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Abstract. Information cascades are phenomena in which individuals adopt a new
action or idea due to influence by others. As such a process spreads through an
underlying social network, it can result in widespread adoption overall. Here we
consider information cascades in the context of recommendations and information
propagation on the blogosphere. In particular, we study thepatterns of cascading
recommendations that arise in large social networks. We review recent studies of
cascading behavior in product recommendation networks, and information diffu-
sion on the blogosphere. Next, we examine theoretical models of models of infor-
mation, virus and influence propagation. Last, we present developments on select-
ing and targeting nodes in networks to maximize the influenceor detect cascades
and disease/information outbreaks effectively.

Introduction

Diffusion is a process by which information, viruses, ideasand new behavior spread over
the network. For example, adoption of a new technology begins on a small scale with
a few “early adopters”, then more and more people adopt it as they observe friends and
neighbors using it. Eventually the adoption of the technology may spread through the
social network as an epidemic “infecting” most of the network. As it spreads over the
network it creates a cascade. Cascades have been studied formany years by sociologists
concerned with thediffusion of innovation[31]; more recently, researchers have investi-
gated cascades for selecting trendsetters for viral marketing, finding inoculation targets
in epidemiology, and explaining trends in blogspace.

There are three aspects of studies on diffusion and cascading behavior in networks:
(a) mathematical models of information, virus and influencepropagation, (b) empirical
studies of diffusion in social and information networks, and (c) algorithms for detecting
cascades and selecting influential nodes.

(a) Mathematical models.Most of the research on the flow of information and
influence through the networks has been done in the context ofepidemiology and the
spread of diseases over the network [4].

Classical disease propagation models are based on the stages of a disease in a host:
a person is firstsusceptibleto a disease, then if she is exposed to an infectious contact
she can becomeinfectedand thusinfectious. After the disease ceases the person isrecov-
ered. Person is thenimmunefor some period. The immunity can also wear off and the



person becomes again susceptible. Thus SIR (susceptible – infected – recovered) models
diseases where a recovered person never again becomes susceptible, while SIRS (SIS,
susceptible – infected – (recovered) – susceptible) modelspopulation in which recovered
host can become susceptible again. Given a network and a set of infected nodes theepi-
demic thresholdis studied,i.e., condition under which the disease will either dominate
or die out. Interestingly, the largest eigenvalue of a graphadjacency matrix plays a fun-
damental role in deciding whether the disease will take overthe network. Related are the
diffusion models that try to model the process of adoption ofan idea or a product. They
can generally be divided into two groups:

Threshold model:[11] A node adopts the behavior (e.g., purchases a product) if
a sum of the connection weights of its neighbors that alreadyadopted the behavior is
greater than the threshold.

Independent cascade model[15] where whenever a neighborv of nodeu adopts,
then nodeu also adopts with probabilitypu,v, i.e., every time a neighbor ofu purchases
a product, there is a chance thatu will decide to purchase as well.

(b) Empirical studies of cascading behavior.While the above models address the
question of how processes spread in a network, they are basedon assumedrather than
measuredinfluence effects.

Most work on measuring cascading behavior has been done in the blog domain. Blog
posts refer to each other using hyper-links. Since posts aretime-stamped, we can trace
their linking patterns all the way to the source, and so identify the flow of information
from the source post to the followers and followers of the followers [22]. Similarly,
viral marketing can be thought of as a diffusion of information about the product and its
adoption over the network [20]. Here the cascades are formedby people recommending
products to each other and so the product recommendations (and purchases) spread over
the network.

In our work [20,22] we observed rich cascading behavior on the blogosphere and in
the viral marketing and investigated several interesting questions: What kinds of cascades
arise frequently in real life? Are they like trees, stars, orsomething else? And how do
they reflect properties of their underlying network environment? Do certain nodes have
specific propagation patterns?

(c) Detecting cascades and finding influential nodes.Exploiting cascades could
lead to important insights. For example, in viral marketingwhere a company wants to use
word-of-mouth effects to market a product, exploiting the fact that early adopters may
convince their friends to buy the product is crucial. So, thecompany wants to identify
the most important nodes to target to spread the informationabout the product over the
network [15]? A similar problem is of detecting outbreaks innetworks [21], where we
are given a network and a dynamic process spreading over it, and we want to select a
set of nodes to detect the process as effectively as possible. For example, consider a
city water distribution network, delivering water to households via pipes and junctions.
Contaminants may spread over the network, and so we want to select a few locations
(pipe junctions) to install sensors to effectively detect the contaminations.

