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Abstract

We evaluate several different overlay routing structures for
supporting interactivity features in End Sysytem Multicast.
Interactivity features include low-bandwidth textual chat, as
well as higher-bandwidth audio conferencing and immersive
audio applications. Overlays are evaluated using real inter-
action patterns seen in IRC, as well as real join and leave
patterns from an ESM video broadcast. Results indicate that
a Hybrid overlay structure, which is a combination of central
server and peer-to-peer techniques, provides the smallest de-
lay for textual messages sent through the system. Also, the
Hybrid and ESM-Latency structures are best capable of sup-
porting higher-bandwidth audio applications.

1 Introduction

End System Multicast (ESM) is a system designed to allow
users to broadcast high-quality video and audio to a large
number of receivers. It operates by dynamically building and
refining an overlay multicast tree structure, with the source
of the video situated at the root of the tree. Data from the
video broadcast is sent through the tree, from root to leaves,
and each non-leaf participant is responsible for maintaining
a set of children, to which they forward the video and audio
data.

Each participant in the tree has a certain amount of up-
stream bandwidth, which determines the number of children
they can support. Nodes with higher amounts of bandwidth
can support more children, and the tree is constructed to
provide the greatest amount of bandwidth to each node, up
to the bit rate of the stream. Thus, ESM optimizes the tree
for bandwidth. A second optimization is made for latency,
whereby when a node has to chose a new parent, lower-
latency nodes are preferred over higher-latency nodes when
both nodes are able to provide it the video stream [3]. It
has been shown in [11] that this overlay structure has been
highly successful for the transmission of high-quality video
and audio streams.

However, a new generation of features is required within
ESM in order to continue the success of ESM within the real
world. Users need to be compelled to install the ESM player
in order to view the content broadcast via ESM, and con-
tent publishers need to be convinced of the benefits of using
the ESM technology before they will publish their content
on ESM. In order to provide more value to both of these
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groups, we seek to add interactivity features within ESM.
These features allow users to become more engaged in the
broadcast, by enabling them to interact amongst themselves,
as well as with the content providers. Since users feel more
satisfied when able to interact with others [15], we believe
that interactivity features are a necessary feature to imple-
ment within ESM.

There are two classes of interactivity features we consider.
The first includes features which do not have stringent band-
width requirements. Textual chat, buddy lists, awareness dis-
plays, shared whiteboards, and voting systems all have triv-
ial bandwidth requirements, when compared to high-quality
streaming video. The second class includes features requiring
higher bandwidth, such as audio chat and immersive audio.
Both of these feature classes share the same requirement:
data must be delivered in a timely manner.

It has been shown in [1] that there is a maximum amount of
delay tolerable in interactive communication applications (in
that case, the telephone system). Thus, in order to support
the two classes of interactivity features in ESM, careful con-
sideration needs to be made in order to minimize the amount
of network-imposed delay experienced by interaction mes-
sages. Because the existing ESM tree is primarily optimized
for bandwidth, we propose building a separate overlay struc-
ture for the purpose of supporting low-latency transport of
interaction messages. As a first step in this transport in-
frastructure, we support only one function: broadcasting a
message to the entire set of recipients. Sending a message to
a subset of hosts can be done either by client-side filtering,
or by building multiple overlay structures.

It should be noted that interactivity features are not the
only application of a low-latency infrastructure. A separate,
low-latency infrastructure could also be used for packet re-
covery, adding a greater degree of resilience to the system in
the presence of link failures. Configuration changes, such as
changing the bit rate of the video, could also be broadcasted
using this infrastructure as well, giving hosts some time to
reconfigure themselves before the changes take effect.

