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Abstract

In our recent work we found very interesting and unintuitive patterns for time evolv-
ing networks, which change some of the basic assumptions that were made in the past.
The main objective of observing the evolution patterns is to develop models that ex-
plain processes which govern the network evolution. Such models can then be fitted to
real networks, and used to generate realistic graphs or give formal explanations about
their properties. In addition, our work has a wide range of applications: we can spot
anomalous graphs and outliers, design better graph sampling algorithms, forecast future
graph structure and run simulations of network evolution.

Another important aspect of this research is the study of “local” patterns and struc-
tures of propagation in networks. We aim to identify building blocks of the networks
and find the patterns of influence that these block have on information or virus propa-
gation over the network. Our recent work included the study of the spread of influence
in a large person-to-person product recommendation network and its effect on pur-
chases. We also model the propagation of information on the blogosphere, and propose
algorithms to efficiently find influential nodes in the network.

Further work will include three areas of research. We will continue investigating
models for graph generation and evolution. Second, we will analyze large online com-
munication networks and devise models on how user characteristics and geography relate
to communication and network patterns. Third, we will extend the work on the prop-
agation of influence in recommendation networks to blogs on the Web, studying how
information spreads over the Web by finding influential blogs and analyzing their pat-
terns of influence. We will also study how the local behavior affects the global structure
of the network.
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1 Introduction

The main interest of our research has been in understanding the structural properties and
patterns in the evolution of large graphs and networks. What does a “normal” social network
look like? How will it evolve over time? How can we spot “abnormal” interactions (e.g.,
spam) in a time-evolving e-mail graph? How does information spread over the network?
Answers to such questions are vital to a range of application areas from identification
of illegal money-laundering rings, misconfigured routers on the Internet, to unexpected
protein-protein interactions in a gene regulatory network.
Our proposed study of dynamics of large networks can be divided into two parts:

e The study of statistical properties and models that govern the generation and evo-
lution of large real-world networks. We view the network as a big complex system,
observe its static and temporal properties and patterns to design models that capture
and help us understand the temporal and static patterns of real-world networks.

e The study of the network by starting from individual nodes and small communities.
We are especially interested in modeling the spread of influence and information over
the network and the substructures of the network, called cascades, that this process
creates. We aim to find common and abnormal sub-network patterns and understand
the propagation of influence, information, diseases and computer viruses over the
network. Once we know the propagation patterns and structure, we devise algorithms
for efficiently finding influential nodes.

In our work we focused on the way in which fundamental structural properties of net-
works vary with time. We found that two fundamental and commonly made assumptions
about network evolution need to be reassessed. We discovered that networks densify as the
network grows and that distances in the network shrink. As the existing graph generation
models do not exhibit these types of behavior we developed three families of probabilis-
tic generative models for graphs that capture these properties. The second part of our
work focuses on the processes taking place in the networks. More specifically, we examined
the structural and temporal properties of information propagation on large product rec-
ommendation and blog networks. We also created models of information propagation, and
developed scalable algorithms for finding influential nodes in the network.

Our studies involve large real-world datasets with millions of nodes and edges. Working
with such datasets is important in order to understand and take into account performance
and scalability issues and to discover patterns that may become apparent only in massive
datasets.

1.1 Motivation

Traditionally small networks were analyzed from a “node centric” point of view where
researchers wanted to answer questions about behavior and properties of particular nodes
in the network. Though, such models are very expressive, they often fail to scale to large
networks with millions of nodes and edges. Moreover, many times we need to work with a
large network for a structural property of the network to emerge, thus the focus moves to
the study of structural properties of the network as a whole.



1.1.1 Network structure and models

Ultimately we search for interesting measures that let us characterize the network structure
and the processes spreading over the networks. Then we design models and algorithms that
take advantage of the identified structural network properties.

The focus of analyzing and modeling the structure of large networks aims to do the
following three things:

(1) What are interesting statistical properties of network structure? The aim is to find
statistical properties, such as path lengths and degree distributions, that characterize
the structure and behavior of networks, and suggest appropriate ways to measure
these properties.

(2) What is a good model that helps us understand these properties? We aim in creating
models of networks that can help us to understand the meaning of the statistical
properties of networks. How they come to be as they are, and how they interact with
one another?

(3) Predict behavior of networks based on measured structural properties and local rules
governing individual nodes? How, for example, will Internet structure evolve and
how does the network structure affect traffic on the Internet or performance of a web
crawler?

1.1.2 Cascading behavior in large networks

The second part of the thesis deals with information propagation in the large networks.
The social network of interactions among a group of individuals plays a fundamental role
in the spread of information, ideas, and influence. Such effects have been observed in many
cases, when an idea or action gains sudden widespread popularity through word-of-mouth
or “viral marketing” effects. To take a recent example from the technology domain, free
e-mail services such as Microsoft’s Hotmail and later Google’s Gmail achieved wide usage
largely through referrals, rather than direct advertising.

We would like to understand how the structure of the network affects the spread of
information, influence and viruses over the network. We monitor the spread of informa-
tion on the blogosphere or recommendations in a product recommendation network. For
example, when studying information propagation on the blogosphere, we ask what are the
typical structural patterns of information propagation? How deep or wide are the propaga-
tion graphs (also called cascades)? How fast is the information spreading? We also aim in
creating models and algorithms that help us predict future and identify influential nodes,
e.g., given a fixed budget of attention, which blogs should we read to be most up to date
on the news? Or similarly, in a big water distribution network, where shall we position the
sensors to detect disease outbreaks as quickly as possible?

1.2 Applications, consequences and impact

Accurate properties of network growth, information propagation, and the models support-
ing them, have several possible application and consequences. Patterns give us ways for



understanding and building models, and models help us to reason, monitor and predict
features of the network in the future.

o Models and parameters: Generative models and their parameters give us insight into
graph formation process. Intuitions developed by the models are useful in under-
standing the network generation processes and reasoning about the structure of the
networks in general.

e Graph generation: Our methods form a means of assessing the quality of graph gen-
erators. Synthetic graphs are important for “what if” scenarios where we need to
extrapolate and simulate graph growth and evolution, since real graphs may be im-
possible to collect and track (like, e.g., a very large friendship graph between people).
Synthetic graphs can then be used for simulations and evaluation of algorithms, e.g.,
simulations of new network routing protocols, virus propagation, etc.

o Graph sampling: Large real-world graphs are becoming increasingly available, with
sizes ranging from the millions to billions of nodes. There are many algorithms for
computing interesting graph properties (shortest paths, centrality, betweenness, etc.),
but most of these algorithms become impractical for large graphs. Thus sampling is
essential — but sampling from a graph is a non-trivial problem. Densification laws can
help discard bad sampling methods, by providing a means to reject poorly sampled
subgraphs.

e FExtrapolations: For several real graphs, we have a lot of snapshots of their past. What
can we say about their future? Our results help form a basis for validating scenarios
for graph evolution.

o Abnormality detection and computer network management: In many network settings,
“normal” behavior will produce subgraphs that obey densification laws (with a pre-
dictable exponent) and other properties of network growth. If we detect activity
producing structures that deviate significantly from the normal patterns, we can flag
them as abnormalities; this can potentially help with the detection of, e.g., fraud,
spam, or distributed denial of service (DDoS) attacks.

e Graph compression: In many cases one would want to efficiently describe the graph.
This can be done by compressing the graph by just storing the set of model parameters,
and then the deviations between the real and the synthetic graph.

o Anonymization: Suppose that the real graph can not be publicized, like, e.g., corpo-
rate e-mail network or customer-product sales in a recommendation system. Yet, we
would like to share our network. One can use our findings and models we developed
as a way to generate a similar synthetic network.

e Network cascades: Understanding cascade formation helps to explain the propagation
of information and viruses over the network. This allows for more accurate models of
virus propagation, which can be used in epidemiology for simulations.



Our published work as it maps to the chapters of the thesis proposal

e Section 3.1 and Section 3.2
— [Paper A] Leskovec, J., Kleinberg, J. M., and Faloutsos, C. (2007). Graph evo-

lution: Densification and shrinking diameters. ACM Transactions on Knowledge
Discovery from Data (TKDD).

— Leskovec, J., Kleinberg, J. M., and Faloutsos, C. (2005). Graphs over time:
densification laws, shrinking diameters and possible explanations. In KDD ’05:
ACM SIGKDD conference on Knowledge discovery in data mining.

e Section 3.3
— [Paper B] Leskovec, J., Chakrabarti, D., Kleinberg, J. M., and Faloutsos, C.
(2005).  Realistic, mathematically tractable graph generation and evolution,
using Kronecker multiplication. In PKDD ’05: 9th Furopean Conference on
Principles and Practice of Knowledge Discovery in Databases.