One can formulate above tasks as optimization over sets of nodes, which turns out to
be hard computational problem. However, it turns out that influence functions exhibit a
diminishing returns property calledsubmodularity. Exploiting submodularity we design
near-optimal algorithms [21,15] for finding influential nodes and effectively detecting
outbreaks in networks.



Cascades in networks

Information cascades are phenomena in which an action or idea becomes widely adopted
due to influence by others [5]. Cascades are also known as “fads” or “resonance.” Cas-
cades have been studied for many years by sociologists concerned with thediffusion of
innovation[31]; more recently, researchers in several fields have investigated cascades
for the purpose of selecting trendsetters for viral marketing [8], finding inoculation tar-
gets in epidemiology [26], and explaining trends in blogspace [17]. Despite much empir-
ical work in the social sciences on datasets of moderate size, the difficulty in obtaining
data has limited the extent of analysis on very large-scale,complete datasets representing
cascades. Later, we look at the patterns of influence in a large-scale, real recommendation
network and examine the topological structure of cascades.

Most of the previous research on the flow of information and influence through the
networks has been done in the context of epidemiology and thespread of diseases over
the network [4,3]. Classical disease propagation models are based on the stages of a dis-
ease in a host: a person is firstsusceptibleto a disease, then if she is exposed to an infec-
tious contact she can becomeinfectedand thusinfectious. After the disease ceases the
person isrecoveredor removed. Person is thenimmunefor some period. The immunity
can also wear off and the person becomes again susceptible. Thus SIR (susceptible –
infected – recovered) models diseases where a recovered person never again becomes
susceptible, while SIRS (SIS, susceptible – infected – (recovered) – susceptible) models
population in which recovered host can become susceptible again. Given a network and
a set of infected nodes theepidemic thresholdis studied,i.e., conditions under which the
disease will either dominate or die out.

Diffusion models that try to model the process of adoption ofan idea or a product
can generally be divided into two groups:

• Threshold model[11] where each node in the network has a thresholdt ∈ [0, 1],
typically drawn from some probability distribution. We also assignconnection
weightswu,v on the edges of the network. A node adopts the behavior if a sum
of the connection weights of its neighbors that already adopted the behavior (pur-
chased a product in our case) is greater than the threshold:t ≤

∑
adopters(u) wu,v.

• Independent cascade model[10] where whenever a neighborv of nodeu adopts,
then nodeu also adopts with probabilitypu,v. In other words, every time a neigh-
bor of u purchases a product, there is a chance thatu will decide to purchase as
well.

While these models address the question of how influence spreads in a network, they
are based onassumedrather thanmeasuredinfluence effects. In contrast, our study tracks
the actual diffusion of recommendations through email, allowing us to quantify the im-
portance of factors such as the presence of highly connectedindividuals, or the effect
of receiving recommendations from multiple contacts. Compared to previous empirical
studies which tracked the adoption of a single innovation orproduct, our data encom-
passes over half a million different products, allowing us to model a product’s suitability
for viral marketing in terms of both the properties of the network and the product itself.



Information cascades in blogosphere

Most work on extracting cascades has been done in the blog domain [1,2,13]. The au-
thors in this domain noted that, while information propagates between blogs, examples
of genuine cascading behavior appeared relatively rarely.This is possibly due to bias in
the web-crawling and text analysis techniques used to collect pages and infer relation-
ships. In our dataset, all the recommendations are stored asdatabase transactions, and
we know that no records are missing. Associated with each recommendation is the prod-
uct involved, and the time the recommendation was made. Studies of blogspace either
spend a lot of effort mining topics from posts [2,13] or consider only the properties of
blogspace as a graph of unlabeled URLs [1].

There are several potential models to capture the structureof the blogosphere. Work
on information diffusion based on topics [13] showed that for some topics, their popu-
larity remains constant in time (“chatter”) while for othertopics the popularity is more
volatile (“spikes”). [17] analyze community-level behavior as inferred from blog-rolls –
permanent links between “friend” blogs. In their extension[18] performed analysis of
several topological properties of link graphs in communities, finding that much behavior
was characterized by “stars”.

