Probabilistic Graphical Models

Theory of Variational Inference: Inner and Outer Approximation

Junming Yin
Lecture 15, March 4, 2013

Reading: W & J Book Chapters

Fig. 3.5 Generic illustration of M for a discrete random variable with $|X_m|$ finite. In this case, the set M is a convex polytope, corresponding to the convex hull of ${\phi(x) \mid x \in X_m}$. By the Minkowski–Weyl theorem, this polytope can also be written as the intersection of a finite number of half-spaces, each of the form ${\mu \in \mathbb{R}^d \mid \langle a_j, \mu \rangle \geq b_j}$ for some pair $(a_j, b_j) \in \mathbb{R}^d \times \mathbb{R}$.

Example 3.8 (Ising Mean Parameters). Continuing from Example 3.1, the sufficient statistics for the Ising model are the singleton functions $(x_s, s \in V)$ and the pairwise functions $(x_s x_t, (s, t) \in E)$. The vector of sufficient statistics takes the form:

$$
\phi(x) := (x_s, s \in V; x_s x_t, (s, t) \in E) \in \mathbb{R}^{|V| + |E|}.
$$

The associated mean parameters correspond to particular marginal probabilities, associated with nodes and edges of the graph G as

$$
\mu_s = \mathbb{E}[X_s] = \mathbb{P}[X_s = 1] \text{ for all } s \in V,
$$

and

$$
\mu_{st} = \mathbb{E}[X_s X_t] = \mathbb{P}[(X_s, X_t) = (1,1)] \text{ for all } (s, t) \in E.
$$

Consequently, the mean parameter vector $\mu \in \mathbb{R}^{|V| + |E|}$ consists of marginal probabilities over singletons (μ_s), and pairwise marginals over variable pairs on graph edges (μ_{st}). The set M consists of the convex hull of ${\phi(x) \mid x \in \{0, 1\}^m}$, where ϕ is given in Equation (3.30). In probabilistic terms, the set M corresponds to the set of all singleton and pairwise marginal probabilities that can be realized by some distribution over $(X_1, \ldots, X_m) \in \{0, 1\}^m$. In the polyhedral combinatorics literature, this set is known as the correlation polytope, or the cut polytope [69, 187].

Roadmap

- Two families of approximate inference algorithms
 - Loopy belief propagation (sum-product)
 - Mean-field approximation
- Are there some connections of these two approaches?
- We will re-exam them from a unified point of view based on the variational principle:
 - Loop BP: outer approximation
 - Mean-field: inner approximation
Variational Methods

- “Variational”: fancy name for optimization-based formulations
 - i.e., represent the quantity of interest as the solution to an optimization problem
 - approximate the desired solution by relaxing/approximating the intractable optimization problem

- Examples:
 - Courant-Fischer for eigenvalues: \[\lambda_{\text{max}}(A) = \max_{\|x\|_2=1} x^T A x \]
 - Linear system of equations: \[A x = b, A \succ 0, x^* = A^{-1} b \]
 - variational formulation:
 \[x^* = \arg\min_x \left\{ \frac{1}{2} x^T A x - b^T x \right\} \]
 - for large system, apply conjugate gradient method

Inference Problems in Graphical Models

- Undirected graphical model (MRF):
 \[p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C) \]

- The quantities of interest:
 - marginal distributions: \[p(x_i) = \sum_{x_j, j \neq i} p(x) \]
 - normalization constant (partition function): \[Z \]

- Question: how to represent these quantities in a variational form?
 - Use tools from (1) exponential families; (2) convex analysis
Exponential Families

- Canonical parameterization
 \[p_{\theta}(x_1, \ldots, x_m) = \exp \left\{ \theta^T \phi(x) - A(\theta) \right\} \]

 Canonical Parameters **Sufficient Statistics** **Log partition Function**

- Log normalization constant:
 \[A(\theta) = \log \int \exp \{ \theta^T \phi(x) \} dx \]
 - it is a convex function (Prop 3.1)