Our project aims to evaluate several different overlay routing
structures for their ability to deliver interactivity messages
in a timely manner. Specifically, we compare a centralized
server architecture with a fully connected mesh, a multicast
tree based on the existing ESM bandwidth optimizations, a
multicast tree optimized for latency, and a hybrid scheme
proposed in [2] which mixes central server and peer-to-peer
techniques. To evaluate each of these overlay routing struc-
tures, we first study user interactions on Internet Relay Chat



(IRC) [13], a popular text chat system. Probability mod-
els are developed for the distribution of message interarrival
times and message sizes, and these models are used to gen-
erate workloads representative of the behavior patterns seen
in IRC. We next implement the overlay routing structures in
a simulator, and evaluate their performance using data from
an ESM broadcast.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. The IRC study, probability models and
generated workloads are discussed in Section 3. A descrip-
tion of the different overlay routing structures, the data used
from ESM, and the simulator is presented in Section 4. Our
experiments and their results are presented in Section 5, and
we conclude in Section 6.

2 Related work

End System Multicast lies at the foundation of our work,
and it has been published in (3, 4, 11].

Our approach of evaluating different overlay routing struc-
tures in terms of their performance is motivated by [9], in
which the authors perform an analysis of different DHT rout-
ing algorithms.

In [2], the authors present the “hybrid” routing algorithm for
immserive audio events, where nodes ship their audio data
to the central server, but also send it in a unicast fashion to
those nodes who are close-by in the network. We build off of
their work by examining just how well the “hybrid” scheme
performs when global knowledge of the underlying network
latencies are known.

The authors of [14] propose an algorithm for building a
low-delay application multicast tree, by rearranging nodes
within a local region into different configurations, and then
scoring those configurations using a function which mini-
mizes the maximum delay from the root node to each node
in that region. Their evaluation of this algorithm is based
on link stress over different network topologies, rather than
application-level performance. We leave an implementation
of this algorithm open as future work.

Perhaps one of the earliest studies of the statistical behiavor
of users was performed in [5], where they find that the inter-
arrival times for processes on a time-sharing system follows
an exponential distribution. It is interesting to contrast how
humans interact with a computer, where commands arrive
following an exponential distributionj, versus how humans
interact amongst themselves, which follows a heavy-tailed
distribution.

Another study which looks at the statistical behaviors of
users focuses on multiplayer games. In [10], the authors find
that player duration times follow an exponential distribu-
tion, but their interarrival times fit a heavy-tailed distribu-
tion.

The authors of [7] perform a study of Internet chat systems,
and their primary contribution is a method for separating
chat traffic from other Internet traffic on an Internet link.

However, they also conduct a brief analysis of message in-
terarrival times and packet sizes, and their results strongly
agree with our findings in Section 3. While they simply con-
clude that message interarrival times follow a heavy-tailed
distribution, their data collection procedure includes chat
traffic from applications other than IRC. This allows us more
freedom when generalizing our results.

3 Interactivity models

In order to test the overlay structures with a workload char-
acteristic of the patterns of interaction we expect to see dur-
ing an ESM broadcast, we perform a study of how users
interact on Internet Relay Chat (IRC). Data from IRC is
used to create a probability distribution of message interar-
rival times, as well as of message sizes. To study the effects of
higher-bandwidth applications, we also transform IRC mes-
sages into audio messages, and create a separate probability
distribution for these.

3.1 Methodology

Data from IRC were gathered from 16 IRC channels dur-
ing a 24 hour period from April 7th to April 8th, 2004.
The XChat IRC client [17] was modified to record times-
tamps in milliseconds’, in order to observe any effects oc-
curing at the sub-second level. Logs were collected from a
variety of IRC servers and channels, including general chat,
sci-fi, video games and Internet radio®. Table 1 presents a
summary of the IRC servers and channels used for logging,
and Table 2 gives a detailed account of the amount of data
collected from each channel, as well as the average message
interarrival times and average message sizes seen in each
channel.

3.2 Interarrival time distribution

In order to understand the nature of the interactions which
take place on IRC, we analyze the probability distribution
of message interarrival times. An interarrival time is com-
puted as the difference in timestamps of a message and the
message preceeding it, for a single user. We use the symbol
I to represent a random variable for an interarrival time.
Correlations between message arrivals among multiple users
are not taken into account®.

Figure 1 shows the complementary cumulative distribution
function (CCDF) for interarrival times over all of the IRC

!Timestamps are actually recorded as a tuple of
<seconds, microseconds>, which are then converted to mil-
liseconds.

