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Tutorial outline

= Part 1: Structure and models for networks

* What are properties of large graphs?
* How do we model them?

= Part 2: Dynamics of networks
= Diffusion and cascading behavior
* How do viruses and information propagate?

= Part 3: Case studies
= 240 million MSN instant messenger network
= Graph projections: how does the web look like
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Part 3: Outline

Case studies

— Microsoft Instant Messenger Communication
network

* How does the world communicate

— Web projections

 How to do learning from contextual subgraphs
— Finding fraudsters on eBay
— Center piece subgraphs

* How to find best path between the query nodes
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Microsoft Instant Messenger
Communication Network

How does the whole world
communicate?

Leskovec and Horvitz: Worldwide Buzz: Planetary-
Scale Views on an Instant-Messaging Network, 2007



The Largest Social Network

= What is the largest social network in the world
(that one can relatively easily obtain)? ©

For the first time we had a chance to look at
complete (anonymized) communication of the
whole planet (using Microsoft MSN instant
messenger network)
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Instant Messaging
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IM — Phenomena at planetary scale

Observe social phenomena at planetary scale:

" How does communication change with user
demographics (distance, age, sex)?

" How does geography affect communication?

= What is the structure of the communication
network?
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Communication data

The record of communication
* Presence data
= user status events (login, status change)

= Communication data

= who talks to whom

"= Demographics data

= user age, sex, location
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Data description: Presence

= Events:
= Login, Logout
" |s this first ever login
= Add/Remove/Block buddy
= Add unregistered buddy (invite new user)
= Change of status (busy, away, BRB, Idle,...)

= For each event:
= User Id
"= Time
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Data description: Communication

" For every conversation (session) we have a list
of users who participated in the conversation

" There can be multiple people per conversation

" For each conversation and each user:
= User ld
"= Time Joined
" Time Left
= Number of Messages Sent
* Number of Messages Received
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Data description: Demographics

" For every user (self reported):
= Age
= Gender
" Location (Country, ZIP)
= Language
= |P address (we can do reverse geo IP lookup)
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Data collection

Log size: 150Gb/day
Just copying over the network takes 8 to 10h

Parsing and processing takes another 4 to 6h
After parsing and compressing ~ 45 Gb/day

Collected data for 30 days of June 2006:
= Total: 1.3Tb of compressed data
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Data statistics

Activity over June 2006 (30 days)
= 245 million users logged in

= 180 million users engaged in conversations

= 17,5 million new accounts activated
= More than 30 billion conversations
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Data statistics per day

Activity on June 1 2006
= 1 billion conversations
= 93 million users login

= 65 million different users talk (exchange
messages)

* 1.5 million invitations for new accounts sent
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User characteristics: age
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Conversation: Who talks to whom?

" Cross gender edges:

= 300 male-male and 235 female-female edges

* 640 million female-male edges

Unknown | Female | Male Unknown | Female | Male
Unknown 1.3 3.6 3.7 Unknown 277 301 277
Female 21.3 49.9 Female 275 304
Male 20.2 Male 252

(a) Proportion of conversations

(b) Conversation duration (seconds)

Unknown | Female | Male Unknown | Female | Male

Unknown 5.7 7.1 6.7 Unknown 1.25 1.42 1.38
Female 6.6 7.6 Female 1.43 1.50
Male 5.9 Male 1.42

(¢) Exchanged messages per conversation

(d) Exchanged messages per minute



Number of people per conversation
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Conversation duration
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Conversations: number of messages

Sessions between 2 to 5 people
3 Wiy V AL T
people SN HIRYil
af | /
4 4 ‘
people ‘ ‘
s 5 !
™ people ' .
\ i

¥ II'.
Il'.- y .\‘\
i g b
I

4/ ‘“\%\ .
- #' «-""\\ﬁﬂ“ﬁ / \

v 300¢
N

M3
n
=

M3
[}
=]

o

=)
I

e

—
=
=

nged messeges (normalized by session s

n
=

i,
s

Average excha

100 200 300 400 500 600 700 800
session duration [minutes]

= Sessions between fewer people run out of
steam

[
(=]

