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Outline :

e Nonparametric regression and kernel smoothing

e Additive models

e Sparse additive models (SpAM)

e Structured sparse additive models (GroupSpAM)
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Nonparametric Regression
and Kernel Smoothing
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Non-linear functions:
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LR with non-linear basis
functions

|
e LR does not mean we can only deal with linear relationships

e We are free to design (non-linear) features under LR
y=0p+.,0,6(x)=0"(x)

where the ¢(x) are fixed basis functions (and we define ¢,(x) = 1).

e Example: polynomial regression:
P(X) = [1, X, X2, x3]

e We will be concerned with estimating (distributions over) the
weights 8 and choosing the model order M.
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Basis functions

e There are many basis functions, e.g.:

Polynomial ¢, (X) = x i

e Radial basis functions @; (X) = exp[—

&—m?]

2s?
e Sigmoidal ¢j (X)=0'[X_'UJJ
S

e Splines, Fourler Wavelets, etc
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1D and 2D RBFs e
e 1D RBF
% [}
yt = (x) + + By ¢5(x)
o After fit:
st = 2 ) + + 0.5 5(x)
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Good and Bad RBFs .
e Agood 2D RBF stk =T
Input vectors { . _(__.“."_enter
e Two bad 2D RBFs
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Overfitting and underfitting

AR [ B P
o a -f; VA

y =0, +6,x Y =0, + 0%+ 0,x° y=> 0%
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Bias and variance

e We define the bias of a model to be the expected
generalization error even if we were to fit it to a very (say,
infinitely) large training set.

e By fitting "spurious" patterns in the training set, we might
again obtain a model with large generalization error. In this
case, we say the model has large variance.
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Locally weighted linear selt
regression -
e The algorithm:
Instead of minimizing J(0) =%Zn:(xf6’— y,)? : ]

now we fit 6 to minimize J(0) = %Zwi (X' 0-y,)°
i=1

2
Where do w;'s come from? w, = exp(— (Xiz_;() ]
T

¥

where x is the query point for which we'd like to know its corresponding y

- Essentially we put higher weights on (errors on) training
examples that are close to the query point (than those that are
further away from the query)

[ X X ]

[ X X X

HE
Parametric vs. non-parametric o

e Locally weighted linear regression is another example we are
running into of a non-parametric algorithm. (what are the
others?)

e The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

e because it has a fixed, finite number of parameters (the 6), which are fit to the
data;

e Once we've fit the 6 and stored them away, we no longer need to keep the
training data around to make future predictions.

e In contrast, to make predictions using locally weighted linear regression, we need
to keep the entire training set around.

e The term "non-parametric” (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows linearly with the size of the training set.
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Parametric vs. non-parametric

e Parametric model:
e Assumes all data can be represented using a fixed, finite number of parameters.
e Examples: polynomial regression

e Nonparametric model:
e Number of parameters can grow with sample size.
e Examples: nonparametric regression
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Robust regression—probabilistic
interpretation '

e What regular regression does:

Assume y, was originally generated using the following recipe:

y, =0"x, +N}(0,5%)

Computational task is to find the Maximum Likelihood
estimation of 6
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Nonparametric Regression:
Formal Definition

e Nonparametric regression is concerned with estimating the
regression function

m(x) =E(Y | X =x)
from a training set {(x,y) : x® e R? 4y e R,i =1,...,n}
e The “parameter” to be estimated is the whole function m(x)

e No parametric assumption such as linearity is made about the
regression function m(x)

e More flexible than parametric model
e However, usually require keeping the entire training set (memory-based)
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Kernel Smoother

e The simplest nonparametric regression estimator
e Local weighted (smooth) average of y(z)
e The weight depends on the distance to x(®)

e Nadaraya-Watson kernel estimator

n i x—x®
S y( )K(W)

) e e

e K s the smoothing kernel function K(x)>=0 and h is the
bandwidth
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Kernel Function

o It satisfies
/K(m) de =1, /mK(m)d:L’ =0 and o% = /xQK(x)daj > 0.

e Different types

T

0.4

0.0

© Eric Xing @ CMU, 2005-2013 17

Bandwidth

e The choice of bandwidth h is much more important than
the type of kernel K

e Small h ->rough estimates
e Large h ->smoother estimates
e In practice: cross-validation or plug-in methods

20
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I

-50 0 50 100
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Linear Smoothers

