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Roadmap o

e Two families of approximate inference algorithms
e Loopy belief propagation (sum-product)
e Mean-field approximation

e Are there some connections of these two approaches?

e We will re-exam them from a unified point of view based on
the variational principle:

e Loop BP: outer approximation
e Mean-field: inner approximation




Variational Methods e°

e “Variational”: fancy name for optimization-based formulations

e i.e, represent the quantity of interest as the solution to an optimization
problem

e approximate the desired solution by relaxing/approximating the
intractable optimization problem

e Examples:

e Courant-Fischer for eigenvalues: Amax(A4) = max z7 Az
zll2=1

e Linear system of equations: Ax = b, A > 0, = A 1
variational formulation:

1
x* = arg min {—xTAac — bT:E}
x 2

for large system, apply conjugate gradient method

Inference Problems in Graphical Models o

e Undirected graphical model (MRF):
1
p(z) =~ IT ve(ze)

cec
e The quantities of interest:

e marginal distributions:  p(x;) = Z p(z)

e normalization constant (partition function): 7

e Question: how to represent these quantities in a variational
form?

e Use tools from (1) exponential families; (2) convex analysis
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Exponential Families o

e Canonical parameterization
polay, -+ ,xm) = exp ()To{;z') - A(()k
Canonical Parameters Sufficient Statistics Log partition Function
e Log normalization constant:
A(f) = log/exp{GTqﬁ(x)}dx
it is a convex function (Prop 3.1)
e Effective canonical parameters:
Q= {rJ € RYA()) < +r)c=}
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Graphical Models as Exponential Families 5

e Undirected graphical model (MRF):

p(x;0) = % I ¢(xc:6c)

ceC

e MREF in an exponential form:

p(x;0) = exp { > log(xc; fc) —log Z(9)}

ceC

e logv(xc;fc)can be written in a linear form after some parameterization




Example: Gaussian MRF o

e Consider a zero-mean multivariate Gaussian distribution that
respects the Markov property of a graph

e Hammersley-Clifford theorem states that the precision matrix A = 2*1
also respects the graph structure
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e Gaussian MRF in the exponential form
p(x) = exp {; (0,xx") — A(@)} ,where ® = —A

o Sufficient statistics are {x2,5 € V;x,xy, (s,t) € E}

Example: Discrete MRF e

Gst(ﬂfs,fﬂt)
ble)—, | o bslw) 1 ifws=j
Indicators: Ij(zs) = .
0 otherwise
Parameters: 0s = {0s,5,7 € Xs}

Ost = {ost;jka (]7k> € Xs X Xt}

e In exponential form

p(x;0) o exp Z Zes;jﬂj(xs) + Z Ost,jnl; (xs) g (zr)

s€V j (s,t)eE




Why Exponential Families? g

e Computing the expectation of sufficient statistics (mean
parameters) given the canonical parameters yields the
marginals

psii = Epll;(Xs)] =P[Xs = 4] Vj € A,
Hst;jk = Ep[ﬂst;jk(XsaXt)] = ]P)[XS =7J,Xt= k] V(],k) SRS ‘)(/‘t”'

e Computing the normalizer yields the log partition function

log Z(0) = A(0)

Computing Mean Parameter: Bernoulli .

e A single Bernoulli random variable @ 0
p(x;0) = exp{fz — A(B)},z € {0,1}, A(8) = log(1 + €%)

e Inference = Computing the mean parameter

69

1+ e

u(0) =Ep[X] =1-p(X =1;0) +0-p(X =0;0) =

e Want to do it in a variational manner: cast the procedure of
computing mean (summation) in an optimization-based
formulation
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Conjugate Dual Function g
e Given any function f(#), its conjugate dual function is:
f(n) = Sup {(0, 1) — f(6)}
f(0)
v Ao
e Conjugate dual is always a convex function: point-wise
supremum of a class of linear functions
[ X X J
0000
[ X K

Dual of the Dual is the Original o2

e Under some technical condition on f (convex and lower semi-
continuous), the dual of dual is itself:

f(0) =sup{{0, ) — f* (1)}

n

e For log partition function
A(0) = sup{(0, p) — A" ()}, 0
"

e The dual variable U4 has a natural interpretation as the mean
parameters




Computing Mean Parameter: Bernoulli .

e The conjugate A*(n) := sup {ud — log[l + exp(6)]}
0eR
0
e

e Stationary condition 4 (u=VA(®))

- 1+ éf

o 1 e (0.1), 00 =log () %) = ulog(u) + (1 - ) Tox(1 ~ )

o If p¢[0,1], A%(n) = +o0

log p+ (1 — p)log(l —p) if p € 0,1
e We have A*(M):{“Og” (1 —p)log(l —p) if p €0, 1]

+o00 otherwise.

e The variational form: A(6) = max,c1o,1] {p -0 — A* (1) }.
0

14¢ef

This is the mean!