Leskovec&Faloutsos ECML/PKDD 2007 Part 3-20



Time between conversations

Individuals are highly

diverse

What is probability to
login into the system 5,5
after t minutes? )

Power-law with 10

exponent 1.5

time between conversations [min]

Task queuing model

[Barabasi '05]
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High
Low

Age: Number of conversations
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User self reported age
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User self reported age

Age: Messages per conversation
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User self reported age

Age: Messages per unit time




Who talks to whom:
Number of conversations
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Who talks to whom:
Conversation duration
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Geography and communication

" Count the number of users logging in from
particular location on the earth
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Users per geo location

Blue circles have
more than 1 million
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Fraction of population
using MSN:

e|lceland: 35%

*Spain: 28%
*Netherlands, Canada,
Sweden, Norway: 26%
*France, UK: 18%
*USA, Brazil: 8%

Users per capita
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* For each conversation between geo points (A,B) we
increase the intensity on the line between A and B
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= Correlation:

Attribute | Random | Communicate
Age -0.0001 0.297
Gender 0.0001 -0.032
Z1P -0.0003 0.557
County 0.0005 0.704
Language | -0.0001 0.694

Age vs. Age

50 60 70 80
(a) Random

= Probability:

Attribute | Random | Communicate
Age 0.030 0.162
Gender 0.434 0.426

Z1P 0.001 0.23
County 0.046 0.734
Language 0.030 0.798

10 20 30

40 50

(b) Communicate

70 80



IM Communication Network

" Buddy graph:
= 240 million people (people that login in June '06)
= 9.1 billion edges (friendship links)

= Communication graph:

* There is an edge if the users exchanged at least
one message in June 2006

= 180 million people
= 1.3 billion edges
= 30 billion conversations
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Buddy network: Number of buddies
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= Buddy graph: 240 million nodes, 9.1 billion
edges (~40 buddies per user)
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Communication Network: Degree
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Hops

Communication Network: Small-world
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Communication network: Clustering

" How many triangles & e >
are closed?
High clustering Low clustering

" Clustering normally 100 ¢
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Communication Network Connectivity
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k-Cores decomposition

= What is the structure of the core of the
network?
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k-Cores: core of the network
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" People with k<20 are the periphery

= Core is composed of 79 people, each having 68
edges among them

Number of nodes
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Node deletion: Nodes vs. Edges
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Web Projections

Learning from contextual
graphs of the web

How to predict user intention from the
web graph?



Motivation

= Information retrieval traditionally considered
documents as independent

= Web retrieval incorporates global hyperlink
relationships to enhance ranking (e.qg.,
PageRank, HITS)
= Operates on the entire graph
= Uses just one feature (principal eigenvector) of the
graph
= Our work on Web projections focuses on

= contextual subsets of the web graph; in-between the
independent and global consideration of the
documents

" 3 rich set of graph theoretic properties
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Web projections

= Web projections: How they work?
" Project a set of web pages of interest onto the web
graph
" This creates a subgraph of the web called projection
graph
= Use the graph-theoretic properties of the subgraph for
tasks of interest

= Query projections
= Query results give the context (set of web pages)

= Use characteristics of the resulting graphs for
predictions about search quality and user behavior
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Query projections

Query  Results

Q-

Projection on the web graph

e S

Query projection graph

D\EI [l
B—a \
Generate graphical

features

Construct
case library

=P Predictions

/N
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Questions we explore

" How do query search results project onto
the underlying web graph?

= Can we predict the quality of search
results from the projection on the web
graph?

= Can we predict users’ behaviors with
issuing and reformulating queries?
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Is this a good set of search results?




Will the user reformulate the query?

