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Reading: See class website
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Outline
Nonparametric regression and kernel smoothing

Additive models

Sparse additive models (SpAM)

Structured sparse additive models (GroupSpAM)p ( p p )
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Nonparametric Regression Nonparametric Regression 
and Kernel Smoothingand Kernel Smoothing
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Non-linear functions:
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LR with non-linear basis 
functions

LR does not mean we can only deal with linear relationships

We are free to design (non-linear) features under LR

where the φj(x) are fixed basis functions (and we define φ0(x) = 1).
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Example: polynomial regression:

We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.
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Basis functions
There are many basis functions, e.g.:

P l i l 1−j)(φPolynomial

Radial basis functions

Sigmoidal
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Splines, Fourier, Wavelets, etc

⎠⎝ s

6© Eric Xing @ CMU, 2005-2013



4

1D and 2D RBFs
1D RBF

After fit:
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Good and Bad RBFs
A good 2D RBF

Two bad 2D RBFs
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Overfitting and underfitting
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Bias and variance
We define the bias of a model to be the expected 
generalization error even if we were to fit it to a very (say, g y ( y,
infinitely) large training set.

By fitting "spurious" patterns in the training set, we might 
again obtain a model with large generalization error. In this 
case, we say the model has large variance.
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Locally weighted linear 
regression

The algorithm:
Instead of minimizing ∑

n
TJ 21 )()( θθInstead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

where x is the query point for which we'd like to know its corresponding y
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Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)
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Parametric vs. non-parametric
Locally weighted linear regression is another example we are 
running into of a non-parametric algorithm. (what are the g p g (
others?)

The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 

because it has a fixed, finite number of parameters (the θ), which are fit to the 
data;
Once we've fit the θ and stored them away, we no longer need to keep the 
training data around to make future predictionstraining data around to make future predictions.
In contrast, to make predictions using locally weighted linear regression, we need 
to keep the entire training set around. 

The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.
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Parametric model:

Parametric vs. non-parametric

Parametric model:
Assumes all data can be represented using a fixed, finite number of parameters.
Examples: polynomial regression

Nonparametric model:
Number of parameters can grow with sample size.
Examples: nonparametric regressionp p g
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Robust regression—probabilistic 
interpretation

What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 

),( 20 σθ N+= k
T

ky x

p
estimation of θ
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Nonparametric regression is concerned with estimating the 
regression function 

Nonparametric Regression: 
Formal Definition

g

from a training set

The “parameter” to be estimated is the whole function m(x)

No parametric assumption such as linearity is made about the 
regression function m(x)

More flexible than parametric model
However, usually require keeping the entire training set (memory-based)
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Kernel Smoother

The simplest nonparametric regression estimator
Local weighted (smooth) average of
The weight depends on the distance to 

Nadaraya-Watson kernel estimator

K is the smoothing kernel function K(x)>=0 and h is the 
bandwidth
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It satisfies

Kernel Function

Different types
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Bandwidth
The choice of bandwidth h is much more important than 
the type of kernel Kyp

Small h -> rough estimates
Large h -> smoother estimates
In practice: cross-validation or plug-in methods
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Linear Smoothers

Kernel smoothers are examples of linear smoothers

For each x, the estimator is a linear combination of 

Other examples: smoothing splines, locally weighted polynomial, etc
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Linear Smoothers (con’t)
Define be the fitted values 
of the training examples, theng p ,

The n x n matrix S is called the smoother matrix with

The fitted values are the smoother version of original values 

Recall the regression function can be g
viewed as

P is the conditional expectation operator  that projects a 
random variable (it is Y here) onto the linear space of X
It plays the role of smoother in the population setting
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Additive ModelsAdditive Models
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Additive Models
Due to curse of dimensionality, smoothers break down in high 
dimensional settingg
Hastie & Tibshirani (1990) proposed the additive model

Each      is a smooth one-dimensional component function

However, the model is not identifiable
Can add a constant to one component function and subtract the same constant 
from another component

Can be easily fixed by assuming
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Backfitting
The optimization problem in the population setting is

It can be shown that the optimum is achieved at 

is the conditional expectation operator onto jth input space
is the partial residual
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Backfitting (con’t)
Replace conditional operator       by smoother matrix
results in the backfitting algorithmg g

Initialize:

Cycle: for  

is the current fitted values of

jth component        on the n training examples

It is a coordinate descent algorithm
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Example
48 rock samples from a petroleum reservoir

The response: permeability

The covariates: the area of pores, perimeter in pixels and 
shape (perimeter/sqrt(area))
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Sparse Additive Models (SpAM)Sparse Additive Models (SpAM)
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SpAM
A sparse version of additive models (Ravikumar et. al 2009)
Can perform component/variable selection for additive modelsCan perform component/variable selection for additive models 
even when n << p
The optimization problem in the population setting is

behaves like an l1 ball across different components 

to encourage functional sparsity

If each component function is constrained to have the linear 
form, the formulation reduces to standard lasso (Tibshirani 1996) 
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SpAM Backfitting
The optimum is achieved by soft-thresholding step

is the partial residual;        is the positive part
(thresholding condition)

As in standard additive models, replace      by p y

is the empirical estimate of 
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Example
n =150, p = 200 (only 4 component functions are non-zeros)
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Structured Sparse Structured Sparse Additive Models Additive Models 
((GroupSpAMGroupSpAM))
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GroupSpAM
Exploit structured sparsity in the nonparametric setting
The simplest structure is a non-overlapping group (or aThe simplest structure is a non-overlapping group (or a 
partition of the original p variables) 

The optimization problem in the population setting is

Challenges:
New difficulty to characterize the thresholding condition at group level
No closed-form solution to the stationary condition, in the form of soft-
thresholding step
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Thresholding Conditions

Theorem: the whole group g of functions if 
and only ifand only if 

is the partial residual after removing 

all functions from group g

Necessity: straightforward to prove
Sufficiency: more involved (see Yin et. al, 2012)
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GroupSpAM Backfitting
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Experiments
Sample size n=150 and dimension p = 200, 1000
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Experiments (p = 200)
Performance based on 100 independent simulations (t = 0)

Performance based on 100 independent simulations (t = 2)
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Experiments (p = 1000)
Performance based on 100 independent simulations (t = 0)

Performance based on 100 independent simulations (t = 2)
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Estimated Component Functions
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GroupSpAM with Overlap
Allow overlap between the different groups (Jacob et al., 
2009))
Idea: decompose each original component function to be a 
sum of a set of latent functions and then apply the functional 
group penalty to the decomposed 

The resulting support is a union of pre-defined groups
Can be reduced to the GroupSpAM with disjoint groups and solved by the same 
backfitting algorithm
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Breast Cancer Data
Sample size n = 295 tumors (metastatic vs non-metastatic) 
and dimension p = 3,510 genes.p , g
Goal: identify few genes that can predict the types of tumors.
Group structure: each group consists of the set of genes in a 
pathway and groups are overlapping.
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Summary
Novel statistical method for structured functional sparsity in 
nonparametric additive modelsp

Functional sparsity at the group level in additive models.

Can easily incorporate prior knowledge of the structures among the 
covariates.

Highly flexible: no assumptions are made on the design matrices or on 
the correlation of component functions in each group.

Benefit of group sparsity: better performance in terms of support 
recovery and prediction accuracy in additive models.
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