- Effective canonical parameters:
 \[\Omega := \left\{ \theta \in \mathbb{R}^d | A(\theta) < +\infty \right\} \]

Graphical Models as Exponential Families

- Undirected graphical model (MRF):
 \[p(x; \theta) = \frac{1}{Z(\theta)} \prod_{C \in C} \psi(x_C; \theta_C) \]

- MRF in an exponential form:
 \[p(x; \theta) = \exp \left\{ \sum_{C \in C} \log \psi(x_C; \theta_C) - \log Z(\theta) \right\} \]
 - \(\log \psi(x_C; \theta_C) \) can be written in a linear form after some parameterization
Example: Gaussian MRF

- Consider a zero-mean multivariate Gaussian distribution that respects the Markov property of a graph
 - Hammersley-Clifford theorem states that the precision matrix $\Lambda = \Sigma^{-1}$ also respects the graph structure

![Graphical Model](image)

- Gaussian MRF in the exponential form
 $$p(x) = \exp\left\{ \frac{1}{2} \left(\Theta, xx^T - A(\Theta) \right) \right\}, \text{where } \Theta = -\Lambda$$
- Sufficient statistics are $\{x_s^2, s \in V; x_s x_t, (s, t) \in E\}$

Example: Discrete MRF

- Indicators: $\mathbb{I}_j(x_s) = \begin{cases} 1 & \text{if } x_s = j \\ 0 & \text{otherwise} \end{cases}$
- Parameters: $\theta_s = \{\theta_{s;j}, j \in \mathcal{X}_s\}$, $\theta_{st} = \{\theta_{st;jk}, (j, k) \in \mathcal{X}_s \times \mathcal{X}_t\}$
- In exponential form
 $$p(x; \theta) \propto \exp \left\{ \sum_{s \in V} \sum_j \theta_{s;j} \mathbb{I}_j(x_s) + \sum_{(s, t) \in E} \theta_{st;jk} \mathbb{I}_j(x_s) \mathbb{I}_k(x_t) \right\}$$
Why Exponential Families?

- Computing the expectation of sufficient statistics (mean parameters) given the canonical parameters yields the marginals

\[\mu_{s,j} = \mathbb{E}_p[\mathbb{I}_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in \mathcal{X}_s, \]

\[\mu_{st,jk} = \mathbb{E}_p[\mathbb{I}_{st,jk}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j, k) \in \mathcal{X}_s \times \mathcal{X}_t. \]

- Computing the normalizer yields the log partition function

\[\log Z(\theta) = A(\theta) \]

Computing Mean Parameter: Bernoulli

- A single Bernoulli random variable

\[p(x; \theta) = \exp\{\theta x - A(\theta)\}, x \in \{0, 1\}, A(\theta) = \log(1 + e^\theta) \]

- Inference = Computing the mean parameter

\[\mu(\theta) = \mathbb{E}_\theta[X] = 1 \cdot p(X = 1; \theta) + 0 \cdot p(X = 0; \theta) = \frac{e^\theta}{1 + e^\theta} \]

- Want to do it in a variational manner: cast the procedure of computing mean (summation) in an optimization-based formulation
Conjugate Dual Function

- Given any function \(f(\theta) \), its conjugate dual function is:
 \[
 f^*(\mu) = \sup_{\theta} \{ \langle \theta, \mu \rangle - f(\theta) \}
 \]

- Conjugate dual is always a convex function: point-wise supremum of a class of linear functions

Dual of the Dual is the Original

- Under some technical condition on \(f \) (convex and lower semi-continuous), the dual of dual is itself:
 \[
 f^\ast = (f^\ast)^\ast
 \]
 \[
 f(\theta) = \sup_{\mu} \{ \langle \theta, \mu \rangle - f^\ast(\mu) \}
 \]

- For log partition function
 \[
 A(\theta) = \sup_{\mu} \{ \langle \theta, \mu \rangle - A^\ast(\mu) \}, \quad \theta \in \Omega
 \]

