAM vectors.

Table 9 shows how the performance of the mod-
els changes under different values of length ratio and
overlap ratio.15 The values in this table are the per-
centage changes in absolute error when using the
RNN over thePARAGRAM vector addition model.
So negative values indicate superior performance by
the RNN.

A few trends emerge from this table. One is that
as the length ratio increases (i.e., the phrase pairs
are closer in length), addition surpasses the RNN
for positive examples. For negative examples, the
trend is reversed. The same trend appears for over-

15The bin delimiters were chosen to be uniform over the
range of output values of the length ratio ([0.4,1] with one out-
lier data point removed) and overlap ratio ([0,1]).

Length Ratio [0, 0.6] (0.6, 0.8] (0.8, 1]
Positive Examples -22.4 10.0 35.5
Negative Examples -9.9 -11.1 -12.2

Both -13.0 -6.4 -2.0

Overlap Ratio [0,1
3
] ( 1

3
,2
3
] ( 2

3
,1]

Positive Examples -4.5 7.0 19.4
Negative Examples -11.3 -7.5 -15.0

Both -10.6 -5.3 0.0

Table 9: Comparison of the addition and RNN model on phrase
pairs of different overlap and length ratios. The values in the
table are the percent change in absolute error from the addition
model to the RNN model. Negative examples are defined as
pairs from Annotated-PPDB whose gold score is less than 2 and
positive examples are those with scores greater than 4. “Both”
refers to both negative and positive examples.

lap ratio. Examples from Annotated-PPDB illustrat-
ing these trends on positive examples are shown in
Table 8.

When considering both positive and negative ex-
amples (“Both”), we see that the RNN excels on the
most difficult examples (large differences in phrase
length and less lexical overlap). For easier exam-
ples, the two fare similarly overall (-2.0 to 0.0%
change), but the RNN does much better on nega-
tive examples. This aligns with the intuition that
addition should perform well when two paraphrastic
phrases have high lexical overlap and similar length.
But when they are not paraphrases, simple addition
is misled and the RNN’s learned composition func-
tion better captures the relationship. This may sug-
gest new architectures for modeling composition-
ality differently depending on differences in length
and amount of overlap.



Model n SL999 WS353 WS-S WS-R
GloVe 300 0.376 0.579 0.630 0.571
PARAGRAM300,WS353 300 0.667 0.769 0.814 0.730
PARAGRAM300,SL999 300 0.685 0.720 0.779 0.652
inter-annotator agreement∗ N/A 0.67 0.756 N/A N/A

Table 10: Evaluation of 300 dimensionalPARAGRAM vectors on SL999 and WS353. Note that the inter-annotator agreementρ
was calculated differently for WS353 and SL999. For SL999, the agreement was computed as the average pairwise correlation
between pairs of annotators, while for WS353, agreement wascomputed as the average correlation between a single annotator with
the average over all other annotators. If one uses the alternative measure of agreement for WS353, the agreement is 0.611, which is
easily beaten by automatic methods (Hill et al., 2014b).

Model Mitchell and Lapata (2010) Bigrams ML-Paraphrase
word vectors n comp. JN NN VN Avg JN NN VN Avg
GloVe 300 + 0.40 0.46 0.37 0.41 0.39 0.36 0.45 0.40
PARAGRAM300,WS353 300 + 0.52 0.41 0.49 0.48 0.55 0.42 0.55 0.51
PARAGRAM300,SL999 300 + 0.51 0.36 0.51 0.46 0.57 0.39 0.59 0.52

Table 11: Evaluation of 300 dimensionalPARAGRAM vectors on the bigram tasks.

8 Conclusion

We have shown how to leverage PPDB to learn
state-of-the-art word embeddings and compositional
models for paraphrase tasks. Since PPDB was cre-
ated automatically from parallel corpora, our models
are also built automatically. Only small amounts of
annotated data are used to tune hyperparameters.

We also introduced two new datasets to evaluate
compositional models of short paraphrases, filling a
gap in the NLP community, as currently there are no
datasets created for this purpose. Successful mod-
els on these datasets can then be used to extend the
coverage of, or provide an alternative to, PPDB.

There remains a great deal of work to be done
in developing new composition models, whether
with new network architectures or distance func-
tions. In this work, we based our composi-
tion function on constituent parse trees, but this
may not be the best approach—especially for short
phrases. Dependency syntax may be a better al-
ternative (Socher et al., 2014). Besides improving
composition, another direction to explore is how to
use models for short phrases in sentence-level para-
phrase recognition and other downstream tasks.

Appendix A

Increasing the dimension of word embeddings or
training them on more data can have a signifi-
cant positive impact on many tasks—both at the
word level and on downstream tasks. We scaled

Model
word vectors n comp. Annotated-PPDB
GloVe 300 + 0.27
PARAGRAM300,WS353 300 + 0.43
PARAGRAM300,SL999 300 + 0.41

Table 12: Evaluation of 300 dimensionalPARAGRAM vectors
on Annotated-PPDB.

up our original 25-dimensionalPARAGRAM embed-
dings and modified our training procedure slightly in
order to produce two sets of 300-dimensionalPARA-
GRAM vectors.16 The vectors outperform our origi-
nal 25-dimensionalPARAGRAM vectors on all tasks
and achieve human-level performance on SL999 and
WS353. Moreover, when simply using vector ad-
dition as a compositional model, they are both on
par with the RNN models we trained specifically for
each task. These results can be seen in Tables 10, 11,
and 12.

The main modification was to use higher-
dimensional initial embeddings, in our case the
pretrained 300-dimensional GloVe embeddings.17

Since PPDB only contains lowercased words, we ex-
tracted only one GloVe vector per word type (regard-
less of case) by taking the first occurrence of each
word in the vocabulary. This is the vector for the
most common casing of the word, and was used as

16Both PARAGRAM300,WS353 andPARAGRAM300,SL999 vec-
tors can be found on the authors’ websites.

17We used the GloVe vectors trained on 840 bil-
lion tokens of Common Crawl data, available at
http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/projects/glove/


the word’s single initial vector in our experiments.
This reduced the vocabulary from the original 2.2
million types to 1.7 million.

Smaller changes included replacing dot product
with cosine similarity in Equation 2 and a change to
the negative sampling procedure. We experimented
with three approaches:MAX samplingdiscussed in
Section 4.1,RAND samplingwhich is random sam-
pling from the batch, and a 50/50 mixture ofMAX
samplingandRAND sampling.

For training data, we selected all word pairs
in the lexical portion of PPDB XL that were in
our vocabulary, removing redundancies. This re-
sulted in 169,591 pairs for training. We trained
our models for 10 epochs and tuned hyperparam-
eters (batch size,λWw , δ, and sampling method)
in two ways: maximum correlation on WS353
(PARAGRAM300,WS353) and maximum correlation
on SL999 (PARAGRAM300,SL999).18 We report re-
sults for both sets of embeddings in Tables 10, 11,
and 12, and make both available to the community
in the hope that they may be useful for other down-
stream tasks.
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