— [Paper C] Leskovec, J. and Faloutsos, C. (2007). Scalable modeling of real
graphs using Kronecker multiplication. In ICML ’07: International Conference
on Machine Learning.

e Section 4.1
— [Paper D] Leskovec, J., Adamic, L. A., and Huberman, B. A. (2007). The
dynamics of viral marketing. ACM Transactions on the Web (TWEB).

— Leskovec, J., Singh, A., and Kleinberg, J. M. (2006). Patterns of influence in a
recommendation network. In PAKDD ’06: Proceedings of the 10th Pacific-Asia
Conference on Knowledge Discovery and Data Mining.

— Leskovec, J., Adamic, L. A., and Huberman, B. A. (2006). The dynamics of
viral marketing. In EC ’06: 7th ACM conference on Electronic commerce.

e Section 4.2
— [Paper E] Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N. S., and Hurst,
M. (2007). Cascading behavior in large blog graphs. In SDM ’07: SIAM
Conference on Data Mining.

e Section 4.3
— [Paper F] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J.,

and Glance, N. (2007). Cost-effective outbreak detection in networks. Submitted
to KDD ’07.

o Qutbreak detection: Our work on cascades also gives us the means to study, for exam-
ple, which nodes to inoculate to prevent a virus from spreading through the network,
or where to place sensors in a water distribution network to quickly detect disease
outbreaks.

We applied our findings and models in the following applications. Structural patterns of
networks help us design better graph sampling techniques (Leskovec and Faloutsos, 2006).



Exploiting the graph structure also helps us improve on various machine learning tasks. For
example, in a web search application we recently showed (Leskovec et al., 2007b) that by
exploiting the graph structure of the Web one can predict the quality of the obtained search
results and the amount of spam web-pages in the search results. Similarly, measurements
and models of information and virus propagation give us means to determine conditions
under which the information will die-out or remain in the network (Chakrabarti et al.,
2007), and to develop algorithms for selecting nodes to early detect information or virus
epidemics in networks (Leskovec et al., 2007d).

In the following sections we briefly present some of our recent work on the dynamics of
networks themselves and processes taking place on them. First, we survey the related work
on statistical properties of networks, generative models and network cascades in section 2.
Our work on properties and models of network evolution is presented in section 3. Section 4
discusses the results dynamics of processes taking place in the networks. We present the
plan of future research section 5, and conclude in section 6.

2 Survey

Next, we briefly survey the related work. First, we focus on properties of static networks
and continue with surveying the work on explanatory models. Last, we introduce the work
on cascades and information propagation in networks.

2.1 Properties of networks

Networks are composed of nodes and edges connecting them. Examples of networks include
the Internet, World Wide Web, social networks of acquaintance, collaboration or other
connections between individuals, organizational networks, metabolic networks, language
networks, food webs, distribution networks such as water distribution networks, blood ves-
sels or postal delivery routes, networks of citations between papers, software networks where
edges represent dependencies or function calls.

Research over the past few years has identified classes of properties that can be found in
many real-world networks from various domains. While many patterns have been discov-
ered, two of the principal ones are heavy-tailed degree distributions and small diameters.

Degree distribution: A distribution is a Power-law if it has a PDF (probability density
function) of the form p(z) o< 27, where p(zx) is the probability to encounter value x and ~ is
the exponent of the power law. In log-log scales, such a PDF gives a straight line with slope
~v. For v < —1, we can show that the Complementary Cumulative Distribution Function
(CCDF) is also a power law with slope 7+ 1, and so is the rank-frequency plot pioneered by
Zipf (Zipf, 1949), with slope 1/(1 4 ). For v = —2 we have the standard Zipf distribution,
and for other values of v we have the generalized Zipf distribution.

The degree-distribution of a graph is a power law if the number of nodes ¢, with de-
gree k is given by ¢ o< k=7 (v > 0) where ~ is called the power-law exponent. Power
laws have been found in the Internet (Faloutsos et al., 1999), the Web (Kleinberg et al.,
1999, Broder et al., 2000, Albert and Barabasi, 1999, Huberman and Adamic, 1999, Kumar
et al., 1999), citation graphs (Redner, 1998), click-stream data (Bi et al., 2001), online so-



cial networks (Chakrabarti et al., 2004) and many others. Deviations from the power-law
pattern have been noticed (Pennock et al., 2002), which can be explained by the “DGX”
distribution (Bi et al., 2001).

Small diameter: Most real-world graphs exhibit relatively small diameter (the “small-
world” phenomenon): A graph has diameter d if every pair of nodes can be connected by
a path of length at most d. The diameter d is susceptible to outliers. Thus, a more robust
measure of the pairwise distances between nodes of a graph is the effective diameter (Tauro
et al., 2001). This is defined as the minimum number of hops in which some fraction (or
quantile ¢, say ¢ = 90%) of all connected pairs of nodes can reach each other. The effective
diameter has been found to be small for large real-world graphs, like Internet, Web, and
social networks (Albert and Barabasi, 2002, Milgram, 1967, Albert et al., 1999, Bollobas
and Riordan, 2004, Broder et al., 2000, Chung and Lu, 2002, Watts and Strogatz, 1998)).

Scree plot: This is a plot of the eigenvalues (or singular values) of the adjacency matrix
of the graph, versus their rank, using a log-log scale. The scree plot is also often found to
approximately obey a power law (Dorogovtsev et al., 2002). The distribution of eigenvector
components (indicators of “network value”) has also been found to be skewed (Chakrabarti
et al., 2004).

Clustering coefficient: This is a measure of transitivity in networks (Watts and Strogatz,
1998), i.e., friend of a friend is also my friend. In many networks it is found that if node
u is connected to v and v is further connected to w then there is a higher probability that
node u is connected to w. In terms of network topology, transitivity means the presence of
a heightened number of triangles in the network, i.e. sets of three fully connected nodes.
Clustering coefficient Cy of a vertex of degree k is defined as follows. Let node v have
k neighbors; then at most k(k — 1)/2 edges can exist between them. Let C, denote the
fraction of these allowable edges that actually exist. Then C} is defined as the average C,
over all nodes v of degree k, and the global clustering coefficient C' is the average C, over
all nodes v. Clustering coefficient in real networks is significantly higher than for random
networks. It has also been found that in scale-free and real networks clustering Cj, scales
as k=1 (Dorogovtsev et al., 2002, Ravasz and Barabasi, 2003).

Community structure: Many networks and most social networks show some community
structure (Wasserman et al., 1994, Girvan and Newman, 2002). Intuitively this means that
there are groups of nodes that have a high density of connections within them, and a lower
density of connections between the groups. Many times it is found that the communities
observe a recursive structure, where bigger communities can further be split into smaller
and smaller communities.

Apart from these, several other patterns have been found, including the “resilience” (Al-
bert and Barabasi, 2002, Palmer et al., 2002), which shows that real-networks are resilient
to random node attacks; Other properties are “stress” (Chakrabarti et al., 2004), network
navigation (Kleinberg, 1999, Watts et al., 2002), and many more. We point the reader
to (Mitzenmacher, 2004, Newman, 2003, Li et al., 2005) for overviews of this area.

2.2 Explanatory models

In parallel with empirical studies of large networks, there has been considerable work on
probabilistic models for graph generation.



The earliest probabilistic generative model for graphs was a random graph model,
where each pair of nodes has an identical, independent probability of being joined by an
edge (Erdds and Rényi, 1960). The study of this model has led to a rich mathematical
theory; however, this generator produces graphs that fail to match real-world networks in
a number of respects (e.g., it does not produce heavy-tailed degree distributions).

The discovery of degree power laws led to the development of random graph models that
exhibited such degree distributions, including the family of models based on preferential
attachment (Albert and Barabasi, 1999, Cooper and Frieze, 2003, Aiello et al., 2000): new
nodes join the graph at each time step, and preferentially connect to existing nodes with
high degree (the “rich get richer”) (Simon, 1955). This simple behavior leads to power-law
tails and to low diameters. The diameter in this model grows slowly, i.e. logarithmically,
with the number of nodes, which violates the “shrinking diameter” property we describe
later.

Similar in spirit are the copying model (Kleinberg et al., 1999, Kumar et al., 2000), the
related growing network with copying model (Krapivsky and Redner, 2005), and models
based on random walks (Blum et al., 2006) and recursive search (Vazquez, 2001) for gener-
ating networks. The common theme among these models is that a node joins the network
by uniformly at random choosing node v and then either link ing to w’s neighbors, start a
random walk or breath first search type of procedure to create links to nodes in w’s vicinity.