A
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Resources and concepts

= Web as a graph
= URL graph:
= Nodes are web pages, edges are hyper-links

= March 2006
= Graph: 22 million nodes, 355 million edges

= Domain graph:

= Nodes are domains (cmu.edu, bbc.co.uk). Directed edge (u,v)
if there exists a webpage at domain U pointing to v

= February 2006
= Graph: 40 million nodes, 720 million edges

= Contextual subgraphs for queries
" Projection graph
= Connection graph

= Compute graph-theoretic features
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“Projection” graph

Example query: Subaru

s
Project top 20 results by the < 190 19
search engine 6
Number in the node denotes 8 %" 2 [+ 4
the search engine rank f
Color indicates relevancy as T 11
assigned by human: B :

— Perfect

— Irrelevant
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“Connection” graph

Projection graph is generally
disconnected

5

. T

Find connector nodes .
Connector nodes are

f L /

existing nodes that are not g

12

13

part of the original result
set

nodes to make projection

|deally, we would like to L g
introduce fewest possible ./

/;\ :

/ Connector

graph connected

Projection nodes

nodes
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Finding connector nodes

" Find connector nodes is a Steiner tree problem which is NP
hard

= Qur heuristic:

Connect 2" largest connected component via shortest path to the
largest

This makes a new largest component
Repeat until the graph is connected

29 |argest
component
Largest N 7
component j
2"d |argest
\—~
component
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Extracting graph features

* The idea

Find features that describe the
structure of the graph

= Then use the features for machine

learning

= Want features that describe

Connectivity of the graph

Centrality of projection and
connector nodes

Clustering and density of the core
of the graph
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Examples of graph features

" Projection graph
= Number of nodes/edges
* Number of connected components

= Size and density of the largest
connected component

* Number of triads in the graph

= Connection graph
= Number of connector nodes
= Maximal connector node degree

= Mean path length between
projection/connector nodes

= Triads on connector nodes
= We consider 55 features total
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Experimental setup

Query  Results

Q-

Projection on the web graph

e S

Query projection graph

D\EI [l
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Generate graphical

features

Construct
case library

=P Predictions

/N
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Constructing case library for machine
learning

= Given a task of interest

" Generate contextual subgraph and extract
features

= Each graph is labeled by target outcome

= |Learn statistical model that relates the
features with the outcome

" Make prediction on unseen graphs
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Experiments overview

" Given a set of search results generate projection
and connection graphs and their features

" Predict quality of a search result set

= Discriminate top20 vs. top40to60 results

" Predict rating of highest rated document in the set —
= Predict user behavior

" Predict queries with high vs. low reformulation ==
probability

" Predict query transition (generalization vs. specialization)
= Predict direction of the transition
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Experimental details

Features
= 55 graphical features
= Note we use only graph features, no content

Learning
= We use probabilistic decision trees (“DNet”)

Report classification accuracy using 10-fold cross
validation

Compare against 2 baselines
= Marginals: Predict most common class

= RankNet: use 350 traditional features (document, anchor

text, and basic hyperlink features)
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Search results quality

= Dataset:
= 30,000 queries

" Top 20 results for each

= Each result is labeled by a human judge using a 6-
point scale from "Perfect" to "Bad"

= Task:

= Predict the highest rating in the set of results
= 6-class problem

= 2-class problem: “Good” (top 3 ratings) vs. “Poor”
(bottom 3 ratings)
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Search quality: the task

" Predict the rating of the top result in the
set

=
'/.. ]
||.
Predict “Good” Predict “Poor”
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Search quality: results

Predict top human rating in
the set

— Binary classification: Good vs.

Poor

10-fold cross validation
classification accuracy

Observations:

— Web Projections outperform
both baseline methods

— Just projection graph already
performs quite well

— Projections on the URL graph
perform better

Attributes GL:;;_h Dérr;l sLn
Marginals 0.55 0.55
RankNet 0.63 0.60
Projection 0.80 0.64
Connection 0.79 0.66
Connecton | 082 | 069
Al 0.83 0.71
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Search quality: the model

B
The learned model shows €eStaeConres
graph properties of good
result sets -
Good result sets have: "
el
— Sea rCh result nOdeS are hub « 226 (2024} Hot < 16.2 [1508) Hot < 0.285 (264} Hot < 8.72 (184}

nodes in the graph (have ot < 316 (343

large degrees)
— Small connector node

degrees N {/T'.j
— Big connected component B m_m
— Few isolated nodes in o]

projection graph . —
— Few connector nodes oThesgen  wose o

PrG:DegONodes

= 8.1 (368}

< 8.72 (80}

Leskovec&Faloutsos ECML/PKDD 2007 \-.:I Part 3-64



Predict user behavior

= Dataset

= Query logs for 6 weeks

= 35 million unique queries, 80 million total query
reformulations

= We only take queries that occur at least 10 times

= This gives us 50,000 queries and 120,000 query
reformulations

= Task

= Predict whether the query is going to be
reformulated
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Query reformulation: the task