Cascades in viral marketing

Viral marketing can be thought of as a diffusion of information about the product and its
adoption over the network. Primarily in social sciences there is a long history of research
on the influence of social networks on innovation and productdiffusion. However, such
studies have been typically limited to small networks and typically a single product or
service. For example, [6] interviewed the families of students being instructed by three
piano teachers, in order to find out the network of referrals.They found that strong ties,
those between family or friends, were more likely to be activated for information flow
and were also more influential than weak ties [12] between acquaintances.

In the context of the internet, word-of-mouth advertising is not restricted to pairwise
or small-group interactions between individuals. Rather,customers can share their ex-
periences and opinions regarding a product with everyone. Quantitative marketing tech-
niques have been proposed [24] to describe product information flow online, and the rat-
ing of products and merchants has been shown to effect the likelihood of an item be-
ing bought [29,7]. More sophisticated online recommendation systems allow users to
rate others’ reviews, or directly rate other reviewers to implicitly form a trusted reviewer
network that may have very little overlap with a person’s actual social circle. [30] used
Epinions’ trusted reviewer network to construct an algorithm to maximize viral market-
ing efficiency assuming that individuals’ probability of purchasing a product depends on
the opinions on the trusted peers in their network. [15] havefollowed up on the challenge
of maximizing viral information spread by evaluating several algorithms given various
models of adoption we discuss next.

Empirical observations of cascading behavior

We formally define a cascade as a graph where the nodes are agents and a directed edge
(i, j, t) indicates that a nodei influenced a nodej at timet.



(a) Cascades as layers (b) Cascades as graphs

Figure 1. Two views on the formation of information cascades on the blogosphere.

Consider three examples of cascade formation and propagation in networks:

• First, we present results on cascades in a large viral marketing network, where
people recommend products to each other and we study the spread and success of
recommendations over the network.

• Second, we consider the tracking of a large population of blogs over a long period
of time and observe the propagation of information between the blogs.

• Third, we present the propagation of infectious water in large real water distribu-
tion networks, and ask the question of where to place a limited number of sensors
so the disease outbreaks will be detected early.

Blogs (weblogs) are web sites that are updated on a regular basis. Often times in-
dividuals use them for online diaries and social networking; other times news sites have
blogs for timely stories. Blogs are composed of time-stamped posts, and posts typically
link each other, as well as other resources on the Web.

For example, figure 1 shows two alternative views of information cascades that may
occur on the blogosphere. In figure 1(a) each circle represents a blog post, and all circles
at the same vertical position belong to the same blog. Often blog posts refer to each other
using hyper-links. Given that the posts are time-stamped and usually not updated, we
can trace their linking patterns all the way to the source. Itis easy to identify the flow
if information from the source post to the followers and followers of the followers. So,
each layer represents a different information cascade (information propagation graph).
Figure 1(b) gives an alternative view. Here posts (represented as circles) inside a rectan-
gle belong to the same blog. Similarly, the information cascades correspond to connected
components of the posts in the graph,e.g.postsp12, p41, p42 andp65 all form a cascade,
wherep12 is thecascade initiator.

Observing such behavior on the blogosphere or in the viral marketing poses several
interesting questions: What kinds of cascades arise frequently in real life? Are they like
trees, stars, or something else? And how do they reflect properties of their underlying
network environment? How fast does the information spread?Do certain nodes have
specific propagation patterns? What are the most important nodes to target if we want to
spread the information over the network?

In addition to observing rich cascades and propagation [23]one can make a step
further and analyze the effectiveness and dynamics of product recommendations in caus-
ing purchases [19,20]. To our knowledge this was the first study to directly observe the
effectiveness of person to person word of mouth advertisingfor hundreds of thousands
of products. Similarly, for blogs [22] is the first to performa large study of cascading
behavior in large blog networks.
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Figure 2. Examples of two product recommendation networks. Left: First aid study guide. Notice many small
disconnected cascades. Right: Japanese graphic novel (manga). Notice a large, tight community.

Cascades in viral marketing

A recent study [19] examined a recommendation network consisting of 4 million people
who made 16 million recommendations on half a million products from a large on-line
retailer. Each time a person purchases a book, music, DVD, orvideo tape she is given
the option to send an email recommending the item to her friends. The first recipient to
purchase the item receives a discount and the sender of the recommendation receives a
referral credit.