- The dual variable \(\mu \) has a natural interpretation as the mean parameters
Computing Mean Parameter: Bernoulli

- The conjugate $A^*(\mu) := \sup_{\theta \in \mathbb{R}} \{\mu \theta - \log[1 + \exp(\theta)]\}$
- Stationary condition $\mu = \frac{e^\theta}{1 + e^\theta}$ ($\mu = \nabla A(\theta)$)
- If $\mu \in (0, 1)$, $\theta(\mu) = \log \left(\frac{\mu}{1 - \mu}\right)$, $A^*(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu)$
- If $\mu \not\in [0, 1]$, $A^*(\mu) = +\infty$
- We have $A^*(\mu) = \begin{cases} \mu \log \mu + (1 - \mu) \log(1 - \mu) & \text{if } \mu \in [0, 1] \\ +\infty & \text{otherwise.} \end{cases}$
- The variational form: $A(\theta) = \max_{\mu \in [0, 1]} \{\mu \cdot \theta - A^*(\mu)\}$
- The optimum is achieved at $\mu(\theta) = \frac{e^\theta}{1 + e^\theta}$. This is the mean!

Remark

- The last few identities are not coincidental but rely on a deep theory in general exponential family.
 - The dual function is the negative entropy function
 - The mean parameter is restricted
 - Solving the optimization returns the mean parameter and log partition function

- Next step: develop this framework for general exponential families/graphical models.

- However,
 - Computing the conjugate dual (entropy) is in general intractable
 - The constrain set of mean parameter is hard to characterize
 - Hence we need approximation
Computation of Conjugate Dual

- Given an exponential family
 \[p(x_1, \ldots, x_m; \theta) = \exp \left\{ \sum_{i=1}^{d} \theta_i \phi_i(x) - A(\theta) \right\} \]

- The dual function
 \[A^*(\mu) := \sup_{\theta \in \Omega} \{ \langle \mu, \theta \rangle - A(\theta) \} \]

- The stationary condition: \(\mu - \nabla A(\theta) = 0 \)

- Derivatives of \(A \) yields mean parameters
 \[\frac{\partial A}{\partial \theta_i}(\theta) = \mathbb{E}_\theta[\phi_i(X)] = \int \phi_i(x)p(x; \theta) \, dx \]

- The stationary condition becomes \(\mu = \mathbb{E}_\theta[\phi(X)] \)

- Question: for which \(\mu \in \mathbb{R}^d \) does it have a solution \(\theta(\mu) \)?

Computation of Conjugate Dual

- Let’s assume there is a solution \(\theta(\mu) \) such that \(\mu = \mathbb{E}_{\theta(\mu)}[\phi(X)] \)

- The dual has the form
 \[A^*(\mu) = \langle \theta(\mu), \mu \rangle - A(\theta(\mu)) \]
 \[= \mathbb{E}_{\theta(\mu)} [\langle \theta(\mu), \phi(X) \rangle - A(\theta(\mu))] \]
 \[= \mathbb{E}_{\theta(\mu)} [\log p(X; \theta(\mu))] \]

- The entropy is defined as
 \[H(p(x)) = -\int p(x) \log p(x) \, dx \]

- So the dual is \(A^*(\mu) = -H(p(x; \theta(\mu)) \) when there is a solution \(\theta(\mu) \)
The second question is somewhat more delicate: to begin, note that our initially depending on whether or not the exponential family is minimal.

Observe from Equation (3.41b) that the second-order partial derivatives can be proven in an entirely analogous manner.

This condition implies var\(\mu\) is, the set\(\Omega\) is equal to the covariance element \(\text{cov}(\mu)\).

The set of all realizable mean parameters \(M\) and \(\Omega\) define a vector of mean parameters \(\theta\) from the canonical parameters \(\alpha\), and \(\Omega\) to its associated vector of mean parameters \(\theta\). This condition implies strict convexity [112].