= Given a query and corresponding projection and
connection graphs

" Predict whether query is likely to be reformulated
N
P
~ .
7
w

JiT

Query likely to be reformulated

6 | e

Query not likely to be reformulated
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Query reformulation: results

Observations:

. URL | Domain
— Gradual improvement as Attributes Graph | Graph
using more features
— Using Connection graph Marginals 0.54 0.54
features helps —
_ URL graph gives better Projection 0.59 0.58
performance Connection 0.63 0.59
We can also predict
type of reformulation Projection + | -4 0.60
(specialization vs. Connection
generalization) with Al 071 0.6

0.80 accuracy
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Query reformulation: the model

Il
d
. ] <091 (270)
Queries likely to be
reformulated have: Not<6.64 (401) Not<0.91 (131)
3]
— Search result nodes have
<e.e4@l
low degree ]D[u] <0.821 (464) B
— Connector nodes are <0.716 (394)
hubs e
Not<0.716 (893) <4.39 (771) <2.54(§?):

— Many connector nodes

CcG:MxConnlnDeg Not < 0.821 (307) CcG:MxSrDeg

— Results came from many <4312 <O ot <2st
different domains G [
— Results are sparsely knit <0528 221)
[
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Query transitions

= Predict if and how will user transform the
query

TL A

\|_| transition
i

Q: Strawberry Q: Strawberry shortcake
shortcake pictures
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Query transition

With 75% accuracy we can say whether a
query is likely to be reformulated:

= Def: Likely reformulated p(reformulated) > 0.6

With 87% accuracy we can predict whether
observed transition is specialization or
generalization

With 76% we can predict whether the user
will specialize or generalize
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Conclusion

= We introduced Web projections

= A general approach of using context-sensitive sets of

web pages to focus attention on relevant subset of the
web graph

= And then using rich graph-theoretic features of the
subgraph as input to statistical models to learn
predictive models

= We demonstrated Web projections using search
result graphs for

" Predicting result set quality
= Predicting user behavior when reformulating queries
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Fraud detection on e-bay

How to find fraudsters on e-bay?



E-bay Fraud detection

Polo Chau & Shashank
Pandit, CMU

*“non-delivery” fraud:
seller takes SS and
disappears
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Online Auctions: How They Work

Non-delivery fraud
¢
X

PotenBial/8uyer A

What if somethm%@oes BAEP@

Potential Buyer B

Seller . -

Potential Buyer C
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Modeling Fraudulent Behavior (contd.)

" How would fraudsters behave in this graph?
" interact closely with other fraudsters
= fool reputation-based systems

ould lead to nice any
Jues of fraudsters .

= Wow!
detec)

Repubd@EAUI 53 49
= experiments with a real eBay dataset showed they

rarely form cliques
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Modeling Fraudulent Behavior

= fraudster
x = hopestolice
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Modeling Fraudulent Behavior

* The 3 roles

= Honest

= people like you and me

= Fraudsters

= those who actually commit fraud
= Accomplices

= erstwhile behave like honest users

= gccumulate feedback via low-cost transactions

= secretly boost reputation of fraudsters (e.g.,
occasionally trading expensive items)
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Belief Propagation




Center piece subgraphs

What is the best explanatory path
between the nodes in a graph?



MasterMind — ‘CePS’

Hanghang Tong, KDD
2006

htong <at> cs.cmu.edu
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Center-Piece Subgraph(Ceps)

o
Given Q query nodes el NS

Find Center-piece (  4p

®
femhel
App. o . ©
— Social Networks
— Law Inforcement, ...

ldea:

— Proximity -> random walk ®
with restarts o
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Case Study: AND query

R. Agrawal
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Case Study: AND query

5 H.V. 10
Jagadish

10

Laks V.S.
akshmana 13 E

4 Corinna 6
Cortes
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databases

13

R. Agrawal

ML/Statistics

27 3

2_SoftAnd query -
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Details

Main idea: use random walk with restarts, to
measure ‘proximity’ p(i,j) of node jto node i