Figure 2 shows two typical product recommendation networks. Most product recom-
mendation networks consist of a large number of small disconnected components where
we do not observe cascades. Then there is usually a small number of relatively small
components where we observe recommendations propagating.Also notice bursts of rec-
ommendations and collisions (figure 2(b)). Some individuals send recommendations to
many friends which results in star-like patterns in the graph.

Cascading patterns

Consider the problem of finding patterns of recommendationsin a large social network.
One can ask the following questions: How does the influence propagate? What does it
look like?

In order to analyze the data, new methods and algorithms had to be developed.
First, to identify cascades,i.e.graphs where incoming recommendations influenced pur-
chases and further recommendations. Next, to enumerate andcount the cascade sub-
graphs. Graph isomorphism and enumeration are both computationally very expensive,
so new algorithms for approximate graph isomorphism resolution were developed [23].
In a multi-level approach the computational complexity (and accuracy) of the graph iso-
morphism resolution depends on the size of the graph. This property makes the algorithm
scale nicely to large datasets.

It has been found [?] that the distribution of sizes and depths of cascades follows
a power law. Generally, cascades tend to be shallow, but occasional large bursts can
occur. Cascades are mainly tree-like, but variability in connectivity and branching across
different products groups was also observed. Figure 3 showssome typical examples of
how the influence propagates over the recommendation network.

In addition to observing rich cascades and propagation one can make a step fur-
ther and analyze the effectiveness and dynamics of product recommendations in causing
purchases.



G1 G2 G3 G4 G5 G6 G7

Figure 3. Typical classes of cascades.G1, G2: nodes recommending to the same set of people, but not each
other.G3, G4: nodes recommending to same community.G5, G6: a flat cascade.G7: a large propagation of
recommendations.
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Figure 4. Probability of purchasing a product given the number of received recommendations. Notice the
decrease in purchasing probability for books and saturation for DVDs.

Implications for viral marketing

A study of Leskovec et al. [19] established how the recommendation network grows over
time and how effective it is from the viewpoint of the sender and receiver of the recom-
mendations. The examine what kind of product is more likely to be bought as a result of
recommendation, and describe the size of the cascade that results from recommendations
and purchases. While on average recommendations are not very effective at inducing
purchases and do not spread very far, there are product and pricing categories for which
viral marketing seems to be very effective.

Figure 4 presents an example of our findings. We plot the probability of purchasing
a product given the number of received recommendations. Surprisingly, as more book
recommendations are received their successdecreases. Success of DVD recommenda-
tions saturates around 10 incoming recommendations. This means that after a person gets
10 recommendations they become immune to them – their probability of buying does
not increase anymore. Traditional innovation diffusion models assume that an increasing
number of infected contacts results in an increased likelihood of infection. Instead, it was
shown that the probability of purchasing a product increases with the number of recom-
mendations received, but then it quickly saturates. The result has important implications
for viral marketing because providing too much incentive for people to recommend to
one another can weaken the very social network links that themarketer is intending to
exploit.

What determines the product’s viral marketing success? A study [20] presents a
model which characterizes product categories for which recommendations are more
likely to be accepted, and find that the numbers of nodes and receivers have negative



coefficients, showing that successfully recommended products are actually more likely
to be not so widely popular. It shows that more expensive and more recommended prod-
ucts have a higher success rate. These recommendations should occur between a small
number of senders and receivers, which suggests a very denserecommendation network
where lots of recommendations are exchanged between a smallcommunity of people.
These insights could be of use to marketers — personal recommendations are most effec-
tive in small, densely connected communities enjoying expensive products. Refer to [20]
for more details.

Cascades on the blogosphere

Similarly to the viral marketing setting we also analyze cascades on the blogosphere. We
address a set of related questions: What kinds of cascades arise frequently in real life?
Are they like trees, stars, or something else? And how do theyreflect properties of their
underlying network environment?

Shape of information cascades

We extracted our dataset from a larger set of blogs and posts from August and September
2005 [9]. We were interested in blogs and posts that activelyparticipate in discussions, so
we biased our dataset towards the more active part of the blogosphere. We focused on the
most-cited blogs and traced forward and backward conversation trees containing these
blogs. This process produced a dataset of2.5 million posts from45, 000 blogs gathered
over the three-month period. To analyze the data, we first create graphs of time-obeying
propagation of links. Then, we enumerate and count all possible cascade subgraphs.