2 Anecdotally, these topics were chosen because they
seemed to be the most popular when performing a /list
operation on each IRC server, as opposed to channels with
1500 people sharing files and not talking.

3This is a subject for future work.



Server

Channels

Description

broadway.ny.us.dal.net

F#chat-world, #usa

General chat

#cybersex Adult chat
F#teen Teen chat
events.scifi.com F##farscape, #madhouse, #startrek | Sci-fi

Kyl.EnterTheGame.Com

7retg, #tggl, #ut, Fwow

Video game

london.uk.eu.irc.inteliinternet.com

#diradio, #hardcore

Internet radio

vortex.slashnet.org

#prOk, #slashdot

General chat

Table 1: Summary of IRC servers and channels. Topics were selected to provide a representative sample of different IRC

user demographics.

Channel Logging duration | Number of Avg. intermessage Number of | Avg. message
interarrivals | delay, minutes (stddev) | messages size, bytes (stddev)
#chat-world | 14h 1m 2s 5541 14 (25.3) 6304 273 (23.1)
#cybersex 13h 59m 15s 2220 5.9 (27.6) 2569 33.3 (37.1)
#teen 13h 57m 37s 3588 4.4 (24.6) 3958 33.5 (24.3)
#usa 3h Om 21s 1322 1.6 (4.2) 1446 29.3 (20.0)
#farscape 21h 7m 3s 3506 4.8 (49.6) 3592 27.0 (26.7)
#madhouse | 21h 6m 50s 3750 3.5 (44.1) 3817 21.0 (24.8)
#startrek 21h 5m 11s 1282 5.5 (53.4) 1302 30.6 (38.0)
H#Hetg 21h 9m 58s 5217 10.5 (69.1) 5663 28.1 (30.0)
#egl 21h 9m 2s 1010 15.1 (88.4) 1108 25.7 (18.8)
#ut 21h 10m 0s 12672 5.3 (48.2) 13370 25.8 (23.8)
#wow 21h 9m 38s 3349 4.0 (42.4) 3446 22.9 (23.9)
#diradio 20h 44m 44s 3193 7.6 (60.0) 3299 27.0 (27.3)
#hardcore | 20h 45m 22s 1685 7.4 (63.6) 1732 20.3 (24.2)
#talk 20h 32m 10s 31 53.7 (134.3) 44 26.4 (22.3)
#prok 8h 37m 59s 901 10 (14.5) 934 29.9 (28.2)
#slashdot 20h 46m 43s 1938 6.7 (63.4) 1990 29.7 (32.4)
Total: 284h 22m 55s 51205 | 5.8 (48.9) | 54574 | 27.0 (26.3)

Table 2: Summary of IRC logs. This table presents the duration of logging, the number of interarrival events, the average
message interarrival time, the number of messages, and the average message size for each channel. Interarrivals are computed
by taking the difference of the timestamp from the current message sent by a user and the last message seen by that same
user. Note that the number of interarrivals does not match the number of messages seen in each channel. This effect is due to

users who send only one message.

data, on a log-log scale. The CCDF is a graph of ¢ vs.
Pr(I > t) (i.e. the probability that some interarrival time
will be greater or equal to the value on the x-axis). When
computing this probability distribution, we only consider in-
terarrival times for which there are 100 or more observances.
This removes outliers from the data. It should be noted that
the CCDFs for each of the IRC logs have the same basic
shape as Figure 1. Logs containing more data have a more
well-defined shape; thus, Figure 1 is the clearest picture of
the interarrival distribution.

The most notable feature of this distribution is that it is very
heavy tailed, as shown by the straight line starting at around
10,000ms. Also, the plateau between 1ms and 1000ms indi-
cates a fairly uniform distribution (i.e. Pr(I >t) ~ Pr(I >
t 4+ 1)). This function consists of three underlying proba-
bility distributions, which can be exposed by conditioning

over ranges of time. Conditioning asks the question “given
that I falls in the range [min, max], what is the probability
Pr(I > t) for min < t < maz”. These ranges, as well as
the method used to determine their boundaries?, are listed
in Table 3. It should be noted that we start our analysis at
2 milliseconds in order to filter out messages sent with in-
terarrival times of Oms and 1ms. These messages contained
duplicate content, and we conjecture that these messages
were the result of a script running on a user’s machine.

