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Abstract. Information cascades are phenomena in which individuatptea new
action or idea due to influence by others. As such a procesadpithrough an
underlying social network, it can result in widespread didopoverall. Here we
consider information cascades in the context of recomntemdaand information
propagation on the blogosphere. In particular, we studyptteerns of cascading
recommendations that arise in large social networks. Wewexecent studies of
cascading behavior in product recommendation networks,irfformation diffu-
sion on the blogosphere. Next, we examine theoretical msazfahodels of infor-
mation, virus and influence propagation. Last, we presergldpments on select-
ing and targeting nodes in networks to maximize the influesrcgetect cascades
and disease/information outbreaks effectively.

Introduction

Diffusion is a process by which information, viruses, idaad new behavior spread over
the network. For example, adoption of a new technology tsegma small scale with
a few “early adopters”, then more and more people adopt hey dbserve friends and
neighbors using it. Eventually the adoption of the techgglmay spread through the
social network as an epidemic “infecting” most of the netiadks it spreads over the
network it creates a cascade. Cascades have been studiedrglyears by sociologists
concerned with theiffusion of innovatiorf31]; more recently, researchers have investi-
gated cascades for selecting trendsetters for viral macketnding inoculation targets
in epidemiology, and explaining trends in blogspace.

There are three aspects of studies on diffusion and cagchdimavior in networks:
(a) mathematical models of information, virus and influepogpagation, (b) empirical
studies of diffusion in social and information networksgdn) algorithms for detecting
cascades and selecting influential nodes.

(a) Mathematical models.Most of the research on the flow of information and
influence through the networks has been done in the contespidemiology and the
spread of diseases over the network [4].

Classical disease propagation models are based on the stagelisease in a host:
a person is firssusceptiblgo a disease, then if she is exposed to an infectious contact
she can becomafectedand thusnfectious After the disease ceases the persaaésv-
ered Person is theimmunefor some period. The immunity can also wear off and the



person becomes again susceptible. Thus SIR (susceptifiectad — recovered) models
diseases where a recovered person never again becomegtsuscehile SIRS (SIS,
susceptible — infected — (recovered) — susceptible) mgugalation in which recovered
host can become susceptible again. Given a network and &isétated nodes thepi-
demic thresholds studied,.e., condition under which the disease will either dominate
or die out. Interestingly, the largest eigenvalue of a gragljacency matrix plays a fun-
damental role in deciding whether the disease will take thenetwork. Related are the
diffusion models that try to model the process of adoptioarofdea or a product. They
can generally be divided into two groups:

Threshold model[11] A node adopts the behavioe.fj, purchases a product) if
a sum of the connection weights of its neighbors that alresthpted the behavior is
greater than the threshold.

Independent cascade mod#&b] where whenever a neighborof nodewu adopts,
then node. also adopts with probability, ., i.e., every time a neighbor af purchases
a product, there is a chance thavill decide to purchase as well.

(b) Empirical studies of cascading behaviorWhile the above models address the
question of how processes spread in a network, they are lsassumedather than
measurednfluence effects.

Most work on measuring cascading behavior has been done bidg domain. Blog
posts refer to each other using hyper-links. Since posttimeestamped, we can trace
their linking patterns all the way to the source, and so ifietie flow of information
from the source post to the followers and followers of thdofekrs [22]. Similarly,
viral marketing can be thought of as a diffusion of inforratabout the product and its
adoption over the network [20]. Here the cascades are fobygdople recommending
products to each other and so the product recommendatindg(achases) spread over
the network.

In our work [20,22] we observed rich cascading behavior eiogosphere and in
the viral marketing and investigated several interestumgstjons: What kinds of cascades
arise frequently in real life? Are they like trees, starssomething else? And how do
they reflect properties of their underlying network envirant? Do certain nodes have
specific propagation patterns?

(c) Detecting cascades and finding influential node&xploiting cascades could
lead to importantinsights. For example, in viral marketivitere a company wants to use
word-of-mouth effects to market a product, exploiting thetfthat early adopters may
convince their friends to buy the product is crucial. So,¢bepany wants to identify
the most important nodes to target to spread the informatmut the product over the
network [15]? A similar problem is of detecting outbreaksgtworks [21], where we
are given a network and a dynamic process spreading overdtwa want to select a
set of nodes to detect the process as effectively as posEibteexample, consider a
city water distribution network, delivering water to hohséls via pipes and junctions.
Contaminants may spread over the network, and so we wantedct sefew locations
(pipe junctions) to install sensors to effectively detbet tontaminations.