We find novel patterns, and the analysis of the results gives us insight into the cas-
cade formation process. Most surprisingly, the popularityof posts drops with apower
law, instead of exponentially, that one may have expected. We collect all in-links to a
post and plot the number of links occurring after each day following the post. This cre-
ates a curve that indicates the rise and fall of popularity. Figure 5(a) shows number of
in-links for each day following a post for all posts in the dataset The exponent of the
power law is−1.5, which is exactly the value predicted by the model where the bursty
nature of human behavior is a consequence of a decision basedqueuing process [27,32] –
when individuals execute tasks based on some perceived priority, the timing of the tasks
is heavy tailed, with most tasks being rapidly executed, whereas a few experience very
long waiting times.

We also find that probability of observing a cascade onn nodes follows a Zipf dis-
tribution:p(n) ∝ n−2. Figure 5(b) plots the in-degree distribution of nodes at level L of
the cascade. A node is at levelL if it is L hops away from the root (cascade initiator)
node. Notice that the in-degree exponent is stable and does not change much given the
level in the cascade. This means that posts still attract attention (get linked) even if they
are somewhat late in the cascade and appear towards the bottom of it.

We also found rich cascade patterns. Generally cascades areshallow but occasional
large bursts also occur. The cascade sub-patterns shown on figure 6 reveal mostly small
tree-like subgraphs; however we observe differences in connectivity, density, and the
shape of cascades. Indeed, the frequency of different cascade subgraphs is not a simple
consequence of differences in size or density; rather, we find instances where denser
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Figure 6. Common blog cascade shapes, ordered by the frequency of appearance.

subgraphs are more frequent than sparser ones, in a manner suggestive of properties in
the underlying social network and propagation process.

For example, we found that BoingBoing, which a very popular blog about amusing
things, is engaged in many cascades. Actually, 85% of all BoingBoing posts were cascade
initiators. The cascades generally did not spread very far but were wide (e.g., G10 and
G14 in Figure 6). On the other hand53% of the posts from an influential political blog
MichelleMalkin were cascade initiators, but the cascades here were deeper and generally
larger (e.g., G117 in Figure 6) than those of BoingBoing.

Simple model of information cascades

We also developed a conceptual model for generating information cascades that produces
cascade graphs matching several properties of real cascades. The model builds on inde-
pendent cascade model [15]. Our model is intuitive and requires only a single parameter
that corresponds to how interesting (easy spreading) the conversations in general on the
blogosphere are.

Intuitively, cascades are generated by the following principle. A post is posted at
some blog, other bloggers read the post, some create new posts, and link the source
post. This process continues and creates a cascade. One can think of cascades as graphs
created by the spread of a virus over the Blog Network. This means that the initial post
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Figure 7. Comparison of the true data and the model. We plotted the distribution of the true cascades with
circles and the estimate of our model with dashed line. Notice remarkable agreement between the data and the
prediction of our simple model.

corresponds to infecting a blog. As the cascade unveils, thevirus (information) spreads
over the network and leaves a trail. To model this process we use a single parameterβ that
measures how infectiousness of the posts on the blogosphere. Our model is very similar
to the SIS (susceptible – infected – susceptible) model fromthe epidemiology [14].

Figure 7 compares the cascades generated by the model with the ones found in
the real blog network. Notice a very good agreement between the reality and simulated
cascades in all plots. The distribution over cascade sizes is matched best. Chains and
stars are slightly under-represented, especially in the tail of the distribution where the
variance is high. The in-degree distribution is also matched nicely, with an exception for
a spike that can be attributed to a set of outlier blogs all with in-degree 52.

Node selection for early cascade detection

Next, we explore the general problem of detecting outbreaksin networks, where we are
given a network and a dynamic process spreading over this network, and we want to
select a set of nodes to detect the process as effectively as possible.

Many real-world problems can be modeled under this setting.Consider a city water
distribution network, delivering water to households via pipes and junctions. Acciden-
tal or malicious intrusions can cause contaminants to spread over the network, and we
want to select a few locations (pipe junctions) to install sensors, in order to detect these
contaminations as quickly as possible.



Similarly with blogs we want to select a set of blogs to read (or retrieve) which
are most up to date,i.e., catch (link to) most of the stories that propagate over the bl-
ogosphere. Our goal is to select a small set of blogs (two in case of Figure 1) which
“catch” as many cascades (stories) as possible. A naive, intuitive solution would be to
select the big, well-known blogs. However, these usually have a large number of posts,
and are time-consuming to read. We show, that, perhaps counter-intuitively, a more cost-
effective solution can be obtained, by reading smaller, buthigher quality, blogs, which
our algorithm can find.

