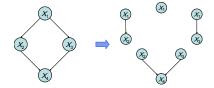


Probabilistic Graphical Models

Variational Inference III: Variational Principle I

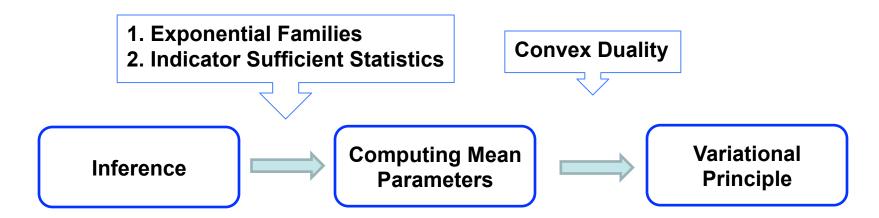
Junming Yin Lecture 16, March 19, 2012

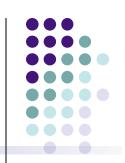


Reading:



- Free energy based approaches
 - Direct approximation of Gibbs free energy: Bethe free energy and loop BP
 - Restricting the family of approximation distribution: mean field method
- Convex duality based approaches





Computing Mean Parameter: Bernoulli

A single Bernoulli random variable

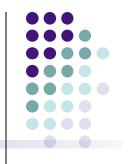
$$(X) \epsilon$$

$$p(x;\theta) = \exp\{\theta x - A(\theta)\}, x \in \{0,1\}, A(\theta) = \log(1 + e^{\theta})$$

Inference = Computing the mean parameter

$$\mu(\theta) = \mathbb{E}_{\theta}[X] = p(X = 1; \theta) = \frac{e^{\theta}}{1 + e^{\theta}}$$

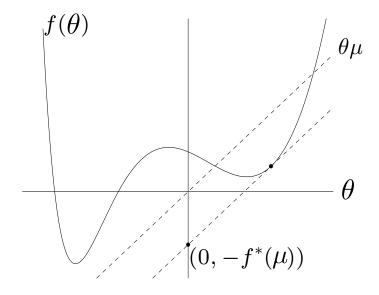
 Want to do it in a variational manner: cast the procedure of computing mean (summation) in an optimization-based formulation



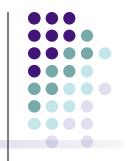
Conjugate Dual Function

• Given any function $f(\theta)$, its conjugate dual function is:

$$f^*(\mu) = \sup_{\theta} \{ \langle \theta, \mu \rangle - f(\theta) \}$$



 Conjugate dual is always a convex function: pointwise supremum of a class of linear functions



Dual of the Dual is the Original

• Under some technical condition on f (convex and lower semicontinuous), the dual of dual is itself:

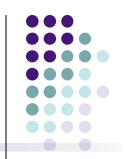
$$f = (f^*)^*$$

$$f(\theta) = \sup_{\mu} \left\{ \langle \theta, \mu \rangle - f^*(\mu) \right\}$$

For log partition function

$$A(\theta) = \sup_{\mu} \{ \langle \theta, \mu \rangle - A^*(\mu) \}, \quad \theta \in \Omega$$

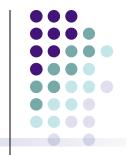
ullet The dual variable μ has a natural interpretation as mean parameters



Computing Mean Parameter: Bernoulli

- The conjugate $A^*(\mu) := \sup_{\theta \in \mathbb{R}} \left\{ \mu \theta \log[1 + \exp(\theta)] \right\}$
- Stationary condition $\mu = \frac{e^{\theta}}{1 + e^{\theta}} \quad (\mu = \nabla A(\theta))$
- If $\mu \in (0,1)$, $\theta(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$, $A^*(\mu) = \mu \log(\mu) + (1-\mu) \log(1-\mu)$
- If $\mu \notin [0,1], A^*(\mu) = +\infty$
- We have $A^*(\mu) = \begin{cases} \mu \log \mu + (1-\mu) \log (1-\mu) & \text{if } \mu \in [0,1] \\ +\infty & \text{otherwise.} \end{cases}$
- The variational form: $A(\theta) = \max_{\mu \in [0,1]} \{ \mu \cdot \theta A^*(\mu) \}.$
- The optimum is achieved at $\mu(\theta) = \frac{e^{\theta}}{1+e^{\theta}}$. This is the mean!