13

e The optimum is achieved at u(0) =

Remark :

e The last few identities are not coincidental but rely on a deep
theory in general exponential family.
e The dual function is the negative entropy function
e The mean parameter is restricted

e Solving the optimization returns the mean parameter and log partition
function

e Next step: develop this framework for general exponential
families/graphical models.

e However,
e Computing the conjugate dual (entropy) is in general intractable
e The constrain set of mean parameter is hard to characterize
e Hence we need approximation




Computation of Conjugate Dual g

e Given an exponential family

d
p(T1,...,Tm;0) =exp {Z 0:0i(x) — A(@)}
=1
e The dual function

A (p) = sup {{u, 0) — A(0)}

e The stationary condition: px—VA@#) = 0

e Derivatives of A yields mean parameters

O80) = o)) = [ @tz ds

e The stationary condition becomes = Eg[¢(X)]

e Question: for which x € R? does it have a solution 6(y) ?

Computation of Conjugate Dual

e Let's assume there is a solution 6(u) such that 1 = Eg,) [¢(X)]

e The dual has the form

A'(p) = (O(n), 1) — A0 (1))
= Egp [(0(1n), (X)) — A(O(1)]
= Eg) [log p(X;0(u)]

e The entropy is defined as

H(p(z)) = — / p(z)log p(x) dz

e So the dual is A*(u) = —H (p(z; 9(1)) when there is a solution 0(p)




Complexity of Computing Conjugate Dual 5

e The dual function is implicitly defined:

J— -1 E(M) _ L A*
1 (VA) H(pg(u) A*(p)

e Solving the inverse mapping 1 = Eg[¢(X)] for canonical parameters
9(,“) is nontrivial

e Evaluating the negative entropy requires high-dimensional integration
(summation)

e Question: for which 1 € R?does it have a solution 8(u)? i.e.,
the domain of A*(u).

e the ones in marginal polytope!

Marginal Polytope o

e For any distribution p(z) and a set of sufficient statistics ¢ (),
define a vector of mean parameters

i = Eyfos ()] = [ 6i(a)pla) do
o p(x) is not necessarily an exponential family
e The set of all realizable mean parameters
d
M:={peR|Ips.t. Ep[o(X)] = p}.
e Itis a convex set

e For discrete exponential families, this is called marginal
polytope
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Convex Polytope o

e Convex hull representation
M= {jl- € ]Rd| Z d(x)pla) = p, for some p(x) = 0, Z ple) = 1}
reXm reXx™
= -:011\'{6)(.1'). xe .1’“’}
e Half-plane representation
e Minkowski-Weyl Theorem: any non-empty convex polytope can be
characterized by a finite collection of linear inequality constraints
b(z)
/ d) T . /
M= peR%a;p=>b; Vje Ty,
where | 7| is finite. \%‘
(aj, py = b;
eoo
o000
e0o00
: &
Example: Two-node Ising Model o

e Sufficient statistics:  ¢(z) := (25,5 € V; zsz, (5,t) € E) € RVIHEL

ps = Ep[X;] =P[X;=1] forall sV, and
pst = Ep[ X Xy]) = P[(Xs, Xy) = (1,1)] for all (s,t) € E.

e Mean parameters:

e Two-node Ising model X, X
e Convex hull representation Q—Q

COHV{(0,0,0),(1,0,0),(0,1,0),(1,1,1)} M2
e Half-plane representation

H12

12
0

p1+ e

VIV IV IV

0,100 H2

20
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Marginal Polytope for General Graphs

e Still doable for connected
binary graphs with 3 nodes:
16 constraints

e For tree graphical models,
the number of half-planes
(facet complexity) grows
only linearly in the graph
size

e General graphs?

e extremely hard to characterize
the marginal polytope

21

Variational Principle (Theorem 3.4) .

e The dual function takes the form

A() = —H(pp()) if peM°
: 400 if ¢ M.

o O(u) satisfies p1 = Egey)[o(X)]
e The log partition function has the variational form
A(0) = sup {87 — A* ()}
nem

e Forall § € Q, the above optimization problem is attained
uniquely at p(0) € M? that satisfies

1(0) = Eg[o(X)]

22
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Example: Two-node Ising Model o
% X1 X5

e The distribution p(x;0) o exp{6121 + 222 + 612212} Q—Q

o Sufficient statistics ¢(x) = {xy, 29, 7129}

M1
e The marginal polytope is characterized by p2

12
1+ 12

Hi2

H12
0

M1+ 2

VIV IV IV

e The dual has an explicit form

A" (p) = pazlog piz + (1 — paz) log(pn — pa2) + (p2 — pa2) log(pz — pa2)
+(1+ p12 — p1 — p2)log(1 + paz — p1 — p2)