Node selection criteria

There are several possible criteria one may want to optimizein outbreak detection. For
example, one criterion seeks to minimizedetection time(i.e., to know about a cascade as
soon as possible, or avoid spreading of contaminated water). Similarly, another criterion
seeks to minimize thepopulation affectedby an undetected outbreak (i.e., the number
of blogs referring to the story we just missed, or the population consuming the contam-
ination we cannot detect). Optimizing these objective functions is NP-hard [16], so for
large, real-world problems, we cannot expect to find the optimal solution.

Exploiting submodularity

In our work [21] we show that these and many other realistic outbreak detection ob-
jectives aresubmodular[25], i.e., they exhibit a diminishing returns property: Reading
a blog (or placing a sensor) when we have only read a few blogs provides more new
information, than reading it after we have read many blogs (placed many sensors). We
find ways to exploit this submodularity property toefficiently obtainsolutions which are
provably closeto the optimal solution. These guarantees are important in practice, since
selecting nodes is expensive (reading blogs is time-consuming, sensors have high cost),
and we desire solutions which are not too far from the optimalsolution.

We also show that many objective functions for detecting outbreaks in networks are
submodular, including detection time and population affected in the blogosphere and
water distribution monitoring problems. We show that our approach also generalizes
work by [15] on selecting nodes maximizing influence in a social network.

We also exploit the submodularity of the objective (e.g., detection time) to develop
an efficient approximation algorithm,CELF, which achieves near-optimal placements
(guaranteeing at least a constant fraction of the optimal solution), providing a novel the-
oretical result for non-constant node cost functions.CELF is up to 700 times faster than
simple greedy algorithm. We also derive novel online boundson the quality of the place-
ments obtained byanyalgorithm.

Evaluation on water distribution and blog networks

We extensively evaluate our methodology on the applications introduced above – water
quality and blogosphere monitoring. These are large real-world problems, involving a
model of a water distribution network from the EPA with millions of contamination
scenarios, and real blog data with millions of posts.

First, we evaluate the performance ofCELF, and estimate how far from optimal the
solution could be. Obtaining the optimal solution would require enumeration of245,000
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Figure 8. Both plots show the solution quality vs. the number of selected sensors (blogs). (a) Performance of
CELF algorithm and off-line and on-line bounds. Notice on-line bound is much tighter. (b) Compares different
objective functions: detection likelihood (DL), detection time (DT) and population affected (PA).

(a) Population Affected (b) Detection Likelihood

Figure 9. Water network sensor placements: (a) when optimizing Population Affected, sensors are concen-
trated in high population areas. (b) when optimizing Detection Likelihood, sensors are uniformly spread out.

subsets. Since this is impractical, we compare our algorithm to the bounds we developed.
Figure 8(a) shows scores for increasing budgets when optimized the Population affected
criterion. As we select more blogs to read, the proportion ofcascades we catch increases
(bottom line). We also plot the two bounds. Notice the off-line bound (top line) is very
loose. On the other hand, our on-line bound is much tighter than the traditional off-line
bound.

In contrast to the off-line bound, our on-line bound isalgorithm independent, and
thus can be computed regardless of the algorithm used to obtain the solution. Since it is
tighter, it gives a much better worst case estimate of the solution quality. For this partic-
ular experiment, we see thatCELF works very well: after selecting 100 blogs, we are
at most 13.8% away from the optimal solution. Similarly, figure 8(b) shows the perfor-
mance using various objective functions. By using the on-line bound we also calculated
that our results for all objective functions are at most 5% to15% from optimal.

In August 2006, the Battle of Water Sensor Networks (BWSN) [28] was organized
as an international challenge to find the best sensor placements for a real metropolitan
area water distribution network. In Figure 9 we show two 20 sensor placements obtained
by our algorithm after optimizing Detection Likelihood andPopulation Affected, respec-



tively. When optimizing the population affected, the placed sensors are concentrated in
the dense high-population areas, since the goal is to detectoutbreaks which affect the
population the most. When optimizing the detection likelihood, the sensors are uniformly
spread out over the network. Intuitively this makes sense, since according to BWSN chal-
lenge, outbreaks happen with same probability at every node. So, for Detection Likeli-
hood, the placed sensors should be as close to all nodes as possible.
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