Another family of graph-generation methods strives for small diameter, like the small-
world generator (Watts and Strogatz, 1998) and the Waxman generator (Waxman, 1988).
A third family of methods show that heavy tails emerge if nodes try to optimize their
connectivity under resource constraints (Carlson and Doyle, 1999, Fabrikant et al., 2002).
Recent work of (Chakrabarti and Faloutsos, 2006) gives a survey of the structural properties
and statistics of real world graphs and the underlying generative models for graphs.

2.3 Cascades in networks

Information cascades are phenomena in which an action or idea becomes widely adopted
due to influence by others (Bikhchandani et al., 1992). Cascades are also known as “fads”
or “resonance.” Cascades have been studied for many years by sociologists concerned with
the diffusion of innovation (Rogers, 1995); more recently, researchers in several fields have
investigated cascades for the purpose of selecting trendsetters for viral marketing (Domingos
and Richardson, 2001), finding inoculation targets in epidemiology (Newman et al., 2002),
and explaining trends in blogspace (Kumar et al., 2003). Despite much empirical work in
the social sciences on datasets of moderate size, the difficulty in obtaining data has limited
the extent of analysis on very large-scale, complete datasets representing cascades. We look
at the patterns of influence in a large-scale, real recommendation network and examine the
topological structure of cascades.

Most of the previous research on the flow of information and influence through the
networks has been done in the context of epidemiology and the spread of diseases over the
network (Bailey, 1975, Anderson and May, 2002). Classical disease propagation models are
based on the stages of a disease in a host: a person is first susceptible to a disease, then if she
is exposed to an infectious contact she can become infected and thus infectious. After the
disease ceases the person is recovered or removed. Person is then immune for some period.
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The immunity can also wear off and the person becomes again susceptible. Thus SIR
(susceptible — infected — recovered) models diseases where a recovered person never again
becomes susceptible, while SIRS (SIS, susceptible — infected — (recovered) — susceptible)
models population in which recovered host can become susceptible again. Given a network
and a set of infected nodes the epidemic threshold is studied, i.e., conditions under which
the disease will either dominate or die out.

Diffusion models that try to model the process of adoption of an idea or a product can
generally be divided into two groups:

e Threshold model (Granovetter, 1978) where each node in the network has a threshold
t € [0, 1], typically drawn from some probability distribution. We also assign connec-
tion weights wy ., on the edges of the network. A node adopts the behavior if a sum of
the connection weights of its neighbors that already adopted the behavior (purchased

a product in our case) is greater than the threshold: ¢ <3, qopters(u) Wuv-

e Independent cascade model (Goldenberg et al., 2001) where whenever a neighbor v of
node u adopts, then node u also adopts with probability p, ,. In other words, every
time a neighbor of u purchases a product, there is a chance that u will decide to
purchase as well.

While these models address the question of how influence spreads in a network, they are
based on assumed rather than measured influence effects. In contrast, our study tracks the
actual diffusion of recommendations through email, allowing us to quantify the importance
of factors such as the presence of highly connected individuals, or the effect of receiving
recommendations from multiple contacts. Compared to previous empirical studies which
tracked the adoption of a single innovation or product, our data encompasses over half a
million different products, allowing us to model a product’s suitability for viral marketing
in terms of both the properties of the network and the product itself.

2.3.1 Information cascades in blogosphere

Most work on extracting cascades has been done in the blog domain (Adamic and Glance,
2005, Adar and Adamic, 2005, Gruhl et al., 2004). The authors in this domain noted
that, while information propagates between blogs, examples of genuine cascading behav-
ior appeared relatively rarely. This is possibly due to bias in the web-crawling and text
analysis techniques used to collect pages and infer relationships. In our dataset, all the
recommendations are stored as database transactions, and we know that no records are
missing. Associated with each recommendation is the product involved, and the time the
recommendation was made. Studies of blogspace either spend a lot of effort mining topics
from posts (Adar and Adamic, 2005, Gruhl et al., 2004) or consider only the properties of
blogspace as a graph of unlabeled URLs (Adamic and Glance, 2005).

There are several potential models to capture the structure of the blogosphere. Work
on information diffusion based on topics (Gruhl et al., 2004) showed that for some topics,
their popularity remains constant in time (“chatter”) while for other topics the popularity is
more volatile (“spikes”). (Kumar et al., 2003) analyze community-level behavior as inferred
from blog-rolls — permanent links between “friend” blogs. In their extension (Kumar et al.,
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2006) performed analysis of several topological properties of link graphs in communities,
finding that much behavior was characterized by “stars”.

2.3.2 Cascades in viral marketing

Viral marketing can be thought of as a diffusion of information about the product and its
adoption over the network. Primarily in social sciences there is a long history of research on
the influence of social networks on innovation and product diffusion. However, such studies
have been typically limited to small networks and typically a single product or service. For
example, (Brown and Reingen, 1987) interviewed the families of students being instructed
by three piano teachers, in order to find out the network of referrals. They found that strong
ties, those between family or friends, were more likely to be activated for information flow
and were also more influential than weak ties (Granovetter, 1973) between acquaintances.

In the context of the internet, word-of-mouth advertising is not restricted to pairwise or
small-group interactions between individuals. Rather, customers can share their experiences
and opinions regarding a product with everyone. Quantitative marketing techniques have
been proposed (Montgomery, 2001) to describe product information flow online, and the
rating of products and merchants has been shown to effect the likelihood of an item being
bought (Resnick and Zeckhauser, 2002, Chevalier and Mayzlin, 2006). More sophisticated
online recommendation systems allow users to rate others’ reviews, or directly rate other
reviewers to implicitly form a trusted reviewer network that may have very little overlap
with a person’s actual social circle. (Richardson and Domingos, 2002) used Epinions’ trusted
reviewer network to construct an algorithm to maximize viral marketing efficiency assuming
that individuals’ probability of purchasing a product depends on the opinions on the trusted
peers in their network. (Kempe et al., 2003) have followed up on the challenge of maximizing
viral information spread by evaluating several algorithms given various models of adoption
we discuss next.

3 Completed work: Network structure and evolution

The first part of the thesis presents properties of time evolving networks we discovered.
This motivated the development of new probabilistic generative models and algorithms to
fit them to real networks.

3.1 Properties of evolving networks

We studied a range of different networks, from several domains, and focused specifically on
the way in which fundamental structural properties of networks vary with time. Our results
suggest that two fundamental and commonly made assumptions about network evolution
need to be reassessed:

(A) Constant average degree assumption: The average node degree in the network remains

constant over time. (Or equivalently, the number of edges grows linearly in the number
of nodes.) (Albert and Barabasi, 1999, Newman, 2003)
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(B) Slowly growing diameter assumption: The diameter is a slowly growing function of
the network size, as in “small world” graphs. (More precisely, the diameter of the
graph increases logarithmically in the number of nodes in the graph.) (Albert et al.,
1999, Broder et al., 2000, Milgram, 1967, Watts and Strogatz, 1998)

3.1.1 Densification Power Law

In contrast to conventional wisdom we found that networks from various domains densify
over time with the number of edges growing super-linearly in the number of nodes. This
means that the later the node joins the network the more edges it will create. Furthermore,
the network is not arbitrarily densifying but it follows a Densification Power Law — the
growing network maintains the power-law relationship between the number of nodes and
the number of edges over time:

e(t) o< n(t)?,

where e(t) and n(t) are the number of edges and nodes of the graph at time ¢, and a is
a Densification exponent that lies strictly between 1 and 2. Exponent a = 1 corresponds to
constant average degree over time (which was assumed so far), while a = 2 corresponds to
an extremely dense graph.

For example, figure 1 shows the Densification Power Law for a large physics citation
network, which was obtained from arXiv.org. The network has 29, 555 nodes and 347, 268
edges and spans a period of 10 years. A second dataset is the Autonomous Systems (AS),
which can be thought of as a graph of the internet. We have 735 daily instances for a period
of over 2 years, and the largest instance has 6,474 nodes and 26,467 edges. Notice the
nontrivial densification exponents of @ = 1.7 and a = 1.2. We refer the reader to (Leskovec
et al., 2007c) for more examples of densifying networks.

3.1.2 Shrinking diameters

A second, even more surprising observation is that the average distance between nodes in a
graph shrinks over time rather than increases slowly as a function of the number of nodes,
as it is commonly believed. This result is particularly surprising since it moves the long-
running debate over exactly how slowly the graph diameter grows (Bollobas and Riordan,
2004, Chung and Lu, 2002), to the need to revisit standard models so as to produce graphs
in which the effective diameter is shrinking over time.