[} The Var|at|0na| problem A(e) = max {91,111 + 92/142 + (912;112 — A*(H)}

{pn1,p2,p12}EM

e The optimum is attained at

111(0) = exp{01} + exp{01 + 02 + 612}
! 1+ exp{61} + exp{fa} + exp{61 + 02 + 012}

23

Variational Principle o

e Exact variational formulation

A0) = Sgﬁ{ﬂu — A% ()}

e M : the marginal polytope, difficult to characterize
° A*: the negative entropy function, no explicit form

e Mean field method: non-convex inner bound and exact form of
entropy

e Bethe approximation and loopy belief propagation: polyhedral
outer bound and non-convex Bethe approximation

24
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Mean Field Approximation

25

Tractable Subgraphs e

e Definition: A subgraph F of the graph G is tractable if it is
feasible to perform exact inference

e Example: 0= {ﬁ € RYA(0) < +oc-}

el T~
. (o]
Fo: 0 o T
(o] o (@]
o (@]
© O O

Q(Fy) = {0 € Qb = 0,Y(s,1) € E} QT) := {0 € b0y = 0 ¥(s,t) ¢ E(T)}

26
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Mean Field Methods e°

e For an exponential family with sufficient statistics ¢ defined
on graph G, the set of realizable mean parameter set

M(G;¢) = {pn € R | Ip s.t. Ep[p(X)] = pu}

e For a given tractable subgraph F, a subset of mean
parameters of interest

M(F;¢) == {1 € R? | 7 = Ey[¢(X)] for some 6 € Q(F)}

e Inner approximation M(F';¢)° C M(G;¢)°
e Mean field solves the relaxed problem
max 7,0) — A% (T
max{{7.0) — 43(7))
o AL = A*|MF(G) is the exact dual function restricted to Mz (G)

27

Example: Naive Mean Field for Ising Model 5

e Ising model in {0,1} representation

p(g}) X €xp {Z x50 + Z xs'xtest}

seV (s,t)eE
e Mean parameters
p 1O ZO 30
ps = Ep[X,] =P[X;=1] forallseV, and
4 5 6
et = B[ X X)) = P[(Xo, Xy) = (1,1)] for all (s,¢) € E. © © 0
e For fully disconnected graph F, o 9 9

Mp(G) :={r e RVHIE | 0 < 7, <1,Vs € V, 75y = 747, V(s,t) € E}

e The dual decomposes into sum, one for each node

A1) =) [relog7s + (1 — 75) log(1 — 7))
seV

28
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Example: Naive Mean Field for Ising Model o
e Mean field problem
A(9) > max Z Os7s + Z 05t — Ap(T)
(T15--.yTm ) €[0,1]™ v (sD)eE
e The same objective function as in free energy based
approach
e The naive mean field update equations
Ts o0 | 05+ Z 0s7y
teN(s)

e Also yields lower bound on log partition function
[ X X J
0000
[ X K
[ X
[ X J

Geometry of Mean Field

e Mean field optimization is always non-convex for any

exponential family in which the state space X™ is finite

e Recall the marginal polytope is a convex hull v'

M(G) = conv{p(e);e € X} ‘

e Mxr(G) contains all the extreme points

e Ifitis a strict subset, then it must be non-convex "

e Example: two-node Ising model

b(e)

.

Mp(@)={0<7 <1,0< 7 <1,75 =717}

e |t has a parabolic cross section along 71 = 72 , hence non-convex

30
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Bethe Approximation
and Sum-Product

31

Sum-Product/Belief Propagation Algorithm | ¢

e Message passing rule:

/ 5 _~
Mts(xS) K wst($57x;)wt(w;) Mut xt) \
St I i) g
e Marginals: /\ /N0
,us(xs = /{1/}5 xs H Mts xs

teEN(s)

e Exact for trees, but approximate for loopy graphs (so called
loopy belief propagation)

e Question:
e How is the algorithm on trees related to variational principle?
e What is the algorithm doing for graphs with cycles?

32
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Tree Graphical Models g

e Discrete variables X, € {0,1,...,ms —1}onatree T = (V,E)
Ij(xs) fors=1,...n, jeX,

e Sufficient statistics: _
Iip(zs, ) for(s,t) € E, (4, k)€ Xy x X,

e Exponential representation of distribution:

p(x;0) o exp{ZGs(xs)—i- Z Ost(zs, )}

seV (s,;)EE
where 0;(zs) := D e, Usiili(zs) (and similarly for Os¢(zs, zt))

e Mean parameters are marginal probabilitieS'