One can formulate above tasks as optimization over setsdgsavhich turns out to
be hard computational problem. However, it turns out theitiémce functions exhibit a
diminishing returns property calleshibmodularity Exploiting submodularity we design
near-optimal algorithms [21,15] for finding influential rexland effectively detecting
outbreaks in networks.



Cascades in networks

Information cascades are phenomena in which an action ahideomes widely adopted
due to influence by others [5]. Cascades are also known as™tadresonance.” Cas-
cades have been studied for many years by sociologists mmttwith thediffusion of
innovation[31]; more recently, researchers in several fields havesiigated cascades
for the purpose of selecting trendsetters for viral mangefB], finding inoculation tar-
gets in epidemiology [26], and explaining trends in blogepl 7]. Despite much empir-
ical work in the social sciences on datasets of moderate thieaifficulty in obtaining
data has limited the extent of analysis on very large-scalaplete datasets representing
cascades. Later, we look at the patterns of influence in elstgle, real recommendation
network and examine the topological structure of cascades.

Most of the previous research on the flow of information arfthénce through the
networks has been done in the context of epidemiology andphead of diseases over
the network [4,3]. Classical disease propagation modelbased on the stages of a dis-
ease in a host: a person is fisstsceptibléo a disease, then if she is exposed to an infec-
tious contact she can beconmectedand thusnfectious After the disease ceases the
person igecoveredor removed Person is thermmunefor some period. The immunity
can also wear off and the person becomes again susceptials. SIR (susceptible —
infected — recovered) models diseases where a recoversdnpeever again becomes
susceptible, while SIRS (SIS, susceptible — infected -ofrered) — susceptible) models
population in which recovered host can become suscepfifaimaGiven a network and
a set of infected nodes tlepidemic threshold studiedj.e., conditions under which the
disease will either dominate or die out.

Diffusion models that try to model the process of adoptiommidea or a product
can generally be divided into two groups:

e Threshold moddll1] where each node in the network has a threshaid[0, 1],
typically drawn from some probability distribution. We alassignconnection
weightsw,, , on the edges of the network. A node adopts the behavior if a sum
of the connection weights of its neighbors that already &etbthe behavior (pur-
chased a product in our case) is greater than the threshglgd yopters,) Wu,v-

e Independent cascade mod&d] where whenever a neighboof nodeu adopts,
then node: also adopts with probability,, ... In other words, every time a neigh-
bor of u purchases a product, there is a chance thatll decide to purchase as
well.

While these models address the question of how influencadpia a network, they
are based oassumedather thammeasurednfluence effects. In contrast, our study tracks
the actual diffusion of recommendations through emaigvaithg us to quantify the im-
portance of factors such as the presence of highly connéutiédduals, or the effect
of receiving recommendations from multiple contacts. Carefd to previous empirical
studies which tracked the adoption of a single innovatioproduct, our data encom-
passes over half a million different products, allowingaisiodel a product’s suitability
for viral marketing in terms of both the properties of thewatk and the product itself.



Information cascades in blogosphere

Most work on extracting cascades has been done in the blogiddi2,13]. The au-
thors in this domain noted that, while information propagdtetween blogs, examples
of genuine cascading behavior appeared relatively raféig is possibly due to bias in
the web-crawling and text analysis techniques used toagbages and infer relation-
ships. In our dataset, all the recommendations are storédtabase transactions, and
we know that no records are missing. Associated with eagmnetendation is the prod-
uct involved, and the time the recommendation was made.i&tud blogspace either
spend a lot of effort mining topics from posts [2,13] or calesionly the properties of
blogspace as a graph of unlabeled URLs [1].

There are several potential models to capture the struofuhe blogosphere. Work
on information diffusion based on topics [13] showed thatdome topics, their popu-
larity remains constant in time (“chatter”) while for othepics the popularity is more
volatile (“spikes”). [17] analyze community-level behawas inferred from blog-rolls —
permanent links between “friend” blogs. In their extensjp8] performed analysis of
several topological properties of link graphs in commuasitifinding that much behavior
was characterized by “stars”.

Cascades in viral marketing

Viral marketing can be thought of as a diffusion of inforneatabout the product and its
adoption over the network. Primarily in social sciencesdhga long history of research
on the influence of social networks on innovation and prodiffision. However, such
studies have been typically limited to small networks amdally a single product or
service. For example, [6] interviewed the families of stutdebeing instructed by three
piano teachers, in order to find out the network of referfBteey found that strong ties,
those between family or friends, were more likely to be atéd for information flow
and were also more influential than weak ties [12] betweenaiatances.