Figure 2 shows the conditional interarrival time probablity

4This method is performed by hand, which may not be
as accurate as other methods. However, the point is to show
that this function is really a combination of three different
underlying probablity distributions which result from condi-
tioning on a range of time.
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Figure 1: CCDF of interarrival times. This graph shows
t vs. Pr(I > t) on a log-log scale, where t is time in millisec-
onds, and [ is a random variable for an interarrival time. The
straight segment starting at 13758 ms represents a heavy tail.
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Range (ms) Distribution | # in | Pr(I € range )
range

2-1001 Quadratic 1939 0.04

1002-13758 Quadratic 18433 | 0.36

13759-41142219 | Pareto 30833 | 0.60

Total: 51205 | 1.00

Table 3: Interarrival time distribution ranges. Range
boundaries are determined by computing the derivative of
the curve at each point, and finding the point where the
slope changes to match the picture. For example, between
the 1-1001ms range and the 1001-13758ms range, the slope
changes sharply, and there is a large negative derivative. But,
the slope becomes fairly constant in the 13758-41142219ms
range, and the derivative changes only slightly in this range.
The probabilities that I lies in a particular range, Pr(I €
range), are determined by the number of interarrivals ob-
served in that range.

distributions. These result from assuming that I falls within
each range, and then plotting the resulting probability dis-
tribution. These distributions are interesting because they
show how a person’s interactions follow a fundamentally dif-
ferent probability distribution depending on how engaged
they are in the conversation.

3.3 Message size distribution

To be able to generate message sizes following the same dis-
tribution as the text messages seen in IRC, we perform the
same analysis on the message size data. We use the symbol
S to represent a random variable for a message’s size. Fig-
ure 3 shows the CCDF for message sizes over all of the IRC
data, and Table 4 presents summary statistics. We do not
remove outliers from this data set because their number is
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Figure 2: Conditional distributions of interarrival
times. All graphs are on a log-log scale. Note that the ranges
2-1001ms and 1002-13758ms are presented as CDF's, while
13769-41142219ms is presented as a CCDF for clarity. The
curve fit lines are used for generating data based on these
distributions. This process is explained in more detail in Sec-
tion 3.5.

insignificant.

l Message sizes [ ‘

Count 54574
Mean 27.03 bytes
Std. dev. 26.26 bytes
Min value 0 bytes
Max value 456 bytes

Table 4: Message size summary statistics.

As with the interarrival data, message sizes also follow a
heavy-tailed distribution. This function consists of two un-
derlying probability distributions, which are split among the
ranges of 1-35 bytes and 36-212 bytes. Table 5 lists these
ranges along with the underlying probability distributions.

Figure 4 shows the conditional message size probablity dis-
tributions. As with the conditional interarrival distributions,
these distributions result from assuming that S falls within
each range, and then plotting the resulting probability dis-
tribution. This distribution is interesting because it shows
that there are a significant number of messages less than 36
bytes, which is about four or five words (in English).
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Figure 3: CCDF of message sizes. This graph shows s vs.
Pr(S > s) on a log-log scale, where s is the message size in
bytes, and S is a random variable for the message size.

Range | Distribution | # in range | Pr(S € range )
(bytes)

1-35 Pareto 39886 0.73

36-456 | Pareto 14688 0.26

Total: 54574 1.00

Table 5: Message size distribution ranges. Range
boundaries are determined using the same method as the
interarrival time conditional distributions.