The answer to the first question is relatively straightforward, essentially depending on whether or not the exponential family is minimal.

• The dual function is implicitly defined:

\[
\begin{align*}
\mu &\rightarrow (\nabla A)^{-1} \theta(\mu) \rightarrow -H(p_{\theta(\mu)}) \rightarrow A^*(\mu)
\end{align*}
\]

• Solving the inverse mapping \(\mu = \mathbb{E}_\theta[\phi(X)]\) for canonical parameters \(\theta(\mu)\) is nontrivial.

• Evaluating the negative entropy requires high-dimensional integration (summation).

• Question: for which \(\mu \in \mathbb{R}^d\) does it have a solution \(\theta(\mu)\) i.e., the domain of \(A^*(\mu)\), the ones in marginal polytope!

For any distribution \(p(x)\) and a set of sufficient statistics \(\phi(x)\), define a vector of mean parameters

\[
\mu_i = \mathbb{E}_p[\phi_i(X)] = \int \phi_i(x)p(x)\,dx
\]

• \(p(x)\) is not necessarily an exponential family.

• The set of all realizable mean parameters

\[
\mathcal{M} := \{\mu \in \mathbb{R}^d \mid \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu\}.
\]

• It is a convex set.

• For discrete exponential families, this is called marginal polytope.
Convex Polytope

- Convex hull representation

\[\mathcal{M} = \{ \mu \in \mathbb{R}^d \mid \sum_{x \in \mathcal{X}^n} \phi(x)p(x) = \mu, \text{ for some } p(x) \geq 0, \sum_{x \in \mathcal{X}^n} p(x) = 1 \} \]

\[\triangleq \text{conv} \{ \phi(x), x \in \mathcal{X}^m \} \]

- Half-plane representation
 - Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized by a finite collection of linear inequality constraints

\[\mathcal{M} = \{ \mu \in \mathbb{R}^d | \mu^T \mu \geq b_j, \ \forall j \in \mathcal{J} \} \]

where \(|\mathcal{J}|\) is finite.

Example: Two-node Ising Model

- Sufficient statistics:

\[\phi(x) := (x_s, s \in V; x_s x_t, (s, t) \in E) \in \mathbb{R}^{|V|+|E|} \]

- Mean parameters:

\[\mu_s = E_{\phi}[X_s] = P[X_s = 1] \text{ for all } s \in V, \text{ and} \]

\[\mu_{st} = E_{\phi}[X_s X_t] = P[(X_s, X_t) = (1, 1)] \text{ for all } (s, t) \in E. \]

- Two-node Ising model
 - Convex hull representation

\[\text{conv}\{ (0,0,0), (1,0,0), (0,1,0), (1,1,1) \} \]

- Half-plane representation

\[\begin{align*}
\mu_1 & \geq \mu_{12} \\
\mu_2 & \geq \mu_{12} \\
\mu_{12} & \geq 0 \\
1 + \mu_{12} & \geq \mu_1 + \mu_2
\end{align*} \]
Marginal Polytope for General Graphs

- Still doable for connected binary graphs with 3 nodes: 16 constraints
- For tree graphical models, the number of half-planes (facet complexity) grows only linearly in the graph size
- General graphs?
 - extremely hard to characterize the marginal polytope

Variational Principle (Theorem 3.4)

- The dual function takes the form
 \[A^*(\mu) = \begin{cases}
 -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^o \\
 +\infty & \text{if } \mu \notin \overline{\mathcal{M}}.
 \end{cases} \]
 - \(\theta(\mu)\) satisfies \(\mu = \mathbb{E}_{\theta(u)}[\phi(X)]\)
 - The log partition function has the variational form
 \[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \} \]
 - For all \(\theta \in \Omega\), the above optimization problem is attained uniquely at \(\mu(\theta) \in \mathcal{M}^o\) that satisfies
 \[\mu(\theta) = \mathbb{E}_{\theta}[\phi(X)] \]
Example: Two-node Ising Model