In the context of the internet, word-of-mouth advertisiagot restricted to pairwise
or small-group interactions between individuals. Rathastomers can share their ex-
periences and opinions regarding a product with everyonantative marketing tech-
niques have been proposed [24] to describe product infeem#bw online, and the rat-
ing of products and merchants has been shown to effect thkhilod of an item be-
ing bought [29,7]. More sophisticated online recommerahatiystems allow users to
rate others’ reviews, or directly rate other reviewers tplinitly form a trusted reviewer
network that may have very little overlap with a person’siatsocial circle. [30] used
Epinions’ trusted reviewer network to construct an aldonito maximize viral market-
ing efficiency assuming that individuals’ probability ofrghasing a product depends on
the opinions on the trusted peers in their network. [15] Hallewed up on the challenge
of maximizing viral information spread by evaluating selealgorithms given various
models of adoption we discuss next.

Empirical observations of cascading behavior

We formally define a cascade as a graph where the nodes ars agdra directed edge
(1, j,t) indicates that a nodeinfluenced a nodg at timet.
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Figure 1. Two views on the formation of information cascades on thgddphere.

Consider three examples of cascade formation and propagathetworks:

e First, we present results on cascades in a large viral magkaetwork, where
people recommend products to each other and we study thedspinel success of
recommendations over the network.

e Second, we consider the tracking of a large population ajdtiver a long period
of time and observe the propagation of information betwaerbtogs.

e Third, we present the propagation of infectious water igdaieal water distribu-
tion networks, and ask the question of where to place a ldmitenber of sensors
so the disease outbreaks will be detected early.

Blogs (weblogs) are web sites that are updated on a reguss. laften times in-
dividuals use them for online diaries and social networkotger times news sites have
blogs for timely stories. Blogs are composed of time-staapasts, and posts typically
link each other, as well as other resources on the Web.

For example, figure 1 shows two alternative views of infoinratascades that may
occur on the blogosphere. In figure 1(a) each circle repteseiog post, and all circles
at the same vertical position belong to the same blog. Oftmmfosts refer to each other
using hyper-links. Given that the posts are time-stampedwmually not updated, we
can trace their linking patterns all the way to the sourcés #asy to identify the flow
if information from the source post to the followers and dolers of the followers. So,
each layer represents a different information cascader(imdtion propagation graph).
Figure 1(b) gives an alternative view. Here posts (repiteskas circles) inside a rectan-
gle belong to the same blog. Similarly, the information eal®s correspond to connected
components of the posts in the graplty.postspi 2, p41, P42 @andpgs all form a cascade,
wherep; is thecascade initiator

Observing such behavior on the blogosphere or in the viraketimg poses several
interesting questions: What kinds of cascades arise fratyua real life? Are they like
trees, stars, or something else? And how do they reflect giep®f their underlying
network environment? How fast does the information sprdadertain nodes have
specific propagation patterns? What are the most importafgsito target if we want to
spread the information over the network?

In addition to observing rich cascades and propagation ¢§2&] can make a step
further and analyze the effectiveness and dynamics of gtodaommendations in caus-
ing purchases [19,20]. To our knowledge this was the firgtysta directly observe the
effectiveness of person to person word of mouth advertign@pundreds of thousands
of products. Similarly, for blogs [22] is the first to perforanlarge study of cascading
behavior in large blog networks.



Figure 2. Examples of two product recommendation networks. Lefstfrd study guide. Notice many small
disconnected cascades. Right: Japanese graphic novejdin&totice a large, tight community.

Cascades in viral marketing

A recent study [19] examined a recommendation network stingiof 4 million people
who made 16 million recommendations on half a million praddmom a large on-line
retailer. Each time a person purchases a book, music, DVRideo tape she is given
the option to send an email recommending the item to herdsemhe first recipient to
purchase the item receives a discount and the sender ofdbmneendation receives a
referral credit.

Figure 2 shows two typical product recommendation netwdvksst product recom-
mendation networks consist of a large number of small diseoted components where
we do not observe cascades. Then there is usually a smallerushibelatively small
components where we observe recommendations propagaksaognotice bursts of rec-
ommendations and collisions (figure 2(b)). Some individs&End recommendations to
many friends which results in star-like patterns in the rap

Cascading patterns

Consider the problem of finding patterns of recommendaiivadarge social network.
One can ask the following questions: How does the influenopggate? What does it
look like?