- The last few identities are not coincidental but rely on a deep theory in general exponential family
 - The dual function is the negative entropy function
 - The mean parameter is restricted
 - Solving the optimization returns the mean parameter
- Next step: develop this framework for general exponential families/graphical models



Computation of Conjugate Dual

Given an exponential family

$$p(x_1, \dots, x_m; \theta) = \exp \left\{ \sum_{i=1}^d \theta_i \phi_i(x) - A(\theta) \right\}$$

The dual function

$$A^*(\mu) := \sup_{\theta \in \Omega} \{ \langle \mu, \theta \rangle - A(\theta) \}$$

- The stationary condition: $\mu \nabla A(\theta) = 0$
- Derivatives of A yields mean parameters

$$\frac{\partial A}{\partial \theta_i}(\theta) = \mathbb{E}_{\theta}[\phi_i(X)] = \int \phi_i(x)p(x;\theta) dx$$

- ullet The stationary condition becomes $\ \mu = \mathbb{E}_{ heta}[\phi(X)]$
- Question: for which $\mu \in \mathbb{R}^d$ does it have a solution $\theta(\mu)$?

Computation of Conjugate Dual

- Let's assume there is a solution $\theta(\mu)$ such that $\mu = \mathbb{E}_{\theta(u)}[\phi(X)]$
- The dual has the form

$$A^{*}(\mu) = \langle \theta(\mu), \mu \rangle - A(\theta(\mu))$$

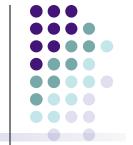
$$= \mathbb{E}_{\theta(\mu)} \left[\langle \theta(\mu), \frac{\phi(X)}{\phi(X)} \rangle - A(\theta(\mu)) \right]$$

$$= \mathbb{E}_{\theta(\mu)} \left[\log p(X; \theta(\mu)) \right]$$

The entropy is defined as

$$H(p(x)) = -\int p(x) \log p(x) dx$$

- So the dual is $A^*(\mu) = -H(p(x; \theta(\mu)))$ when there is a solution $\theta(\mu)$
- Question: for which $\mu \in \mathbb{R}^d$ does it have a solution $\theta(\mu)$?



Marginal Polytope

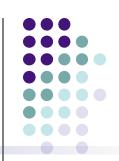
• For any distribution p(x) and a set of sufficient statistics define a vector of mean parameters

$$\mu_i = \mathbb{E}_p[\phi_i(X)] = \int \phi_i(x)p(x) dx$$

- p(x) is not necessarily an exponential family
- The set of all realizable mean parameters

$$\mathcal{M} := \{ \mu \in \mathbb{R}^d \mid \exists \ p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}.$$

- It is a convex set
- For discrete exponential families, this is called marginal polytope

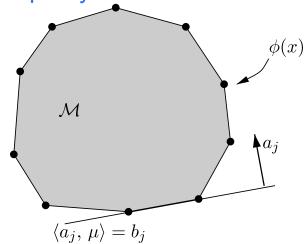


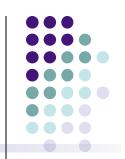
Convex hull representation

$$\mathcal{M} = \left\{ \mu \in \mathbb{R}^d \middle| \sum_{x \in \mathcal{X}^m} \phi(x) p(x) = \mu, \text{ for some } p(x) \ge 0, \sum_{x \in \mathcal{X}^m} p(x) = 1 \right\}$$
$$\triangleq \text{conv} \left\{ \phi(x), x \in \mathcal{X}^m \right\}$$

- Half-plane representation
 - Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized by a finite collection of linear inequality constraints

$$\mathcal{M} = \Big\{ \mu \in \mathbb{R}^d | a_j^\top \mu \ge b_j, \ \forall j \in \mathcal{J} \Big\},$$
where $|\mathcal{J}|$ is finite.





- Sufficient statistics: $\phi(x) := (x_s, s \in V; x_s x_t, (s, t) \in E) \in \mathbb{R}^{|V|' + |E|}$.
- Mean parameters: $\mu_s = \mathbb{E}_p[X_s] = \mathbb{P}[X_s = 1] \quad \text{for all } s \in V, \text{ and}$ $\mu_{st} = \mathbb{E}_p[X_s X_t] = \mathbb{P}[(X_s, X_t) = (1, 1)] \quad \text{for all } (s, t) \in E.$
- Two-node Ising model
 - Convex hull representation $conv\{(0,0,0),(1,0,0),(0,1,0),(1,1,1)\}$
 - Half-plane representation