3.4 Awudio workloads

As shown in Table 2, the average size of a text message is
around 27 bytes. This does not pose a significant challange
for any networked system, as evidenced by an IRC server’s
capability to handle thousands of simultaneous users using
only 1-2 Mbps of bandwidth [6]. Given that the average in-
terarrival rate of messages is almost 6 minutes, it seems un-
necessary to set up and maintain any kind of overlay routing
structure to service these small, infrequent text messages.
However, one of our goals is to support higher-bandwidth
interactivity applications such as audio chat and immersive
audio, and these applications present the system with a sig-
nificantly greater amount of load than just text messages.
Thus, we analyze the performance of our system on work-
loads designed to represent these higher-bandwidth interac-
tions.

It should be noted that our method is not fully generaliz-
able to how people truly interact. Textual chat conversations
do not share many of the characteristics which define audio
conversations. For example, in face to face interactions, there
are contextual clues used by participants to facilitate turn
taking; one consequence of this is that one person generally
speaks at one time [16]. Sometimes there is a degree of over-
lap among speakers, but it is hardly ever the case where a
room full of people will all be speaking simultaneously.

However, we believe this caveat is minor when considering
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Figure 4: Conditional distributions of message sizes.
All graphs are on a log-log scale. The curve fit lines are
used for generating data based on these distributions. This
process is explained in more detail in Section 3.5.

an immersive audio application. In this type of application,
a user is placed in a virtual world, and surrounded by audio
events which occur in this world. An immersive chat appli-
cation could be created as follows: users wishing to converse
move to the same location in the virtual chat room, and thus
are within each others’ hearing ranges. However, audio from
nearby conversations is also mixed in to form an audio scene
for each user, thus giving the user a feeling of presence in
the virtual space, and a sense of connnection to the other
users in the room. In order to create this audio scene for
each user, all® audio needs to be delivered to all users in the
virtual chat room. Thus, a broadcast infrastructure provid-
ing low-latency guarantees is required to support this type
of application.

In order to generate data representing audio workloads, we
use the following procedure. Text messages from IRC are
converted into an audio file using a text-to-speech applica-
tion®, such that the text message is now an audio file with
a computer voice speaking the message. This provides an
approximation for how long a person would take to speak a
message. Next, the size of the resulting audio file is used as
the message size.

Performing this procedure over all of the IRC data yields the
distribution shown in Figure 5. To remove outliers from our
data, we consider only those audio message sizes for which
there are 100 or more observances. Summary statistics of
this distribution are presented in Table 6. Interestingly, this
distribution looks very similar to the interarrival time distri-
butions, although further analysis is needed to determine if a
correlation exists between the interarrival time of a message

SUp to the point at which sound waves degenerate to the
point of inaudability.

5We use Apple’s Text to Speech API to convert text mes-
sages to audio.



| Audio message sizes

Count 46230

Mean 96982.9 bytes
Standard deviation 109203.4 bytes
Min value 502 bytes
Max value (sans outliers) | 924334 bytes
Max value 2639046 bytes

Range (bytes) [ Distribution [ # in range [ Pr(S € range ) ‘

502-12598 Pareto 1118 0.02
12599-100000 Pareto 30158 0.66
100001-924334 | Pareto 14954 0.32
Total: 46230 1.00

Table 6: Audio message summary statistics. Note that
the number of messages in this category is significantly lower
than the count in Table 4. The reason for this discrepancy
is because some IRC messages are inherantly not speakable,
such as the puncuation characters from which smilies are
composed. However, we interpret such messages as conveying
a facial expression or gesture which would normally not be
spoken in a face to face conversation. Thus, we do not include
these messages in our analysis.
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Figure 5: CCDF of audio message sizes. This graph
shows s vs. Pr(S > s) on a log-log scale, where s is the
audio message size in bytes, and S is a random variable for
the message size.

and the size of a message. Table 7 shows the ranges of the
conditional probability distributions, as well as the distri-
bution types. Figure 6 shows the conditional audio message
size probablity distributions.

3.5 Workload generation

Using the models discussed in the previous section, we now
generate the interactivity workloads for the overlay routing
structures. Each distribution is generated using the inversion
method [12], whereby a uniform random variable u € U(0, 1)
is transformed into a random variable drawn from our dis-
tribution.