In order to analyze the data, new methods and algorithms dndm tdeveloped.
First, to identify cascadese. graphs where incoming recommendations influenced pur-
chases and further recommendations. Next, to enumeratecaamt the cascade sub-
graphs. Graph isomorphism and enumeration are both cotiqmaty very expensive,
so new algorithms for approximate graph isomorphism reégolwere developed [23].
In a multi-level approach the computational complexitydaccuracy) of the graph iso-
morphism resolution depends on the size of the graph. Thizgrty makes the algorithm
scale nicely to large datasets.

It has been found?] that the distribution of sizes and depths of cascadesvisllo
a power law. Generally, cascades tend to be shallow, butsmoa large bursts can
occur. Cascades are mainly tree-like, but variability inmectivity and branching across
different products groups was also observed. Figure 3 slsowe typical examples of
how the influence propagates over the recommendation nietwor

In addition to observing rich cascades and propagation anentake a step fur-
ther and analyze the effectiveness and dynamics of prodactmmendations in causing
purchases.
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Figure 3. Typical classes of cascade€s;, G2: nodes recommending to the same set of people, but not each
other.G'3, G4: nodes recommending to same commurtty, G¢: a flat cascadel'7: a large propagation of
recommendations.
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Figure 4. Probability of purchasing a product given the number of iketk recommendations. Notice the
decrease in purchasing probability for books and saturdtioDVDs.

Implications for viral marketing

A study of Leskovec et al. [19] established how the recomra@ad network grows over
time and how effective it is from the viewpoint of the sended aeceiver of the recom-
mendations. The examine what kind of product is more likelpe bought as a result of
recommendation, and describe the size of the cascade siudtsrsom recommendations
and purchases. While on average recommendations are noeffective at inducing
purchases and do not spread very far, there are product minbprategories for which
viral marketing seems to be very effective.

Figure 4 presents an example of our findings. We plot the fiétyeof purchasing
a product given the number of received recommendationgriSingly, as more book
recommendations are received their sucaksgeasesSuccess of DVD recommenda-
tions saturates around 10 incoming recommendations. Téamethat after a person gets
10 recommendations they become immune to them — their pilapalf buying does
not increase anymore. Traditional innovation diffusiond®ls assume that an increasing
number of infected contacts results in an increased likelitof infection. Instead, it was
shown that the probability of purchasing a product increagiéh the number of recom-
mendations received, but then it quickly saturates. Thaltrbas important implications
for viral marketing because providing too much incentivegeople to recommend to
one another can weaken the very social network links thatrtheketer is intending to
exploit.

What determines the product’s viral marketing success?udlysf20] presents a
model which characterizes product categories for whiclomenendations are more
likely to be accepted, and find that the numbers of hodes arelvers have negative



coefficients, showing that successfully recommended ptsdare actually more likely
to be not so widely popular. It shows that more expensive amiemecommended prod-
ucts have a higher success rate. These recommendationd sleour between a small
number of senders and receivers, which suggests a very tmwamendation network
where lots of recommendations are exchanged between a comathunity of people.
These insights could be of use to marketers — personal reemations are most effec-
tive in small, densely connected communities enjoying aspe products. Refer to [20]
for more details.

Cascades on the blogosphere

Similarly to the viral marketing setting we also analyzeczates on the blogosphere. We
address a set of related questions: What kinds of cascadesfraguently in real life?
Are they like trees, stars, or something else? And how do tthiégct properties of their
underlying network environment?

Shape of information cascades

We extracted our dataset from a larger set of blogs and postsAugust and September
2005 [9]. We were interested in blogs and posts that actpaiticipate in discussions, so
we biased our dataset towards the more active part of thebpdeere. We focused on the
most-cited blogs and traced forward and backward conversaees containing these
blogs. This process produced a dataset.bfmillion posts from45, 000 blogs gathered
over the three-month period. To analyze the data, we firstergraphs of time-obeying
propagation of links. Then, we enumerate and count all ptessascade subgraphs.

We find novel patterns, and the analysis of the results gigansight into the cas-
cade formation process. Most surprisingly, the populasftposts drops with gower
law, instead of exponentially, that one may have expected. Weat@ll in-links to a
post and plot the number of links occurring after each dalpWihg the post. This cre-
ates a curve that indicates the rise and fall of popularigufe 5(a) shows number of
in-links for each day following a post for all posts in the @t The exponent of the
power law is—1.5, which is exactly the value predicted by the model where tivstly
nature of human behavior is a consequence of a decision haseihg process [27,32] —
when individuals execute tasks based on some perceivettyrtbe timing of the tasks
is heavy tailed, with most tasks being rapidly executed,re&® a few experience very
long waiting times.