Figure 1 shows example of Shrinking Diameters for a large physics citation network and
the Autonomous Systems (AS). Notice the gradual decrease in effective diameter as the
network grows. Again, more examples of networks with shrinking diameters can be found
in (Leskovec et al., 2007c).

3.1.3 Densification and degree distribution

As we saw many networks give rise to heavy tailed (power law) degree distribution. Next,
we present analysis of the relation between the densification and the power-law degree
distribution over time. We show they are fundamentally related, and that there are two
regimes where densification occurs: (a) power-law degree distribution evolves over time to
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allow for densification. (b) power-law degree exponent remains constant over time. In this
case the Densification Power Law is the consequence of the fact that a power-law distribution
with exponent v < 2 has no finite expectation (Newman, 2005), and thus the average degree

grows as the degree exponent remains constant.
We formalize these with the following theorems (Leskovec et al., 2007c):

Theorem 3.1 (Leskovec et al. (2007c)) Given a time evolving graph on n nodes that
evolves according to Densification Power Law with exponent a > 1 and has a Power-Law
degree distribution with exponent v, > 2, then the degree exponent 7y, evolves with the

number of nodes n as

4ne—1 1

Tn =

14

2ne-1 1



Theorem 3.2 (Leskovec et al. (2007c)) In a temporally evolving graph with a power-
law degree distribution having constant degree exponent vy over time, the Densification Power
Law exponent a 1s:

a = 1 if v > 2
2/y if 1<y<2
2 if y<1

We also found cases of real world networks that follow the results of the above the-
orems. We find that citation networks densify by flattening (decreasing) degree expo-
nent (Theorem 3.1), and that the Email networks densify by having constant degree expo-
nent, v = 1.8 < 2 (Theorem 3.2). Details on the analysis and experiments can be found
in (Leskovec et al., 2007c, Section 5).

3.2 Explanatory models

What underlying process causes a graph to systematically densify and experience a decrease
in effective diameter even as its size increases? Existing graph generation models (Albert
and Barabasi, 1999, Newman, 2003) do not exhibit these types of behavior. This question
motivates the next part of our work: we developed two families of probabilistic generative
models for graphs that do capture these properties.

3.2.1 Community guided attachment

The first model, which we refer to as Community Guided Attachment (Leskovec et al.,
2005b), shows that a decomposition of the nodes into a nested set of communities, such
that the difficulty of forming links between communities increases with the distance in the
hierarchy, naturally explains the Densification Power Law with any desired exponent. In
short, self-similarity itself leads to the Densification Power Law. The proofs, further details
and extension of the model can be found in our papers (Leskovec et al., 2007c).

We represent the recursive structure of communities-within-communities as a tree I,
of height H. We show that even a simple, perfectly balanced tree of constant fanout b is
enough to lead to a densification power law, and so we will focus the analysis on this basic
model.

The nodes V in the graph we construct will be the leaves of the tree; that is, n = |V].
(Note that n = b.) Let h(v,w) define the standard tree distance of two leaf nodes v and
w: that is, h(v,w) is the height of their least common ancestor.

We construct a random graph on a set of nodes V' by specifying the probability that v
and w form an edge as a function f of h(v,w). We refer to this function f as the Difficulty
Function. What should be the form of f? Clearly, it should decrease with h; but there are
many forms such a decrease could take.

The form of f that works best for our purposes comes from the self-similarity arguments:
We would like f to be scale-free; that is, f(h)/f(h — 1) should be level-independent and
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thus constant. The only way to achieve level-independence is to define f(h) = f(0)c™".
Setting f(0) to 1 for simplicity, we have:

fhy=c" (1)

where ¢ > 1. We refer to the constant ¢ as the Difficulty Constant. Intuitively, cross-
communities links become harder to form as ¢ increases.

This completes our development of the model, which we refer to as Community Guided
Attachment: If the nodes of a graph belong to communities-within-communities, and if the
cost for cross-community edges is scale-free (Eq. (1)), the Densification Power Law follows
naturally. No central control or exogenous regulations are needed to force the resulting
graph to obey this property. In short, self-similarity itself leads to the Densification Power
Law:

Theorem 3.3 (Leskovec et al. (2005b)) In the Community Guided Attachment ran-
dom graph model just defined, the expected average out-degree d of a mode is proportional
to:

d = ntlos(©) if 1<e<b
= log(n) if c=b
= constant if ¢>b

The proof and further extensions of the basic model can be found in (Leskovec et al.,
2005b, Theorem 1).

3.2.2 Forest Fire model

Community Guided Attachment and its extensions show how densification can arise nat-
urally, and even in conjunction with heavy-tailed in-degree distributions. However, it is
not a rich enough class of models to capture all the properties in our network datasets. In
particular, we would like to capture both the shrinking effective diameters that we have
observed, as well as the fact that real networks tend to have heavy-tailed out-degree distri-
butions (though generally not as skewed as their in-degree distributions). The Community
Guided Attachment models do not exhibit either of these properties.

Specifically, our goal is as follows. Given a (possibly empty) initial graph G, and a
sequence of new nodes vy ... vg, we want to design a simple randomized process to succes-
sively link v; to nodes of G (i = 1,...k) so that the resulting graph G finq will obey all of
the following patterns: heavy-tailed distributions for in- and out-degrees, the Densification
Power Law, and shrinking effective diameter.

We introduce the Forest Fire Model (Leskovec et al., 2005b), which is capable of pro-
ducing all these properties. To set up this model, we begin with some intuition that also
underpinned Community Guided Attachment: nodes arrive over time; each node has a
“center of gravity” in some part of the network; and its probability of linking to other
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nodes decreases rapidly with their distance from this center of gravity. However, we add
to this picture the notion that, occasionally, a new node will produce a very large number
of out-links. Such nodes will help cause a more skewed out-degree distribution; they will
also serve as “bridges” that connect formerly disparate parts of the network, bringing the
diameter down.

Following this plan, we now define the most basic version of the model. Essentially,
nodes arrive one at a time and form out-links to some subset of the earlier nodes; to form
out-links, a new node v attaches to an ambassador node w in the existing graph, and
then begins “burning” links outward from w, linking with a certain probability to any new
node it discovers. One can view such a process as intuitively corresponding to a model by
which an author of a paper identifies references to include in the bibliography. He or she
finds a first paper to cite, chases a subset of the references in this paper (modeled here as
random), and continues recursively with the papers discovered in this way. Depending on
the bibliographic aids being used in this process, it may also be possible to chase back-links
to papers that cite the paper under consideration.

Despite the fact that there is no explicit hierarchy in the Forest Fire Model, as there was
in Community Guided Attachment, there are some subtle similarities between the models.
Where a node in Community Guided Attachment was the child of a parent in the hierarchy,
a node v in the Forest Fire Model also has an “entry point” via its chosen ambassador
node w. Moreover, just as the probability of linking to a node in Community Guided
Attachment decreased exponentially in the tree distance, the probability that a new node
v burns k successive links so as to reach a node u lying k steps away is exponentially small
in k.

In fact, our Forest Fire Model combines the flavors of several older models, and produces
graphs qualitatively matching their properties. We establish this by simulation, as we
describe below, but it is also useful to provide some intuition for why these properties arise.

o Heavy-tailed in-degrees. Our model has a “rich get richer” flavor: highly linked nodes
can easily be reached by a newcomer, no matter which ambassador it starts from.

e Communities. The model also has a “copying” flavor: a newcomer copies several of
the neighbors of his/her ambassador (and then continues this recursively).

o Heavy-tailed out-degrees. The recursive nature of link formation provides a reasonable
chance for a new node to burn many edges, and thus produce a large out-degree.

e Densification Power Law. A newcomer will have a lot of links near the community
of his/her ambassador; a few links beyond this, and significantly fewer farther away.
Intuitively, this is analogous to the Community Guided Attachment, although without
an explicit set of communities.

o Shrinking diameter. It is not a priori clear why the Forest Fire Model should exhibit a
shrinking diameter as it grows. Graph densification is helpful in reducing the diameter,
but it is important to note that densification is certainly not enough on its own to
imply shrinking diameter. For example, the Community Guided Attachment model
obeys the Densification Power Law, but our experiments also show that the diameter
slowly increases (not shown here for brevity).
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Figure 2: The Densification Power Law plot and the diameter for Forest Fire model. Column
1: sparse graph (a = 1.01 < 2), with increasing diameter. Column 2: (most realistic case:)
densifying graph (a = 1.21 < 2) with slowly decreasing diameter. Column 3: densifying
graph (a = 1.32 < 2) with decreasing diameter.