I
e Kernel smoothers are examples of linear smoothers

i (x) = me)y@ =U(x)"y,

x—x®
K ( I > II)
n K x—x{

e For each x, the estimator is a linear combination of y(z)

fz‘ (X)

e Other examples: smoothing splines, locally weighted polynomial, etc
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Linear Smoothers (con’t)

A~

o Define y = (m(xY), ..., m(x™))be the fitted values
of the training examples, then

y =Sy,
e Then xn matrix S is called the smoother matrix with S;; = £;(x(%)

e The fitted values are the smoother version of original values

e Recall the regression function m(X) =E(Y | X) can be
viewed as

m(X) = PY

e Pisthe conditional expectation operator E( | X) that projects a
random variable (it is Y here) onto the linear space of X

o It plays the role of smoother in the population setting
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Additive Models
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Additive Models

e Due to curse of dimensionality, smoothers break down in high
dimensional setting

e Hastie & Tibshirani (1990) proposed the additive model
D
m(Xl, .. ,Xp) =a+ Z fJ(X])
j=1
e Each fjs a smooth one-dimensional component function

e However, the model is not identifiable

e Can add a constant to one component function and subtract the same constant
from another component

e Can be easily fixed by assuming
E[f;(X;)] = 0 for each j
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Backfitting :
I
e The optimization problem in the population setting is
1 & 2
RCETE WIS
Jj=1
e |t can be shown that the optimum is achieved at
a=E(Y),f; :]E[(Y—a—ka) |Xj] .= P;R
kit
e p. = E[ | X,]is the conditional expectation operator onto jth input space
° ! ! is the partial residual
Ri=Y-a-Y fi
k#j
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Backfitting (con’t) :
e Replace conditional operator Pj by smoother matrix Sj
results in the backfitting algorithm
n
o Initialize: ¢ = Zy(i)/n f;=0,j=1,...,p
e Cycle:for = ...,p, N I
1 n
SR CATED LS RS oHEN
k#j i=1
. f'j = (fj (xlj)7 . fj (xnj))T is the current fitted values of
jth component fj on the n training examples
e Itis a coordinate descent algorithm
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Example

log permeability

e 48 rock samples from a petroleum reservoir
e The response: permeability

e The covariates: the area of pores, perimeter in pixels and
shape (perimeter/sqgrt(area))
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Sparse Additive Models (SpAM)
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SpAM

e A sparse version of additive models (Ravikumar et. al 2009)

e Can perform component/variable selection for additive models
even whenn<<p

e The optimization problem in the population setting is

SE[( =3 1)) 23 VIGO0

P
° Z,/]E[fj (X;)?] behaves like an I1 ball across different components
j=1

to encourage functional sparsity

e If each component function f;(X;) is constrained to have the linear
form, the formulation reduces to standard lasso (Tibshirani 1996)

SpAM Backfitting st

e The optimum is achieved by soft-thresholding step
f 1 A P.R;,j=1

i= |\l fity,y=L...,p

B[R],

e Rj=Y -3, fi is the partial residual; [-]is the positive part

e f; =0if and only if 4/E[(P;R;)?] < X (thresholding condition)

e Asin standard additive models, replace P; by S;

N A 2\
fﬂ—{l—A] Sj<y—sz>,]:1,~wp
Sj +

ki

o 5= \/mean(sj(y - Z fe)) s the empirical estimate of 1/ E[(P;R;)?]
oy
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Example

e n =150, p = 200 (only 4 component functions are non-zerlos)
Yi = filxi1) + foa(xi2) + f3(xi3) + fa(xia) + €
fi@) = =25in@2x), L) =24, LX) =x -4, failx) =e T+ —1
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Structured Sparse Additive Models
(GroupSpAM)

© Eric Xing @ CMU, 2005-2013 30

15



GroupSpAM

e Exploit structured sparsity in the nonparametric setting

e The simplest structure is a non-overlapping group (or a
partition of the original p variables)

Ug={l,....,p}and gg' =0
geg

e The optimization problem in the population setting is

%E[@” - ZfﬂXj)ﬂ AVl DR ()

g€y J€g

e Challenges:
e New difficulty to characterize the thresholding condition at group level

e No closed-form solution to the stationary condition, in the form of soft-
thresholding step

[ X X ]