We also find that probability of observing a cascade:orodes follows a Zipf dis-
tribution: p(n) o n—2. Figure 5(b) plots the in-degree distribution of nodes eelé, of
the cascade. A node is at levglif it is L hops away from the root (cascade initiator)
node. Notice that the in-degree exponent is stable and duieshange much given the
level in the cascade. This means that posts still attraehtiin (get linked) even if they
are somewhat late in the cascade and appear towards thenhmitio

We also found rich cascade patterns. Generally cascadshaltew but occasional
large bursts also occur. The cascade sub-patterns showguoa @ reveal mostly small
tree-like subgraphs; however we observe differences imectivity, density, and the
shape of cascades. Indeed, the frequency of differentdastdbgraphs is not a simple
consequence of differences in size or density; rather, wkifistances where denser
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Figure 6. Common blog cascade shapes, ordered by the frequency dairappe.

subgraphs are more frequent than sparser ones, in a mamggassue of properties in
the underlying social network and propagation process.

For example, we found that BoingBoing, which a very populagtabout amusing
things, is engaged in many cascades. Actually, 85% of all@®oing posts were cascade
initiators. The cascades generally did not spread verydamere wide .9, G1o and
G14 in Figure 6). On the other harid% of the posts from an influential political blog
MichelleMalkin were cascade initiators, but the cascadee tvere deeper and generally
larger €.g9, G117 in Figure 6) than those of BoingBoing.

Simple model of information cascades

We also developed a conceptual model for generating infiomeascades that produces
cascade graphs matching several properties of real cascHuemodel builds on inde-
pendent cascade model [15]. Our model is intuitive and reguinly a single parameter
that corresponds to how interesting (easy spreading) theecsations in general on the
blogosphere are.

Intuitively, cascades are generated by the following ppiec A post is posted at
some blog, other bloggers read the post, some create new, post link the source
post. This process continues and creates a cascade. Orférdaaftcascades as graphs
created by the spread of a virus over the Blog Network. Thiamaehat the initial post
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Figure 7. Comparison of the true data and the model. We plotted theliifbn of the true cascades with
circles and the estimate of our model with dashed line. Matcnarkable agreement between the data and the
prediction of our simple model.

corresponds to infecting a blog. As the cascade unveilsyiths (information) spreads
over the network and leaves a trail. To model this processss@usingle parametgithat
measures how infectiousness of the posts on the blogospbrenodel is very similar
to the SIS (susceptible — infected — susceptible) model ttamrepidemiology [14].

Figure 7 compares the cascades generated by the model withngs found in
the real blog network. Notice a very good agreement betweemndality and simulated
cascades in all plots. The distribution over cascade siz@saitched best. Chains and
stars are slightly under-represented, especially in theftahe distribution where the
variance is high. The in-degree distribution is also matdahieely, with an exception for
a spike that can be attributed to a set of outlier blogs alwitdegree 52.

Node selection for early cascade detection

Next, we explore the general problem of detecting outbréaketworks, where we are
given a network and a dynamic process spreading over thigonlet and we want to
select a set of nodes to detect the process as effectivelysathie.

Many real-world problems can be modeled under this set@ugsider a city water
distribution network, delivering water to households vipgs and junctions. Acciden-
tal or malicious intrusions can cause contaminants to spogar the network, and we
want to select a few locations (pipe junctions) to instatisges, in order to detect these
contaminations as quickly as possible.



Similarly with blogs we want to select a set of blogs to readrgdrieve) which
are most up to date.e., catch (link to) most of the stories that propagate over the b
ogosphere. Our goal is to select a small set of blogs (two &e cd Figure 1) which
“catch” as many cascades (stories) as possible. A naiugtive solution would be to
select the big, well-known blogs. However, these usuallyetalarge number of posts,
and are time-consuming to read. We show, that, perhapseoeuntitively, a more cost-
effective solution can be obtained, by reading smallerhigther quality, blogs, which
our algorithm can find.