The specific parameters used for generating workloads from
each distribution are obtained by fitting a curve’ to the
CCDF, and using the resulting curve-fit parameters. Fig-

"All curve fits are done with gnuplot [8].

Table 7: Audio message size distribution ranges. Range
boundaries are determined using the same method as the
interarrival time conditional distributions.
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Figure 6: Conditional distributions of audio message
sizes. All graphs are on a log-log scale. The curve fit lines
are used for generating data based on these distributions.
This process is explained in more detail in Section 3.5.

ures 2, 4 and 6 show the results of fitting a curve to these
distributions. A summary of the various parameters used by
each distribution is presented in Table 8.

We now briefly describe how random variables are gener-
ated for the Bounded Pareto and Quadratic distributions,
and then present the parameters for our distributions of in-
terarrival times, message sizes, and audio message sizes. We
denote our distribution functions as combined_3 for interar-
rival times, combined for message sizes, and ircaudio for
audio message sizes. In Section 5, we compare our inter-
arrival and message size distributions to exponential and
uniform distributions®.

8These distributions are generated to have the same mean
as the combined distributions.



3.5.1 Generating a Bounded Pareto distribution

A random variable X drawn from the Bounded Pareto distri-
bution has the CCDF F~'(z) = %, where N = (£)”
(a normalization parameter), j is the initial value of the dis-
tribution, k is the upper bound, and a determines the shape

of the curve. To generate a value x from the Pareto distribu-

tion, let w € U(0,1) be drawn at random, and M = (?)a

a 1/«
Then, x = (m) . In case an upper bound is not

needed, the N parameter is dropped from the CCDF, and
€r=

k
u-l/a”

3.5.2 Generating a Quadratic distribution

A random variable Y drawn from the Quadratic distribution
has the CCDF F~}(z) = 22452=D where D = a2 + by,
E = ak®+bk, j and k are the lower and upper bounds on the
distribution, and a and b determine the shape of the curve.
To generate a value x from the Quadratic distribution, let

u € U(0,1) be drawn at random. Then, z is the positive

b++/b2+4au(E—D)+4aD

solution to — >
a

3.5.3 IRC workloads

Table 8 presents the parameters used for generating work-
loads modeled after the combined -3 intearrival time dis-
tribution, the combined message size distribution, and the
ircaudio audio message size distribution.

4 Overlay evaluation

4.1 Overlay Structures

We consider each of the following overlay routing structures
in our analysis.

Central Server. In a central server model, nodes send their
messages to the central server, and the central server for-
wards those messages to all other nodes. The latency in-
curred by a message in this scheme is the delay between the
source and the central server, and the central server to each
destination.

Fully Connected. In a fully connected overlay, nodes sim-
ply send messages directly to every other host. The latency
incurred by a message in this scheme is simply the delay
between the source and each destination.

ESM-Bandwidth. The existing ESM tree can be used to
send messages to all participants in a broadcast, even though
this tree is optimized for bandwidth. To send a message using
this scheme, a node simply sends it to the source node, and
then the source node sends the message along the existing
broadcast tree, using the same paths as for the video stream.

ESM-Latency. Instead of optimizing for bandwidth, we can
create a separate overlay structure which optimizes for la-

tency. This scheme behaves similar to the Narada proto-
col [4] in that it builds a shortest-path spanning tree rooted
at each node in order to determine the lowest-cost (lowest-
latency) paths to all nodes.

Hybrid. A “hybrid” delivery architecture is proposed in [2].
In the hybrid model, when a node wants to broadcast a
message, he sends the message to a central server, as well as
to a set of “nearby” hosts. In [2], geographic distance is used
as the distance metric, where “nearby” is defined as located
in the same country. When a message is sent to a central
server in some other country, that message does not need
to return to the country of origin, as the originator of the
message can simply forward it directly to those nodes in the
same country. In our case, we use latency as our distance
metric. When a node sends a message, he will forward a
message to the central server, as well as to a set of nodes
with latencies better than the delay between the himself and
the central server, plus the delay from the central server to
the destination node. This ends up looking like the fully
connected overlay for close neighbors, and a central server
for distant neighbors.