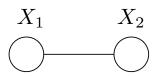
$$\mu_{1} \geq \mu_{12}$$

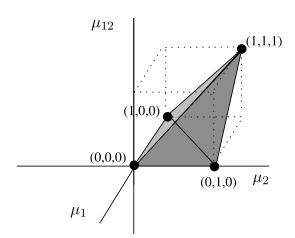
$$\mu_{2} \geq \mu_{12}$$

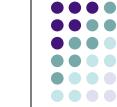
$$\mu_{12} \geq 0$$

$$1 + \mu_{12} \geq \mu_{1} + \mu_{2}$$

Exercise: three-node Ising model







Example: Discrete MRF

- Mean parameters are marginal probabilities:

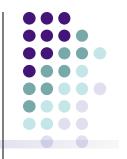
$$\mu_{s;j} = \mathbb{E}_p[\mathbb{I}_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in \mathcal{X}_s,$$

$$\mu_{st;jk} = \mathbb{E}_p[\mathbb{I}_{st;jk}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j,k) \in \mathcal{X}_s \in \mathcal{X}_t.$$

Marginal Polytope

$$\mathcal{M}(G) = \{ \mu \in \mathbb{R}^d \mid \exists p \text{ with marginals } \mu_{s,j}, \mu_{st,jk} \}$$

- For tree graphical models, the number of half-planes (facet complexity) grows only linearly in the graph size
- For general graphs, it is extremely difficult to characterize the marginal polytope



Variational Principle (Theorem 3.4)

The dual function takes the form

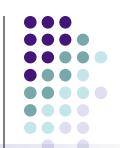
$$A^*(\mu) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^{\circ} \\ +\infty & \text{if } \mu \notin \overline{\mathcal{M}}. \end{cases}$$

- $\theta(\mu)$ satisfies $\mu = \mathbb{E}_{\theta(u)}[\phi(X)]$
- The log partition function has the variational form

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \}$$

• For all $\theta \in \Omega$, the above optimization problem is attained uniquely at $\mu(\theta) \in \mathcal{M}^o$ that satisfies

$$\mu(\theta) = \mathbb{E}_{\theta}[\phi(X)]$$



- The distribution $p(x;\theta) \propto \exp\{\theta_1 x_1 + \theta_2 x_2 + \theta_{12} x_{12}\}$

• The marginal polytope is characterized by

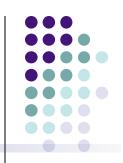
$$\mu_{1} \geq \mu_{12}
\mu_{2} \geq \mu_{12}
\mu_{12} \geq 0
1 + \mu_{12} \geq \mu_{1} + \mu_{2}$$

The dual has an explicit form

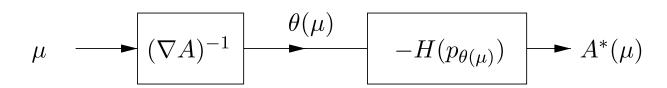
$$A^*(\mu) = \mu_{12} \log \mu_{12} + (\mu_1 - \mu_{12}) \log(\mu_1 - \mu_{12}) + (\mu_2 - \mu_{12}) \log(\mu_2 - \mu_{12})$$
$$+ (1 + \mu_{12} - \mu_1 - \mu_2) \log(1 + \mu_{12} - \mu_1 - \mu_2)$$

- The variational problem $A(\theta) = \max_{\{\mu_1, \mu_2, \mu_{12}\} \in \mathcal{M}} \{\theta_1 \mu_1 + \theta_2 \mu_2 + \theta_{12} \mu_{12} A^*(\mu)\}$
- The optimum is attained at

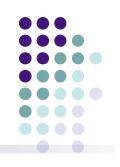
$$\mu_1(\theta) = \frac{\exp\{\theta_1\} + \exp\{\theta_1 + \theta_2 + \theta_{12}\}}{1 + \exp\{\theta_1\} + \exp\{\theta_2\} + \exp\{\theta_1 + \theta_2 + \theta_{12}\}}$$



- In general graphical models, the marginal polytope can be very difficult to characterize explicitly
- The dual function is implicitly defined:



- Inverse mapping is nontrivial
- Evaluating the entropy requires high-dimensional integration (summation)



Variational formulation

$$A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \}$$

- General idea of variational inference for graphical models:
 - Approximate the function to be optimized, i.e., the entropy term (Bethe-Kikuchi, sum-product)
 - Restrict the set over which the optimization takes place to a subset, i.e., the marginal polytope (mean field methods)