Node selection criteria

There are several possible criteria one may want to optimineitbreak detection. For
example, one criterion seeks to minimietection timdi.e., to know about a cascade as
soon as possible, or avoid spreading of contaminated w&ien)larly, another criterion
seeks to minimize thpopulation affectedy an undetected outbreake(, the number
of blogs referring to the story we just missed, or the popartretonsuming the contam-
ination we cannot detect). Optimizing these objective fioms is NP-hard [16], so for
large, real-world problems, we cannot expect to find thenogitsolution.

Exploiting submodularity

In our work [21] we show that these and many other realistib@mak detection ob-
jectives aresubmodulaf25], i.e., they exhibit a diminishing returns property: Reading
a blog (or placing a sensor) when we have only read a few blomgdes more new
information, than reading it after we have read many blodmcgd many sensors). We
find ways to exploit this submodularity propertydfiiciently obtairsolutions which are
provably closeo the optimal solution. These guarantees are importaniatige, since
selecting nodes is expensive (reading blogs is time-comgyrsensors have high cost),
and we desire solutions which are not too far from the optsoaltion.

We also show that many objective functions for detectindpméks in networks are
submodular, including detection time and population affddn the blogosphere and
water distribution monitoring problems. We show that oupraach also generalizes
work by [15] on selecting nodes maximizing influence in a abeetwork.

We also exploit the submodularity of the objectieeq, detection time) to develop
an efficient approximation algorithnGELF, which achieves near-optimal placements
(guaranteeing at least a constant fraction of the optiniatisa), providing a novel the-
oretical result for non-constant node cost functid®ELF is up to 700 times faster than
simple greedy algorithm. We also derive novel online bowordthe quality of the place-
ments obtained bgnyalgorithm.

Evaluation on water distribution and blog networks

We extensively evaluate our methodology on the applicatiotroduced above — water
quality and blogosphere monitoring. These are large realdaproblems, involving a
model of a water distribution network from the EPA with nultis of contamination
scenarios, and real blog data with millions of posts.

First, we evaluate the performanceCELF, and estimate how far from optimal the
solution could be. Obtaining the optimal solution woulduizg enumeration o245-000



g
i

o T T 1 T T
% Offline bound DL
1.2r-

% 0.8 P DT B
c 1 Online s
8 bound k3] y
Los 3 0.6/
S o
S >
206 Zoar PA 4
S 04y CELF &
g i 0.2 B
202 solution i
[}
@ 1 1 1 1 1 1 1 1

0 20 40 60 80 100 0 20 40 60 80 100

Number of blogs Number of blogs
(a) Solution quality (b) Various Obijective functions

Figure 8. Both plots show the solution quality vs. the number of sel@éaensors (blogs). (a) Performance of
CELF algorithm and off-line and on-line bounds. Notice on-lirmibd is much tighter. (b) Compares different
objective functions: detection likelihood (DL), detectiime (DT) and population affected (PA).

(a) Population Affected (b) Detection Likelihood
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trated in high population areas. (b) when optimizing Détect.ikelihood, sensors are uniformly spread out.

subsets. Since this is impractical, we compare our alguriththe bounds we developed.
Figure 8(a) shows scores for increasing budgets when gmidrihe Population affected
criterion. As we select more blogs to read, the proportiocesicades we catch increases
(bottom line). We also plot the two bounds. Notice the afielbound (top line) is very
loose. On the other hand, our on-line bound is much tightem the traditional off-line
bound.

In contrast to the off-line bound, our on-line boundaigorithm independenand
thus can be computed regardless of the algorithm used tindh&asolution. Since it is
tighter, it gives a much better worst case estimate of thatisol quality. For this partic-
ular experiment, we see th&ELF works very well: after selecting 100 blogs, we are
at most 13.8% away from the optimal solution. Similarly, fig8(b) shows the perfor-
mance using various objective functions. By using the an-bound we also calculated
that our results for all objective functions are at most 5%586 from optimal.

In August 2006, the Battle of Water Sensor Networks (BWSN) [#as organized
as an international challenge to find the best sensor platsri@ a real metropolitan
area water distribution network. In Figure 9 we show two 2fsse placements obtained
by our algorithm after optimizing Detection Likelihood aRdpulation Affected, respec-



tively. When optimizing the population affected, the pld&ensors are concentrated in
the dense high-population areas, since the goal is to detgisteaks which affect the
population the most. When optimizing the detection liketitl, the sensors are uniformly
spread out over the network. Intuitively this makes serisegsaccording to BWSN chal-
lenge, outbreaks happen with same probability at every.M®dgefor Detection Likeli-
hood, the placed sensors should be as close to all nodessiBlpos
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