- The distribution \(p(x; \theta) \propto \exp(\theta_1 x_1 + \theta_2 x_2 + \theta_{12} x_{12}) \)
- Sufficient statistics \(\hat{\phi}(x) = \{x_1, x_2, x_{12}\} \)
- The marginal polytope is characterized by
 \[
 \begin{align*}
 &\mu_1 \geq \mu_{12} \\
 &\mu_2 \geq \mu_{12} \\
 &\mu_{12} \geq 0 \\
 &1 + \mu_{12} \geq \mu_1 + \mu_2
 \end{align*}
 \]
- The dual has an explicit form
 \[
 A^*(\mu) = \mu_{12} \log \mu_{12} + (\mu_1 - \mu_{12}) \log(\mu_1 - \mu_{12}) + (\mu_2 - \mu_{12}) \log(\mu_2 - \mu_{12}) + (1 + \mu_{12} - \mu_1 - \mu_2) \log(1 + \mu_{12} - \mu_1 - \mu_2)
 \]
- The variational problem \(A(\theta) = \max_{(\mu_1, \mu_2, \mu_{12}) \in \mathcal{M}} \{\theta_1 \mu_1 + \theta_2 \mu_2 + \theta_{12} \mu_{12} - A^*(\mu)\} \)
- The optimum is attained at
 \[
 \mu_1(\theta) = \frac{\exp(\theta_1) + \exp(\theta_1 + \theta_2 + \theta_{12})}{1 + \exp(\theta_1) + \exp(\theta_2) + \exp(\theta_1 + \theta_2 + \theta_{12})}
 \]

Variational Principle

- Exact variational formulation
 \[
 A(\theta) = \sup_{\mu \in \mathcal{M}} \{\theta^T \mu - A^*(\mu)\}
 \]
 - \(\mathcal{M} \): the marginal polytope, difficult to characterize
 - \(A^* \): the negative entropy function, no explicit form
- Mean field method: non-convex inner bound and exact form of entropy
- Bethe approximation and loopy belief propagation: polyhedral outer bound and non-convex Bethe approximation
Mean Field Approximation

Tractable Subgraphs

- Definition: A subgraph F of the graph G is *tractable* if it is feasible to perform exact inference

- Example:

 $\Omega := \{ \theta \in \mathbb{R}^d | A(\theta) < +\infty \}$

 $\Omega(F_0) := \{ \theta \in \Omega | \theta_{(s,t)} = 0, \forall (s, t) \in E \}$

 $\Omega(T) := \{ \theta \in \Omega | \theta_{(s,t)} = 0 \ \forall (s, t) \notin E(T) \}$
Mean Field Methods

- For an exponential family with sufficient statistics ϕ defined on graph G, the set of realizable mean parameter set
 $$\mathcal{M}(G; \phi) := \{ \mu \in \mathbb{R}^d \mid \exists \theta \text{ s.t. } \mathbb{E}_\theta[\phi(X)] = \mu \}$$
- For a given tractable subgraph F, a subset of mean parameters of interest
 $$\mathcal{M}(F; \phi) := \{ \tau \in \mathbb{R}^d \mid \tau = \mathbb{E}_\theta[\phi(X)] \text{ for some } \theta \in \Omega(F) \}$$
- Inner approximation $\mathcal{M}(F; \phi)^\circ \subseteq \mathcal{M}(G; \phi)^\circ$
- Mean field solves the relaxed problem
 $$\max_{\tau \in \mathcal{M}_F(G)} \{ \langle \tau, \theta \rangle - A^*_F(\tau) \}$$
 - $A^*_F = A^*|_{\mathcal{M}_F(G)}$ is the exact dual function restricted to $\mathcal{M}_F(G)$