Figure 2 shows the evolution of the network for different values of parameters. Notice
Forest Fire model produces graphs of various densifications and levels of shrinking diameter,
while also generating networks with power-law degree distributions (plots not shown for
brevity, see (Leskovec et al., 2007¢)).

3.3 Kronecker graphs generative model

Our next goal is to develop an analytically tractable model of network generation and
evolution which can easily be analyzed and fitted to real networks.

Next, more sophisticated model, exhibits the full range of properties. It is based on
a non-standard matrix operation, the Kronecker product. Intuitively, communities in the
graph grow recursively, with nodes recursively getting expanded into miniature copies of
the community. Nodes in the subcommunity then link among themselves and to the nodes
in different communities.

The beauty of Kronecker Graphs (Leskovec et al., 2005a) is that they are mathematically
very tractable. We can prove that they obey all static and dynamic patterns that were
observed in large real-world networks: heavy-tailed distributions for in-degree, out-degree,
eigenvalues and eigenvectors, constant/shrinking diameter and densification power law.

First, we introduce deterministic version of Kronecker Graphs which we will later ex-
tend to Stochastic Kronecker Graphs for which we also developed scalable algorithm for
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parameter estimation.

3.3.1 Deterministic Kronecker Graphs

The main idea is to create self-similar graphs, recursively. We begin with an initiator graph
(1, with N; nodes, and by recursion we produce successively larger graphs Gs ... G, such
that the k™ graph Gy, is on Ny = N{’“ nodes.

If we want these graphs to exhibit a version of the Densification Power Law, then Gy
should have Ej, = E¥ edges. This is a property that requires some care in order to get right,
as standard recursive constructions (for example, the traditional Cartesian product or the
construction of (Barabasi et al., 2001)) do not satisfy it.

As it turns out the Kronecker product is a perfect tool for this goal. It is defined as:

Definition 1 (Kronecker product of matrices) Given two matrices U = [u; ;] and V
of sizes n x m and n' x m' respectively, the Kronecker product matriz S of dimensions
(nxn') x (mxm') is given by

U171V U172V e ul,mV
’U,QJV ’U,272V e ’LL2$mV

S=UV= . S . (2)
Up1V Un2V .. UpmV

Kronecker product of two graphs is defined as Kronecker product of their adjacency
matrices:

Definition 2 (Kronecker product of graphs) Let G and H be graphs with adjacency
matrices A(G) and A(H) respectively, then the Kronecker product G @ H is defined as the
graph with adjacency matriz A(G) @ A(H).

And, we denote k" Kronecker power of G as G[lk] (abbreviated to Gy), where Gy =
M= ear:

Definition 3 (Kronecker power) The k" power of Gy is defined as the matriz G[lk} (ab-
breviated to Gy ) , such that:

Gll'=Gr= G18Gi18...G1 = G_19G

k times

Figure 3 shows the recursive construction of Kronecker graphs. We start with G, a 3-
node chain, and Kronecker power it to obtain G5. The self-similar nature of the Kronecker
graphs is clear: To produce G from Gj_1, we “expand” (replace) nodes of G_1 by copies
of G1, and join the copies according to the adjacencies in Gi_; (see fig. 3). One can
imagine this by positing that communities in the graph grow recursively, with nodes in the
community recursively getting expanded into miniature copies of the community. Nodes in
the sub-community then link among themselves and to nodes from other communities.
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3.3.2 Stochastic Kronecker Graphs

We also define a stochastic version of Kronecker Graphs. The difference is that now the
initiator matrix is stochastic: we start with a Ny x Ny probability matriz © = [0;;], where
the element 6;; € [0,1] is the probability that edge (i,;) is present. We compute the k!
Kronecker power P = O, And then for each p,, € P, include edge (u,v) with probability
Puv-

Stochastic Kronecker Graphs are thus parameterized by the Ny x Ny probability (param-
eter) matriz ©. The probability py, of an edge (u,v) occurring in k-th Kronecker power
P = ol

To sample a Kronecker graph G, i.e. obtain a realization, from P we perform the
following procedure: for each [p;;] € P we include an edge (i,j) in G with probability p;;,
i.e. we have a Bernoulli edge generation model.

3.3.3 Properties of Kronecker Graphs

Kronecker graphs have a rich set of properties that are also found in real networks. More
specifically we show that Kronecker graphs have the following properties Leskovec et al.
(2005b):

Theorem 3.4 (Multinomial degree distribution) Kronecker graphs have multinomial
degree distributions, for both in- and out-degrees.

Note that multinomial distribution with a proper choice of parameters can be made

to behave as heavy-tailed (power-law) distribution. For example, see Figure 4(a) and
also (Leskovec et al., 2005a).
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Theorem 3.5 (Multinomial eigenvalue distribution) The Kronecker graph Gy has a
multinomial distribution for its eigenvalues.

Theorem 3.6 (Multinomial eigenvector distribution) The components of each eigen-
vector of the Kronecker graph Gy follow a multinomial distribution.

Theorem 3.7 (Densification) Kronecker graphs follow the Densification Power Law (DPL)
with densification exponent a = log(E1)/log(N1).

Theorem 3.8 (Diameter) If G and H each have diameter at most d, and each has a
self-loop on every node, then the Kronecker product G ® H also has diameter at most d.

Further details on theorems and proofs can be found in (Leskovec et al., 2005a).

As we will see in next section Kronecker graphs can also be fit to real data and they
seem to be a model of just the right complexity, i.e. not too big parameter space while still
maintaining rich expressive power, to capture properties of real graphs.

3.3.4 Estimating parameters of Kronecker graphs

Kronecker graphs are promising, since they obey many patterns found in real life networks
and have very intuitive and informative parameters — the whole model is captured by the
“Initiator” (or “seed”) graph. Given a set of constraints (patterns we want to match) we
are searching for the initiator graph. Our goal is to compute the likelihood over a set of
possible initiator graphs and seek the most likely one.

Stochastic graph models introduce probability distributions over graphs. A generative
model assigns probability P(G) to every graph G. P(QG) is the likelihood that a given model
generated graph G. We concentrate on Stochastic Kronecker Graph model, and consider
fitting it to a real graph G. We use a maximum likelihood approach, i.e. we aim to
find parameter values © that maximize the P(G) under the model. This presents several
challenges:

e Model selection: A graph is a single structure, and not a set of items drawn i.i.d.
from some distribution. So one can not split it into independent training and test
sets. The fitted parameters will thus be best to generate a particular instance of a
graph. Also, overfitting is an issue since a more complex model usually fits better.

e Node labeling: The second issue is the node ordering or node labeling. Graph G has
a set of N nodes, and each node has unique index (label, number). Labels do not carry
any particular meaning. One can think of this as a graph is first generated and then
the labels are randomly assigned to the nodes. This means that two isomorphic graphs
that have different node labeling should have the same likelihood. So to compute the
likelihood one has to consider all node labelings P(G) = ", P(G|o)P (o), where the
sum is over all permutations ¢ of N nodes.

e Likelihood estimation: Calculating P(G|o) naively takes O(N?) by simply evalu-
ating the probability of each edge in the graph adjacency matrix. The challenge is
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averaging over the super-exponentially many permutations which is computationally
intractable, and thus one has to reside to simulation and sampling. For real graphs
even calculating P(G|o) in O(N?) is infeasible.

As the problem is introduced there are several difficulties. First, we assume gradient
descent type optimization will work, i.e. the problem does not have (too many) local min-
ima. Second, we are summing over exponentially many permutations, i.e. node labelings.
Third, the evaluation of the P(G|o) takes O(N?), and needs to be evaluated N! times.

Observation 1 Naively calculating the likelihood P(G|©) of a Stochastic Kronecker Graph
with parameters © takes O(N'N?), where N is the number of nodes in G.

We developed KRONFIT (Leskovec and Faloutsos, 2007), an algorithm for estimating
parameters O given a real graph G that runs in linear time.

Observation 2 Given a graph G, KRONFIT estimates the parameters © of Stochastic Kro-
necker Graph in time O(E), where E is the number of edges in G.

We use simulation techniques to avoid the super-exponential sum over the node labelings.
By exploiting the structure of Kronecker matrix multiplication we can evaluate P(G|o) in
linear time O(FE). And since real graphs are sparse, i.e. the number of edges is of the same
order as the number of nodes, this makes the fitting of the Kronecker model to large graphs
tractable (Leskovec and Faloutsos, 2007).

3.3.5 Experiments with Kronecker Graphs

Next, we present a series of experiments that show that KRONF'IT is able to recover true
parameters when given a synthetic graph, and that synthetic graphs generated from the
estimated parameters fit the real graphs well.