4.2 ESM Data

Our simulations are all based on measurements taken during
the ESM Slashdot event in 2002 [11]. We use four sources of
data:

makeTree.child. This file contains the ESM tree over time
during the Slashdot event.

JoinLeaveStayTime. This file contains the join and leave
times for every node. This was used as the master file to
determine which nodes were actually in the tree.

n2delay. This gives a partial listing of latencies measured
between nodes in the ESM tree. Because this is a partial
mapping, we filled in the missing data in this file to ensure
connectivity, given any subset of nodes. Our procedure for
filling in the missing data is outlined in Section 4.3.

Upstream Bandwidth Estimates. This data provides in-
formation about the number of children each node is capable
of supporting during the event. It is used to provide a rough
estimate of the available bandwidth at each node.

4.3 n2delay

When analyzing the Slashdot data, we discovered that the
n2delay file contained around (n?)/10 entries, some of which
were zero. Because we require a complete set of n? latency
measurements for our simulation, we fill in the missing values
in the following manner:
hardness « initialhardness
while nodes have no latency do
if not making progress then
reduce hardness
end if
for all ¢, j|N(i, j)notset do



| Distribution | Range Type Parameters

Interarrival 2-1001 Quadratic a =0.002,b = 1.556

(“combined_3”) 1002-13758 Quadratic a = 0.089,b = —4200
13759-41142219 | Pareto a = 0.607

Message size 1-35 Bounded Pareto | a = —0.682

(“combined”) 36-456 Pareto a=2.491

Audio message size | 502-12598 Bounded Pareto | a = —0.256

(“ircaudio”) 12599-100000 Bounded Pareto | o = —0.537
100000-924334 Pareto a=1.677

Table 8: Parameters used for generating interactivity workloads. These parameters, as well as the ranges when
generating bounded distributions, were used with the inversion methods discussed in Section 3.5 to generate the interactivity

workloads.

if there are more than hardness valid paths from i to
j through some other node k then
N(i,7) = mean(allsuchpaths)
end if
end for
end while

This algorithm iteratively attempts to fill a given latency
measure from A — B by averaging all paths A—K + K—B.
Because there initially may be very few such paths, we begin
by allowing values to only be set if there are more than a
given number of valid paths to average. We call this number
the hardness. It is necessary to reduce the hardness over time
to ensure the convergence of this algorithm.

4.4 Simulator

To evaluate each overlay for its performance on each of the
interactivity workloads, we have written an event based sim-
ulator. The simulator takes as input the processed n2delay
file, the bandwidth file, the join leave pattern, and the in-
teractivity workload. Whenever a node sends a message, the
overlay broadcasts the message in the manner described in
Section 4.1, and records the latency required to reach each
node. In addition, we keep track of the bandwidth require-
ments of each message as it propagates through the overlay.
Because the primary focus of this research is to determine
which topologies are capable of achieving the least average
latency, we do not prevent nodes from exceeding their avail-
able bandwidth. We keep track of the bandwidth used over
time and how it compares to available bandwidth over time.
We list this as a separate metric to highlight the advantages
of using more intelligent overlays such as hybrid and ESM-
latency.

5 Experiments

In order to determine the effects of interarrival distribution
and message sizes on the overlay network, we perform the
following experiments:

Experiment 1. Fvaluate a single overlay using multiple in-

terarrival distributions, and multiple message size distribu-
tion.

Here we evaluate the ESM-Latency overlay routing scheme
using the combined_3 and exponential interarrival distribu-
tions, and the combined and uniform message size distribu-
tions. Figure 7 shows that there is effectively no difference
in message latencies given different distributions of message
sizes and interarrival times. We believe that this may be due
to a lack of fidelity in the simulator. Essentially, because all
messages are delievered in exactly the same manner, inde-
pendent of their size, changes in message sizes will not affect
the latencies experienced by those messages. We also note
that there is effectively no change in latency due to differ-
ences in interarrival distributions. We believe this is also due
to a lack of fidelity in bandwidth calculations. Changes in in-
terarrival time distributions may result in periods of a larger
number of messages being sent close in time. These periods
of high activity increase required bandwidth, and should af-
fect latency due to queuing and other affects at the ESM
layer.