Example: Naïve Mean Field for Ising Model

- Ising model in $\{0,1\}$ representation
 $$p(x) \propto \exp \left\{ \sum_{s \in V} x_s \theta_s + \sum_{(s,t) \in E} x_s x_t \theta_{st} \right\}$$
- Mean parameters
 $$\mu_s = \mathbb{E}_p[X_s] = \mathbb{P}[X_s = 1] \text{ for all } s \in V, \text{ and}$$
 $$\mu_{st} = \mathbb{E}_p[X_s X_t] = \mathbb{P}[(X_s, X_t) = (1,1)] \text{ for all } (s,t) \in E.$$
- For fully disconnected graph F,
 $$\mathcal{M}_F(G) := \{ \tau \in \mathbb{R}^{|V|+|E|} \mid 0 \leq \tau_s \leq 1, \forall s \in V; \tau_{st} = \tau_s \tau_t, \forall (s,t) \in E \}$$
- The dual decomposes into sum, one for each node
 $$A^*_F(\tau) = \sum_{s \in V} [\tau_s \log \tau_s + (1 - \tau_s) \log(1 - \tau_s)]$$
Example: Naïve Mean Field for Ising Model

- Mean field problem

\[A(\theta) \geq \max_{(\tau_1, \ldots, \tau_m) \in [0,1]^m} \left\{ \sum_{s \in V} \theta_s \tau_s + \sum_{(s,t) \in E} \theta_{st} \tau_s \tau_t - A^*_{F}(\tau) \right\} \]

- The same objective function as in free energy based approach

- The naïve mean field update equations

\[\tau_s \leftarrow \sigma \left(\theta_s + \sum_{t \in N(s)} \theta_{st} \tau_t \right) \]

- Also yields lower bound on log partition function

Geometry of Mean Field

- Mean field optimization is always non-convex for any exponential family in which the state space \(\mathcal{X}^m \) is finite

- Recall the marginal polytope is a convex hull

\[\mathcal{M}(G) = \text{conv} \{ \phi(e); e \in \mathcal{X}^m \} \]

- \(\mathcal{M}_F(G) \) contains all the extreme points
 - If it is a strict subset, then it must be non-convex

- Example: two-node Ising model

\[\mathcal{M}_F(G) = \{ 0 \leq \tau_1 \leq 1, 0 \leq \tau_2 \leq 1, \tau_{12} = \tau_1 \tau_2 \} \]

- It has a parabolic cross section along \(\tau_1 = \tau_2 \), hence non-convex
Bethe Approximation and Sum-Product

Sum-Product/Belief Propagation Algorithm

- **Message passing rule:**
 \[M_{ts}(x_s) \leftarrow \kappa \sum_{x_t'} \left\{ \psi_{st}(x_s, x_t') \psi_t(x_t') \prod_{u \in N(t) \setminus s} M_{ut}(x_t') \right\} \]

- **Marginals:**
 \[\mu_s(x_s) = \kappa \psi_s(x_s) \prod_{t \in N(s)} M_{ts}^*(x_s) \]

- **Exact** for trees, but **approximate** for loopy graphs (so called loopy belief propagation)

- **Question:**
 - How is the algorithm on trees related to variational principle?
 - What is the algorithm doing for graphs with cycles?
Tree Graphical Models

- Discrete variables $X_s \in \{0, 1, \ldots, m_s - 1\}$ on a tree $T = (V, E)$
- Sufficient statistics:
 \[I_j(x_s) \quad \text{for } s = 1, \ldots, n, \quad j \in X_s \]
 \[I_{jk}(x_s, x_t) \quad \text{for } (s, t) \in E, \quad (j, k) \in X_s \times X_t \]
- Exponential representation of distribution:
 \[p(x; \theta) \propto \exp\left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s, t) \in E} \theta_{st}(x_s, x_t) \right\} \]
 where $\theta_s(x_s) := \sum_{j \in X_s} I_{jk}(x_s)$ (and similarly for $\theta_{st}(x_s, x_t)$)
- Mean parameters are marginal probabilities:
 \[\mu_{s:j} = \mathbb{E}_p[I_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in X_s, \quad \mu_s(x_s) = \sum_{j \in X_s} \mu_{s:j} I_j(x_s) = \mathbb{P}(X_s = x_s) \]
 \[\mu_{st:j,k} = \mathbb{E}_p[I_{st:j,k}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j, k) \in X_s \times X_t \]
 \[\mu_{st}(x_s, x_t) = \sum_{(j, k) \in X_s \times X_t} \mu_{st:j,k} I_{jk}(x_s, x_t) = \mathbb{P}(X_s = x_s, X_t = x_t) \]