Optimization space: In Kronecker graphs permutations of the parameter matrix © all
have the same likelihood. This means that the maximum likelihood optimization problem
is not convex, but rather has several global minima. To check for the presence of other
local minima where gradient descent could get stuck we run the following experiment: we
generated 100 synthetic Kronecker graphs on 16,384 (2'4) nodes and 1.4 million edges on
average, with a randomly chosen 2 x 2 parameter matrix ©*. For each of the 100 graphs
we start gradient descent from a different random location ©’, and try to recover ©*. In
98% of the cases the descent converged to the true parameters. Many times the algorithm
converged to a different global minima, 7.e. permuted true parameter values. This suggests
surprisingly nice structure of the optimization problem: it seems it behaves like a convex
optimization problem with many equivalent global minima.

Fitting to real-world graphs: We also present experiments of fitting the Kronecker
Graphs model to real-world graphs. Given a real graph G we aim in discovering most likely
parameters © that ideally would generate a synthetic graph K having same properties as G.
This assumes that Kronecker Graphs is a good model for real graphs, and that KRONF1T
is able to recover good parameters. We take a real graph G, find parameters 6 using
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Figure 4: Autonomous Systems: Overlayed patterns of real graph and the fitted Kronecker
graph. Notice that the fitted Kronecker graph matches patterns of the real graph.

KRONFIT, generate a synthetic graph K using é, and compare their properties that we
introduced in section 2.

Figure 4 shows properties of Autonomous Systems graph (6,474 nodes, 26,467 edges),
and compares them with the properties of a synthetic Kronecker graph generated using the
fitted parameters O of size 2 x 2. Notice that properties of both graphs match really well.

This is a nice result since it also shows that through the optimization of the maximum
likelihood the graphs also match in several other properties even though we are not directly
optimizing over them.

Autonomous Systems network is undirected, and the fitted parameter matrix 6 =
[.98,.58;.58,.06] reveals this. This means that without a priori biasing the fitting towards
undirected graphs, the recovered parameters obey this. Fitting AS graph from a random
set of parameters took less than 20 minutes on a standard desktop PC. This is a signifi-
cant speedup over (Bezdkova et al., 2006), where by using a similar permutation sampling
approach for calculating the likelihood of a preferential attachment model on similar AS
graph took about two days on a cluster of 50 machines.

In contrast to earlier work, our work has the following novelties: (a) it is among the few
that estimates the parameters of the chosen generator (b) it is among the few that has a
concrete measure of goodness of the fit (namely, likelihood) (c¢) it avoids the quadratic com-
plexity of computing the likelihood by exploiting the properties of the “Kronecker graphs”
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Figure 5: Two views on the formation of information cascades on the blogosphere.

(d) it avoids the factorial explosion of the correspondence problem, by using Metropolis
sampling.

The benefits of fitting a Kronecker graph model into a real graph are several: Eztrap-
olation: Once we have the Kronecker generator © for a given real matrix G (such that
G is mimicked by @[k}), a larger version of G would be generated by ©F 1. Sampling:
Similarly, if we want a realistic sample of the real graph, we could use a smaller exponent
in the Kronecker exponentiation, like ©* 1 Anonymization: Since O] mimics G, we can
publish O without revealing information about the nodes of the real graph G.

4 Completed work: Network cascades

The second part of the thesis focuses on the notion of information cascades — a phenomena

where an action or idea becomes widely adopted due to influence by others, as opposed to

individual reasoning in isolation. We formally define a cascade as a graph where the nodes

are agents and a directed edge (i, j, t) indicates that a node i influenced a node j at time t¢.
We consider three examples of cascade formation and propagation in networks:

e First, we present results on cascades in a large viral marketing network, where people
recommend products to each other and we study the spread and success of recom-
mendations over the network.

e Second, we consider the tracking of a large population of blogs over a long period of
time and observe the propagation of information between the blogs.

e Third, we study the propagation of infectious water in large real water distribution
networks, and ask the question of where to place a limited number of sensors so the
disease outbreaks will be detected early.

Blogs (weblogs) are web sites that are updated on a regular basis. Often times individ-
uals use them for online diaries and social networking; other times news sites have blogs
for timely stories. Blogs are composed of time-stamped posts, and posts typically link each
other, as well as other resources on the Web.

For example, figure 5 shows two alternative views of information cascades that may
occur on the blogosphere. In figure 5(a) each circle represents a blog post, and all circles
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at the same vertical position belong to the same blog. Often blog posts refer to each
other using hyper-links. Given that the posts are time-stamped and usually not updated,
we can trace their linking patterns all the way to the source. It is easy to identify the
flow if information from the source post to the followers and followers of the followers.
So, each layer represents a different information cascade (information propagation graph).
Figure 5(b) gives an alternative view. Here posts (represented as circles) inside a rectangle
belong to the same blog. Similarly, the information cascades correspond to connected
components of the posts in the graph, e.g. posts pio,p41,pa2 and pgs all form a cascade,
where p1o is the cascade initiator.

Observing such behavior on the blogosphere or in the viral marketing poses several
interesting questions: What kinds of cascades arise frequently in real life? Are they like
trees, stars, or something else? And how do they reflect properties of their underlying
network environment? How fast does the information spread? Do certain nodes have
specific propagation patterns? What are the most important nodes to target if we want to
spread the information over the network?

In addition to observing rich cascades and propagation (Leskovec et al., 2006b) we go
a step further and analyze the effectiveness and dynamics of product recommendations in
causing purchases (Leskovec et al., 2006a, 2007a). To our knowledge this was the first
study to directly observe the effectiveness of person to person word of mouth advertising
for hundreds of thousands of products. Similarly, for blogs we (Leskovec et al., 2007e) are
the first to perform a large study of cascading behavior in large blog networks.

4.1 Cascades in viral marketing

We study a recommendation network consisting of 4 million people who made 16 million
recommendations on half a million products from a large on-line retailer. Each time a
person purchases a book, music, DVD, or video tape she is given the option to send an
email recommending the item to her friends. The first recipient to purchase the item
receives a discount and the sender of the recommendation receives a referral credit.

Figure 6 shows two typical product recommendation networks. Most product recommen-
dation networks consist of a large number of small disconnected components where we do
not observe cascades. Then there is usually a small number of relatively small components
where we observe recommendations propagating. We also notice bursts of recommendations
and collisions (figure 6(b)). Some individuals send recommendations to many friends which
results in star-like patterns in the graph.

4.1.1 Cascading patterns

We consider the problem of finding patterns of recommendations in a large social network.
We ask the following questions: How does the influence propagate? What does it look like?

In order to analyze the data, we developed new methods and algorithms. First, we
identify cascades, i.e. graphs where incoming recommendations influenced purchases and
further recommendations. Next, we enumerate and count the cascade subgraphs. Graph
isomorphism and enumeration are both computationally very expensive, so we developed
new algorithms for approximate graph isomorphism resolution (Leskovec et al., 2006b).
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Figure 6: Examples of two product recommendation networks. Left: First aid study guide.
Notice many small disconnected cascades. Right: Japanese graphic novel (manga). Notice
a large, tight community.

P N N NNt 5 o8
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Figure 7: Typical classes of cascades. G, Ga: nodes recommending to the same set of
people, but not each other. G3, G4: nodes recommending to same community. Gs, Gg: a
flat cascade. G7: a large propagation of recommendations.

In our multi-level approach the computational complexity (and accuracy) of the graph
isomorphism resolution depends on the size of the graph. This property makes the algorithm
scale nicely to large datasets.

We found that the distribution of sizes and depths of cascades follows a power law.
Generally, cascades tend to be shallow, but occasional large bursts can occur. Cascades are
mainly tree-like, but we observe variability in connectivity and branching across different
products groups. Figure 7 shows some typical examples of how the influence propagates
over the recommendation network.

In addition to observing rich cascades and propagation we go a step further and analyze
the effectiveness and dynamics of product recommendations in causing purchases.

4.1.2 Implications for viral marketing

We established how the recommendation network grows over time and how effective it is
from the viewpoint of the sender and receiver of the recommendations. We can see what
kind of product is more likely to be bought as a result of recommendation, and describe
the size of the cascade that results from recommendations and purchases. While on average
recommendations are not very effective at inducing purchases and do not spread very far,
there are product and pricing categories for which viral marketing seems to be very effective.