[ X X X

HH
Thresholding Conditions -

e Theorem: the whole group g of functions f; = 0Vj € g if
and only if

> El(PjR)?] < AV/lgl
Jj€g
° Rg =Y — Z Z fj,(Xj,) is the partial residual after removing
g'#g9i'€y’
all functions from group g

e Necessity: straightforward to prove
e Sufficiency: more involved (see Yin et. al, 2012)
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GroupSpAM Backfitting :
Else,
Estimate f'g by fixed point iteration,
g _ <3+ Vil 1> " am,
' 1E5711/v/n '
Output: Fitted functions f = {f']- eR":j=1,...,p}.
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Experiments :
e Sample size n=150 and dimension p = 200, 1000
[ ]
f( ) 2—sin(z)
falz) = exp(—x) 8.98
fs(x) = 2®+41.5(z —1)? 14.57
fo(z) = x 2.08
fr(x) = 3sin(exp(—0.5z) 0.80
fs(z) = —5¢(x,0.5,0.8%) 3.76
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Experiments (p = 200) 5
_ _ . !
e Performance based on 100 independent simulations (t = 0)
method  precision recall #f1 # fo # f3 #f1 #f5 #fs #fr #fs MSE
GroupSpAM  1.00 1.00 100 100 100 100 100 100 100 100 7.22
SpAM 0.85 0.82 83 100 56 100 100 94 27 100 9.61
COSSO 066 042 6 1 27 100 50 61 3 88 28.29
GroupLasso  0.95  0.99 100 100 100 100 99 99 99 99 28.34
e Performance based on 100 independent simulations (t = 2)
method  precision recall #f1 #fo # fs #f1 #f5 #fo #fz #fs MSE
GroupSpAM  0.89 0.99 100 100 100 100 98 98 98 98 7.26
SpAM 0.71 046 88 75 0 83 100 0 4 15 848
COSSO 0.23 041 11 61 22 90 76 10 10 47 13.72
GroupLasso 0.13 0.12 14 14 14 14 11 11 11 11 26.19
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Experiments (p = 1000) :
e Performance based on 100 independent simulations (t = 0)
method  precision recall # f1 # fo # f3 #f1 #[5 #f6 #f7 #fs MSE
GroupSpAM  1.00  1.00 100 100 100 100 100 100 100 100 7.21
SpAM 0.86 0.68 49 91 25 100 100 71 7 97 11.66
COSSO 0.01 0.97 93 100 97 100 100 100 84 100 36.59
GroupLasso  0.93  0.97 98 98 98 98 97 97 97 97 29.49
e Performance based on 100 independent simulations (t = 2)
method  precision recall #f1 #fo #fs #f1 #fs #f6 #f7 #fs MSE
GroupSpAM 0.75 097 95 95 95 95 100 100 100 100 8.10
SpAM 069 034 59 43 0 65 100 0 1 3 9.69
COSSO 0.00 0oo o 0 O O O O O 0 2630
GroupLasso  0.02 003 4 4 4 4 2 2 2 2 2586
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Estimated Component Functions

GroupSpAM with Overlap s

e Allow overlap between the different groups (Jacob et al.,
2009)

e |dea: decompose each original component function to be a
sum of a set of latent functions and then apply the functional
group penalty to the decomposed

subject to Z h=fpi=1....p.

9:j€9

e The resulting support is a union of pre-defined groups

e Can be reduced to the GroupSpAM with disjoint groups and solved by the same
backfitting algorithm
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Breast Cancer Data

I
e Sample size n = 295 tumors (metastatic vs hon-metastatic)

and dimension p = 3,510 genes.
e Goal: identify few genes that can predict the types of tumors.

e Group structure: each group consists of the set of genes in a
pathway and groups are overlapping.

GroupLasso 0.384 44 238
GroupSpAM 0.358 44 243
2 SpAM 0.349 109 302
GroupLasso 0.365 56 248
GroupSpAM 0.326 74 149
3  SpAM 0.333 101 209
GroupLasso  0.346 76 138
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Summary

e Novel statistical method for structured functional sparsity in
nonparametric additive models

e Functional sparsity at the group level in additive models.

e Can easily incorporate prior knowledge of the structures among the
covariates.

e Highly flexible: no assumptions are made on the design matrices or on
the correlation of component functions in each group.

e Benefit of group sparsity: better performance in terms of support
recovery and prediction accuracy in additive models.
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