The same is true for interarrival time. The primary affect
changes in interarrival distribution should have is to pro-
duce situations of many messages arriving in close succes-
tion, causing congestion.

Experiment 2. Evaluate multiple overlays using the same
interarrival distribution and message size distribution.

In this case, we compare all five overlay schemes using the
combined_3 interarrival distribution and the combined mes-
sage size distribution. Figure 8 shows the Hybrid overlay
scheme outperforming all other schemes. The Hybrid scheme
achieves a 50% delivery rate in roughly 60ms, and a 90% de-
livery rate in just over 100ms. This is most likely because
the Hybrid structure has only a 2 level hierarchy, compared
to the ESM-Bandwidth and ESM-Latency structures, which
both have a multi-level hierarchy. The Hybrid scheme per-
forms better than the Fully Connected and Central Server
schemes because it essentially chooses for each host which of
those two schemes would perform better.

Experiment 3. Evaluate the ircaudio workload using each
overlay with both combined_3 and exponential interarrival
time distributions.
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Figure 7: Effect of Workload Distribution on Latency.
This graph shows the percentage of people who have received
a message over time. It is shown on a log scale. Note that
the different interarrival distributions do not have any effect
on the latencies experienced by the messages.

The previous evaluations focused solely on how the topol-
ogy affects latency, ignoring bandwidth usage considerations.
This final experiment is aimed at providing some indica-
tion of how often each overlay exceeds the available band-
width in the system, by using the audio message workload
described in Section 3.4. Figure 9 shows each of the ten over-
lay/distribution combinations.

The ESM-Bandwidth scheme performs the worst, and we
believe this results from having every node send their mes-
sages to the source of the tree, which then becomes over-
loaded. Additionally, the ESM overlay is essentially a play-
back of the Slashdot event; while our join/leave patterns
match those of the event, our bandwidth and latency mea-
surements are static. This may have caused problems, as the
ESM overlay restructures itself based on a changing set of
measurements.

The ESM-Latency performs very well in this experiment be-
cause its fanout is partially determined by the amount of
available bandwidth. Finally, there appears to be a bug the
code that generates the bandwidth usage data, as a result,
we do not believe the graphs for Fully Connected are accu-
rate.

6 Conclusion

In order to support a future generation of interactive applica-
tions built on top of the ESM framework, we have evaluated
several different overlay routing structures for supporting
low-latency broadcast. This evaluation was based on actual,
observed data gathered from Internet Relay Chat (IRC), and
several probability models were developed to reflect the dis-
tribution of message interarrival times and message sizes, as
well as a distribution for the amount of audio data which
would need to be sent in interactive audio applications.
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Figure 8: Latency Comparison of Overlays This graph
shows the percentage of people who have received a message
over time. It is shown on a log scale. The Hybrid scheme
outperforms all other schemes, achieving a 90% message de-
livery rate in just over 100ms.
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Figure 9: Cumulative Percentage of Message Exceed-
ing Bandwidth This graph shows the cumulative percent-
age of messages that require more bandwidth than is avail-
able at a node.

From these probabilty models, we generated interactivity
workloads, representing the kinds of interactions we would
expect to see during an ESM broadcast. Coupling these
workloads with actual ESM join/leave and network measure-
ment data allowed us to simulate each overlay structure and
evaluate it’s performance in terms of latency, and in terms
of how well it works for interactive audio applications.

We have discovered that the Hybrid model provided the
smallest amount of delay when broadcasting small chat mes-
sages. Also, we have confirmed that naive overlays, such as
Central Server and ESM-Bandwidth quickly become over-
loaded in the presence of higher-bandwidth audio applica-
tions. Smarter overlays, such as the Hybrid model and ESM-
Latency are able to better cope with the higher demand.
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