Figure 8 presents an example of our findings. We plot the probability of purchasing
a product given the number of received recommendations. Surprisingly, as more book
recommendations are received their success decreases. Success of DVD recommendations
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Figure 8: Probability of purchasing a product given the number of received recommenda-
tions. Notice the decrease in purchasing probability for books and saturation for DVDs.

saturates around 10 incoming recommendations. This means that after a person gets 10
recommendations they become immune to them — their probability of buying does not in-
crease anymore. Traditional innovation diffusion models assume that an increasing number
of infected contacts results in an increased likelihood of infection. Instead, we show that the
probability of purchasing a product increases with the number of recommendations received,
but then it quickly saturates. The result has important implications for viral marketing
because providing too much incentive for people to recommend to one another can weaken
the very social network links that the marketer is intending to exploit.

What determines the product’s viral marketing success? We also developed a model
which characterizes product categories for which recommendations are more likely to be
accepted, and find that the numbers of nodes and receivers have negative coefficients, show-
ing that successfully recommended products are actually more likely to be not so widely
popular. It shows that more expensive and more recommended products have a higher
success rate. These recommendations should occur between a small number of senders and
receivers, which suggests a very dense recommendation network where lots of recommenda-
tions are exchanged between a small community of people. These insights could be of use
to marketers — personal recommendations are most effective in small, densely connected
communities enjoying expensive products. Refer to (Leskovec et al., 2007a) for more details.

4.2 Cascades on the blogosphere

Similarly to the viral marketing setting we analyzed cascades on the blogosphere. We
address a set of related questions: What kinds of cascades arise frequently in real life?
Are they like trees, stars, or something else? And how do they reflect properties of their
underlying network environment?
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Figure 9: Number of in-links vs. the days after the post in log-linear scale, after removing
the day-of-the week effects. The power law fit has the exponent — 1.5.

4.2.1 Shape of information cascades

We extracted our dataset from a larger set of blogs and posts from August and September
2005 (Glance et al., 2005). We were interested in blogs and posts that actively participate
in discussions, so we biased our dataset towards the more active part of the blogosphere.
We focused on the most-cited blogs and traced forward and backward conversation trees
containing these blogs. This process produced a dataset of 2.5 million posts from 45,000
blogs gathered over the three-month period. To analyze the data, we first create graphs
of time-obeying propagation of links. Then, we enumerate and count all possible cascade
subgraphs.

We find novel patterns, and the analysis of the results gives us insight into the cascade
formation process. Most surprisingly, the popularity of posts drops with a power law, instead
of exponentially, that one may have expected. We collect all in-links to a post and plot
the number of links occurring after each day following the post. This creates a curve that
indicates the rise and fall of popularity. Figure 9(a) shows number of in-links for each day
following a post for all posts in the dataset The exponent of the power law is —1.5, which
is exactly the value predicted by the model where the bursty nature of human behavior is
a consequence of a decision based queuing process (Oliveira and Barabasi, 2005, Vazquez
et al., 2006) — when individuals execute tasks based on some perceived priority, the timing of
the tasks is heavy tailed, with most tasks being rapidly executed, whereas a few experience
very long waiting times.

We also find that probability of observing a cascade on n nodes follows a Zipf distribu-
tion: p(n) o< n=2. Figure 9(b) plots the in-degree distribution of nodes at level L of the
cascade. A node is at level L if it is L hops away from the root (cascade initiator) node.
Notice that the in-degree exponent is stable and does not change much given the level in the
cascade. This means that posts still attract attention (get linked) even if they are somewhat
late in the cascade and appear towards the bottom of it.

We also found rich cascade patterns. Generally cascades are shallow but occasional
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Figure 10: Common blog cascade shapes, ordered by the frequency of appearance.

large bursts also occur. The cascade sub-patterns shown on figure 10 reveal mostly small
tree-like subgraphs; however we observe differences in connectivity, density, and the shape of
cascades. Indeed, the frequency of different cascade subgraphs is not a simple consequence
of differences in size or density; rather, we find instances where denser subgraphs are more
frequent than sparser ones, in a manner suggestive of properties in the underlying social
network and propagation process.

For example, we found that BoingBoing, which a very popular blog about amusing
things, is engaged in many cascades. Actually, 85% of all BoingBoing posts were cascade
initiators. The cascades generally did not spread very far but were wide (e.g., G1o and
G14 in Figure 10). On the other hand 53% of the posts from an influential political blog
MichelleMalkin were cascade initiators, but the cascades here were deeper and generally
larger (e.g., G117 in Figure 10) than those of BoingBoing.

4.2.2 Model of information cascades

We also developed a conceptual model for generating information cascades that produces
cascade graphs matching several properties of real cascades. Our model is intuitive and
requires only a single parameter that corresponds to how interesting (easy spreading) the
conversations in general on the blogosphere are.

Intuitively, cascades are generated by the following principle. A post is posted at some
blog, other bloggers read the post, some create new posts, and link the source post. This
process continues and creates a cascade. One can think of cascades as graphs created by
the spread of a virus over the Blog network. This means that the initial post corresponds to
infecting a blog. As the cascade unveils, the virus (information) spreads over the network
and leaves a trail. To model this process we use a single parameter § that measures
how infectiousness of the posts on the blogosphere. Our model is very similar to the SIS
(susceptible — infected — susceptible) model from the epidemiology (Hethcote, 2000).

Figure 11 compares the cascades generated by the model with the ones found in the real
blog network. Notice a very good agreement between the reality and simulated cascades
in all plots. The distribution over cascade sizes is matched best. Chains and stars are
slightly under-represented, especially in the tail of the distribution where the variance is
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Figure 11: Comparison of the true data and the model. We plotted the distribution of the
true cascades with circles and the estimate of our model with dashed line. Notice remarkable
agreement between the data and the prediction of our simple model.

high. The in-degree distribution is also matched nicely, with an exception for a spike that
can be attributed to a set of outlier blogs all with in-degree 52.

4.3 Node selection for early cascade detection

Next, we explore the general problem of detecting outbreaks in networks, where we are
given a network and a dynamic process spreading over this network, and we want to select
a set of nodes to detect the process as effectively as possible.

Many real-world problems can be modeled under this setting. Consider a city water
distribution network, delivering water to households via pipes and junctions. Accidental or
malicious intrusions can cause contaminants to spread over the network, and we want to
select a few locations (pipe junctions) to install sensors, in order to detect these contami-
nations as quickly as possible.

Similarly with blogs we want to select a set of blogs to read (or retrieve) which are most
up to date, i.e., catch (link to) most of the stories that propagate over the blogosphere.
Our goal is to select a small set of blogs (two in case of Figure 5) which “catch” as many
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cascades (stories) as possible. A naive, intuitive solution would be to select the big, well-
known blogs. However, these usually have a large number of posts, and are time-consuming
to read. We show, that, perhaps counter-intuitively, a more cost-effective solution can be
obtained, by reading smaller, but higher quality, blogs, which our algorithm can find.

4.3.1 Node selection criteria

There are several possible criteria one may want to optimize in outbreak detection. For
example, one criterion seeks to minimize detection time (i.e., to know about a cascade as
soon as possible, or avoid spreading of contaminated water). Similarly, another criterion
seeks to minimize the population affected by an undetected outbreak (i.e., the number of
blogs referring to the story we just missed, or the population consuming the contamination
we cannot detect). Optimizing these objective functions is NP-hard (Khuller et al., 1999),
so for large, real-world problems, we cannot expect to find the optimal solution.

4.3.2 Exploiting submodularity

In our work (Leskovec et al., 2007d) we show that these and many other realistic outbreak
detection objectives are submodular (Nemhauser et al., 1978), i.e., they exhibit a diminish-
ing returns property: Reading a blog (or placing a sensor) when we have only read a few
blogs provides more new information, than reading it after we have read many blogs (placed
many sensors). We find ways to exploit this submodularity property to efficiently obtain
solutions which are provably close to the optimal solution. These guarantees are important
in practice, since selecting nodes is expensive (reading blogs is time-consuming, sensors have
high cost), and we desire solutions which are not too far from the optimal solution.

We also show that many objective functions for detecting outbreaks in networks are
submodular, including detection time and population affected in the blogosphere and wa-
ter distribution monitoring problems. We show that our approach also generalizes work
by (Kempe et al., 2003) on selecting nodes maximizing influence in a social network.

We also exploit the submodularity of the objective (e.g., detection time) to develop an
efficient approximation algorithm, CELF, which achieves near-optimal placements (guaran-
teeing at least a constant fraction of the optimal solution), providing a novel theoretical
result for non-constant node cost functions. CELF is up to 700 times faster than simple
greedy algorithm. We also derive novel online bounds on the quality of the placements
obtained by any algorithm.