Marginal Polytope for Trees

- Recall marginal polytope for general graphs
 \[\mathcal{M}(G) = \{ \mu \in \mathbb{R}^d \mid \exists p \text{ with marginals } \mu_{s:j}, \mu_{st:j,k} \} \]
- By junction tree theorem (see Prop. 2.1 & Prop. 4.1)
 \[\mathcal{M}(T) = \left\{ \mu \geq 0 \mid \sum_{x_s} \mu_s(x_s) = 1, \sum_{x_t} \mu_{st}(x_s, x_t) = \mu_s(x_s) \right\} \]
- In particular, if $\mu \in \mathcal{M}(T)$, then
 \[p_\mu(x) := \prod_{s \in V} \mu_s(x_s) \prod_{(s, t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}, \]
 has the corresponding marginals
Decomposition of Entropy for Trees

- For trees, the entropy decomposes as

\[H(p(x; \mu)) = - \sum_x p(x; \mu) \log p(x; \mu) \]

\[= \sum_{s \in V} \left(- \sum_{s_a} \mu_s(x_s) \log \mu_s(x_s) \right) - \sum_{(s,t) \in E} \left(\sum_{s_a,s_t} \mu_{st}(x_s,x_t) \log \frac{\mu_{st}(x_s,x_t)}{\mu_s(x_s)\mu_t(x_t)} \right) \]

\[= \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \]

- The dual function has an explicit form \(A^*(\mu) = -H(p(x; \mu)) \)

Exact Variational Principle for Trees

- Variational formulation

\[A(\theta) = \max_{\mu \in \mathcal{M}(T)} \left\{ \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \right\} \]

- Assign Lagrange multiplier \(\lambda_{s,s} \) for the normalization constraint \(C_{s,s}(\mu) := 1 - \sum_{x_s} \mu_s(x_s) = 0 \); and \(\lambda_{t,s} (x_s; \mu) := \mu_s(x_s) - \sum_{x_t} \mu_{st}(x_s,x_t) = 0 \)

- The Lagrangian has the form

\[L(\mu, \lambda) = \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) + \sum_{s \in V} \lambda_{s,s} C_{s,s}(\mu) \]

\[+ \sum_{(s,t) \in E} \left[\sum_{x_t} \lambda_{t,s}(x_t) C_{st}(x_t) + \sum_{x_s} \lambda_{t,s}(x_s) C_{ts}(x_s) \right] \]
Lagrangian Derivation

- Taking the derivatives of the Lagrangian w.r.t. \(\mu_s \) and \(\mu_{st} \)

\[
\frac{\partial L}{\partial \mu_s(x_s)} = \theta_s(x_s) - \log \mu_s(x_s) + \sum_{t \in \mathcal{N}(s)} \lambda_{ts}(x_s) + C
\]

\[
\frac{\partial L}{\partial \mu_{st}(x_s, x_t)} = \theta_{st}(x_s, x_t) - \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} - \lambda_{ts}(x_s) - \lambda_{st}(x_t) + C'
\]