Leskovec&Faloutsos ECML/PKDD 2007 Part 3-85



Example

Prob (RW will finally stay at j)

eStarting from 1
eRandomly to neighbor

eSome p to return to 1
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Individual Score Calculation

Q1 Q2 Q3
Node 1 0.5767 0.0088 0.0088
Node 2 0.1235 0.0076 0.0076
Node 3 0.0283 0.0283 0.0283
Node 4 0.0076 0.1235 0.0076
Node 5 0.0088 0.5767 0.0088
Node 6 0.0076 0.0076 0.1235
Node 7 0.0088 0.0088 0.5767
Node 8 0.0333 0.0024 0.1260
Node 9 0.1260 0.0024 0.0333
Node 10 0.1260 0.0333 0.0024
Node 11 0.0333 0.1260 0.0024
Node 12 0.0024 0.1260 0.0333
Node 13 0.0024 0.0333 0.1260

Leskovec&Faloutsos ECML/PKDD 2007




Individual Score Calculation

Q1 Q2 Q3
Node 1 0.5767 0.0088 0.0088
Node 2 0.1235 0.0076 0.0076
Node 3 0.0283 0.0283 0.0283
Node 4 0.0076 0.1235 0.0076
Node 5 0.0088 0.5767 0.0088
Node 6 0.0076 0.0076 0.1235
Node 7 0.0088 0.0088 0.5767
Node 8 0.0333 0.0024 0.1260
Node 9 0.1260 0.0024 0.0333
Node 10 0.1260 0.0333 0.0024
Node 11 0.0333 0.1260 0.0024
Node 12 0.0024 0.1260 0.0333
Node 13 0.0024 0.0333 0.1260

Individual Score matrix
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AND: Combining Scores

Q: How to combine
scores?

A: Multiply

...= prob. 3 random
particles coincide on
node j
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K_SoftAnd: Combining Scorew

Generalization — SoftAND:

We want nodes close to k

of Q (k<Q) query
nodes.

Q: How to do that?
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K_SoftAnd: Combining Scorew

Generalization — softAND:

We want nodes close to k

of Q (k<Q) query
nodes.

Q: How to do that?

A: Prob(at least k-out-of-
Q will meet each other
at j)
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AND query vs. K SoftAnd query

0.1010 0.1010

0.4505 @ R
And Query

0.4505

2 SoftAnd Query
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1 SoftAnd query = OR query

0.0103
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Challenges in Ceps

Q1: How to measure the importance?
—A: RWR
= Q2: How to do it efficiently?
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Graph Partition: Efficiency Issue

Straightforward way
— solve a linear system:
— time: linear to # of edges

Observation
— Skewed dist.
— communities

How to exploit them?
— Graph partition
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Even better:

" We can correct for the deleted edges (Tong+,
ICDM’06, best paper award)
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Experimental Setup

Dataset
—DBLP/authorship
— Author-Paper

— 315k nodes
—1.8M edges
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Query Time vs. Pre-Computation Time

Log dluery Tlme | | L] DnTPImFIg,r
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1 eQuality: 90%+
eOn-line:
eUp to 150x speedup
ePre-computation:
T eTwo orders saving

Log Pre-computation Time
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10 100 1000 10000
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Query Time vs. Storage

Log Query Time B OnTheFly
1000 | B_Lin{100, 4000) |
@® ©_Lin{B0,4000]

B_Lin{50 4000]
*  PreCompute

100 F .

Cluery Time

10 F .

Log Storage

| | | | -* |
100 1000 10000 100000 1000000
Fre_Starage Cost (M)
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eQuality: 90%+
eOn-line:

eUp to 150x speedup
ePre-storage:

*Three orders saving
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Conclusions 56
Q (D)

OO
Q1:How to measure the importance? 6 o
Al: RWR+K_ SoftAnd
Q2: How to find connection subgraph?
A2:"Extract” Alg.)
Q3:How to do it efficiently?
A3:Graph Partition and Sherman-Morrison
—~90% quality

—6:1 speedup; 150x speedup (ICDM’06, b.p.
award)
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