4.3.3 Evaluation on water distribution and blog networks

We extensively evaluate our methodology on the applications introduced above — water
quality and blogosphere monitoring. These are large real-world problems, involving a model
of a water distribution network from the EPA with millions of contamination scenarios, and
real blog data with millions of posts.

First, we evaluate the performance of CELF, and estimate how far from optimal the
solution could be. Obtaining the optimal solution would require enumeration of 24%:000
subsets. Since this is impractical, we compare our algorithm to the bounds we developed.
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Figure 12: Both plots show the solution quality vs. the number of selected sensors (blogs).
(a) Performance of CELF algorithm and off-line and on-line bounds. Notice on-line bound
is much tighter. (b) Compares different objective functions: detection likelihood (DL),
detection time (DT) and population affected (PA).

Figure 12(a) shows scores for increasing budgets when optimized the Population affected
criterion. As we select more blogs to read, the proportion of cascades we catch increases
(bottom line). We also plot the two bounds. Notice the off-line bound (top line) is very
loose. On the other hand, our on-line bound is much tighter than the traditional off-line
bound.

In contrast to the off-line bound, our on-line bound is algorithm independent, and thus
can be computed regardless of the algorithm used to obtain the solution. Since it is tighter,
it gives a much better worst case estimate of the solution quality. For this particular
experiment, we see that CELF works very well: after selecting 100 blogs, we are at most
13.8% away from the optimal solution. Similarly, figure 12(b) shows the performance using
various objective functions. By using the on-line bound we also calculated that our results
for all objective functions are at most 5% to 15% from optimal.

In August 2006, the Battle of Water Sensor Networks (BWSN) (Ostfeld et al., 2006)
was organized as an international challenge to find the best sensor placements for a real
metropolitan area water distribution network. In Figure 13 we show two 20 sensor place-
ments obtained by our algorithm after optimizing Detection Likelihood and Population
Affected, respectively. When optimizing the population affected, the placed sensors are
concentrated in the dense high-population areas, since the goal is to detect outbreaks which
affect the population the most. When optimizing the detection likelihood, the sensors are
uniformly spread out over the network. Intuitively this makes sense, since according to
BWSN challenge, outbreaks happen with same probability at every node. So, for Detection
Likelihood, the placed sensors should be as close to all nodes as possible.
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(a) Population Affected (b) Detection Likelihood

Figure 13: Water network sensor placements: (a) when optimizing Population Affected, sen-
sors are concentrated in high population areas. (b) when optimizing Detection Likelihood,
sensors are uniformly spread out.

5 Proposed work

We propose to extend the work we already completed, and also apply our methods to solve
other problems related to graph mining.

The proposed work is composed of the following parts: (1) analysis and extension of
Kronecker model to evolving networks; (2) empirical analysis and development of models
for large online communication networks; (3) further study of information propagation and
link creation in large online social networks. In parallel we also plan to publicly release a
scalable graph mining library written in C+4 that we developed during our research.

5.1 Research topic 1: Kronecker graphs

First, we propose to further work on various aspects of Kronecker Graphs. We propose to
theoretically analyze their properties, and develop algorithms for fitting graphs over time.
We also plan to extend model to be able to generate graphs with counts and any number
of nodes.

e Theoretical analysis of Stochastic Kronecker graphs. In particular, we want to prove
properties about the diameter of Stochastic Kronecker Graphs and their relation to
Random Graphs of (Erdés and Rényi, 1960).

e Develop the models for fitting time evolving networks. We have ideas on developing a
Hidden Markov type model, where the observable variable is a graph and the hidden
variable corresponds to model parameters. We then allow the parameter matrix to
slowly evolve over time. Besides for extrapolations to the future, the evolution of the
parameter matrix will give us the means to interpret the evolution of the network.

e Extend Kronecker graphs model to generate networks with attributes on nodes and
weights edges. The idea is to explore various generative processes that map the
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probability of an edge p;; to the edge weight. So instead of having a set of Bernoulli
trials that map from p;; to actually observed edge, one could think ways for mapping
pij to a weight, e.g. the number of messages or emails exchanged between a pair of
nodes i, j.

e Extend Kronecker graphs to be able to generate graphs with any number of nodes.
The idea here is to iteratively expand the graph with miniature copies of the initiator
graph, i.e. instead of Kronecker powering the whole matrix at the same time which
increases the number of nodes from N¥ to N{“H, one could for example pick a random
element (1, j) of adjacency matrix and then Kronecker expand row i and column j of
the current adjacency matrix. Each iteration of this process increases the number of
nodes by N1, and this way after £ rounds we would have a graph on kN nodes.

5.2 Research topic 2: Large online communication networks

Next, we propose to study static and temporal patterns in large communication networks,
where the whole world communicates at once.

e We study large instant messenger communication networks with participants coming
all over the world. These graphs have more than 200 million nodes and several billion
edges (from 70GB to 3TB of data).

e Study how communication/network changes with the users demographics (gender,
age, location, distance). We would use the communication as a global sensor. This
data also gives us a perfect opportunity to measure the “six-degrees of separation”
and other theories on a world scale. Results from these experiments then motivate the
development of statistical models of communication and user demographics. These
results could directly be applied to finding outliers (e.g., a scammer, pedophile, etc.)

e Also, the sheer scale of these data will lead to interesting technical and algorithmic
questions on developing scalable algorithms for analyzing these huge networks.

5.3 Research topic 3: Nodes, links and information cascades

Last, we propose to further model and extend our analyses of information propagation in
blog networks. In parallel with this we will also study link creation and adoption of a large
professional social network, where we have available rich temporal information about the
network from its start.

e With blogs the idea is to go beyond subgraph enumeration and identify real patterns
by finding classes of graphs, e.g. near-trees, near-stars, etc. We expect to find cases
where some blogs are “content providers”, while others act as content “amplifiers”
and make the content widely popular (e.g., Slashdot). We aim to find characteristics
and differences in linking patterns of content providers and amplifiers.

e The other interesting phenomena in social networks is propagation of trust. Here
we have access to a large on-line social network of professional acquaintances. The
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network is of moderate size with more than 7 million people and around 50 million
edges between them. Besides the rich information we also have an opportunity of
performing live experiments. We plan to study the link creation, e.g., how do various
user characteristics determine (geography, profession, structure of the network) the
probability of a link? how do link invitations propagate over the network? Is there a
critical mass of links when a person transitions from inviter to invitee?

5.4 Infrastructure: GraphGarden toolkit

We also plan to work on publicly releasing a general purpose graph mining and modeling
library which was developed during our research. The library is written in C++ and it
scales to massive graphs. The library contains more than 30 thousand lines of optimized
code. Besides the library we will also create a set of accompanying utilities for analyzing
properties of static and evolving networks, fitting models, calculating structural properties,
analyzing cascades, etc.

5.5 Timeline

We plan to complete the proposed work according to the following tentative timeline:

e May 2007: Thesis proposal.

e May 2007: Research topic 2 Research and modeling of Microsoft instant messenger
communication network. Network has more than 200 million nodes and several million
edges.

e May — August 2007: Research on on-line time evolving networks (summer intern-
ship at Yahoo Research).

e September 2007: Infrastructure Prepare the GraphGarden toolkit for public
release along with the tutorial on graph mining that we submitted to ECML/PKDD
conference.

e October — December 2007: Research topic 1 Analyze properties of stochastic
Kronecker graphs. Extend the Kronecker graphs model to fit time evolving networks,
and relax the NJ nodes limitation.

e January — May 2008: Research topic 3 Study of cascade formation and link
prediction in the case of a large professional on-line social network.

e May 2008: Write the thesis.

e June 2008: Thesis defence.

35



6 Conclusion

The research focus of the proposed thesis is to analyze and model the structure, evolution
and dynamics in large real-world networks. Our contributions so far are the following:
We discovered novel properties of time evolving networks, namely Densification Power Law
and Shrinking Diameters. We also developed simple models explaining the behavior we
observed. Moreover, we introduced Kronecker graphs model with a rich set of properties,
and developed algorithms for estimating its parameters. On the information cascade side we
presented analyses of information propagation in large blog and recommendation networks,
and developed scalable algorithms for early cascade detection.

The future plans for this thesis are to (a) analyze patterns of static and time evolv-
ing networks for anomaly detection and extrapolations, (b) build theories explaining the
behavior and patterns we observe, and (c) build scalable tools for network analysis.

In the long run, outside the scope of this thesis, we would like to build tools for modeling
the evolution of large networks both on a global scale and also on the micro-scale at the
level of nodes or small communities. We want to study how information flows over the
network and how local communities influence the global network and its evolution. Ideally,
we want to bring these two views together, so that we can describe the evolution of the
network as a whole, and at the same time also of its subparts.
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