- Setting them to zeros yields

\[
\mu_s(x_s) \propto \exp \{ \theta_s(x_s) \} \prod_{t \in \mathcal{N}(s)} \exp \{ \lambda_{ts}(x_s) \}
\]

\[
\mu_{s}(x_s, x_t) \propto \exp \{ \theta_s(x_s) + \theta_t(x_t) + \theta_{st}(x_s, x_t) \} \times \prod_{u \in \mathcal{N}(s) \setminus t} \exp \{ \lambda_{us}(x_s) \} \prod_{v \in \mathcal{N}(t) \setminus s} \exp \{ \lambda_{vt}(x_t) \}
\]

Lagrangian Derivation (continued)

- Adjusting the Lagrange multipliers or messages to enforce

\[
C_{ts}(x_s; \mu) := \mu_s(x_s) - \sum_{x_t} \mu_{st}(x_s, x_t) = 0
\]

yields

\[
M_{ts}(x_s) \leftarrow \sum_{x_t} \exp \{ \theta_t(x_t) + \theta_{st}(x_s, x_t) \} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t)
\]

- Conclusion: the message passing updates are a Lagrange method to solve the stationary condition of the variational formulation.
BP on Arbitrary Graphs

- Two main difficulties of the variational formulation

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{\theta^T \mu - A^*(\mu)\} \]

- The marginal polytope \(\mathcal{M} \) is hard to characterize, so let’s use the tree-based outer bound

\[\mathcal{L}(G) = \left\{ \tau \geq 0 \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \right\} \]

These locally consistent vectors \(\tau \) are called pseudo-marginals.

- Exact entropy \(-A^*(\mu)\) lacks explicit form, so let’s approximate it by the exact expression for trees

\[-A^*(\tau) \approx H_{\text{Bethe}}(\tau) := \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st})\]

Bethe Variational Problem (BVP)

- Combining these two ingredient leads to the Bethe variational problem (BVP):

\[
\max_{\tau \in \mathcal{L}(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\}.
\]

- A simple structured problem (differentiable & constraint set is a simple convex polytope)

- Loopy BP can be derived as an iterative method for solving a Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for tree graphs
Geometry of BP

- Consider the following assignment of pseudo-marginals
 - Can easily verify $\tau \in L(G)$
 - However, $\tau \not\in M(G)$ (need a bit more work)

- Tree-based outer bound
 - For any graph, $M(G) \subseteq L(G)$
 - Equality holds if and only if the graph is a tree

- Question: does solution to the BVP ever fall into the gap?
 - Yes, for any element of outer bound $L(G)$, it is possible to construct a distribution with it as a BP fixed point (Wainwright et. al. 2003)

Inexactness of Bethe Entropy Approximation

- Consider a fully connected graph with
 \[
 \mu_s(x_s) = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \quad \text{for } s = 1, 2, 3, 4
 \]
 \[
 \mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E.
 \]

- It is globally valid: $\tau \in M(G)$; realized by the distribution that places mass 1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

- $H_{\text{Bethe}}(\mu) = 4\log 2 - 6\log 2 = -2\log 2 < 0$,
- $-A^*(\mu) = \log 2 > 0$.
Remark

- This connection provides a principled basis for applying the sum-product algorithm for loopy graphs

- However,
 - Although there is always a fixed point of loopy BP, there is no guarantees on the convergence of the algorithm on loopy graphs
 - The Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the global optimum
 - Generally, no guarantees that $A_{\text{Bethe}}(\theta)$ is a lower bound of $A(\theta)$

- Nevertheless,
 - The connection and understanding suggest a number of avenues for improving upon the ordinary sum-product algorithm, via progressively better approximations to the entropy function and outer bounds on the marginal polytope (Kikuchi clustering)

Summary

- Variational methods in general turn inference into an optimization problem via exponential families and convex duality

- The exact variational principle is intractable to solve; there are two distinct components for approximations:
 - Either inner or outer bound to the marginal polytope
 - Various approximation to the entropy function

- **Mean field**: non-convex inner bound and exact form of entropy
- **BP**: polyhedral outer bound and non-convex Bethe approximation
- **Kikuchi and variants**: tighter polyhedral outer bounds and better entropy approximations (Yedidia et. al. 2002)