Hs;j = EP[HJ(XS)] =PX,=j] Vjed,, fs( Z sl (xs) = P(Xg = xy)
tstijr = Ep[Lste(Xs, Xp)] = P[X, = j, Xy = k] V(j,k) EX.€X,.
prse (s, 20) = Z Pstsjrlin(Ts, ) = P(Xs = a5, Xy = 34)
(4,k)EX x Xy
[ X X}
0000
[ X K
: e
Marginal Polytope for Trees o

e Recall marginal polytope for general graphs
M(G) = {u € R? | Ip with marginals sy Mstsjk b

e By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

M(T) = {/L >0 | Zﬂs(l’s) = 17Z/lst(xsafl;l,) = /15((1}3)}

e In particular, if © € M(T) , then

H/Ls 1:5) H fot x87xt))

X
seV (s, t)GE Mt t

has the corresponding marginals

34
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Decomposition of Entropy for Trees 5

e For trees, the entropy decomposes as

H(p(x;p) = =Y plw;p)logp(x; p)

T

Z ( - Z/Ae(%) logps(xs)) _

seV

Hs(ps)

C Y (X el ) log Lot )y

(st)EE  Ts,a phs (5 ) pe (1)

Is¢(pst), KL-Divergence

ZHS(ILLS)_ Z Ist(:u’st)

seV (s;t)eE

e The dual function has an explicit form A*(n) = —H (p(z; 1))

35

Exact Variational Principle for Trees o

e Variational formulation

A(0) = u?}\%@) {(9,/1) + Z Hq(ps) — Z Ist(/z,st)}

seV (s,t)eE

e Assign Lagrange multiplier A for the normalization constraint
Cys(p) =1 =32, ps(zs) = 0; and A¢s(z5) for each marginalization
constraint Ci,(zy; ) := ps(xs) — 3, pst (s, 1) = 0

e The Lagrangian has the form

[,(u, >‘) = <9~,/1> + Z Hs(/’»s) - Z Isl,(lllsl/) + Z )\55053(/1:)

seV (s,t)eE seV

+ Z [Z)\st(xt)csl,(:lﬂ) + Z)\ts(xs)CLs(m,s)]
(s,t)EE  xt Tg

36
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Lagrangian Derivation e

e Taking the derivatives of the Lagrangian w.r.t. tts and st

oL
= 0Os(xs) — log ps(xs) + Aes(zs) +C
Ty T ) ThEE) 3 du(a)
oL _ st (Ts, xt)

ost(ms, fEt) — log - )\ts(xs) - Ast(mt) + Cl

Opst (s, Tt) pos (zs) poe (1)

e Setting them to zeros yields

fs(ws) o< exp{fs(xs)} H exp{ s (2s)}

tGN(S) Mis(xs)

ps(xs,xt) o< exp {es(xs) + 0:(xt) + est(xmxt)} X

[T ep{tus@)} J[ exp{roelan)}

wEN (s)\t vEN(t)\s

37

Lagrangian Derivation (continued) | °

e Adjusting the Lagrange multipliers or messages to enforce
Crs(xs; ) := ps(xs) — 32, pst(s, v1) =0
yields

Mis(zs)  — > exp{0i(zt) +0se(xs,2)}  [[  Mue(ze)

Tt weN (t)\s

e Conclusion: the message passing updates are a Lagrange
method to solve the stationary condition of the variational
formulation

38
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BP on Arbitrary Graphs s

e Two main difficulties of the variational formulation

A0) = Sgﬁ{eT“ — A" ()}

e The marginal polytope M is hard to characterize, so let’s use the tree-
based outer bound

L(G) = {7’ >0 | ZTS(J?S) = 1,ert(xs,wt) = TS(IIZS)}

These locally consistent vectors T are called pseudo-marginals.

e Exact entropy —A*(u) lacks explicit form, so let's approximate it by the
exact expression for trees

_A*(T) ~ HBethe(T) = ZHS(TS) - Z Ist(Tst)-

seV (s,t)eE

39

Bethe Variational Problem (BVP) | :°

e Combining these two ingredient leads to the Bethe variational
problem (BVP):

wax {07+ Y i) = 3 Lt}
TEL(G) seV (s,t)EE

e A simple structured problem (differentiable & constraint set is a simple
convex polytope)

e Loopy BP can be derived as am iterative method for solving a
Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for
tree graphs

40

20



Geometry of BP 5

e Consider the following assignment of pseudo-marginals
o Can easily verify 7 € L(G) [gﬂ
e However, 7 ¢ M(G) (need a bit more work) [ o4 0_1}

e Tree-based outer bound

e For any graph, M(G) C L(G) [0.5] [0-4 0-1} [os]
e Equality holds if and only if the graph is a tree

e Question: does solution to the BVP ever fall / -\
into the gap?
e Yes, for any element of outer bound L(G), it is \ /
possible to construct a distribution with it as a
BP fixed point (Wainwright et. al. 2003) .

L(G)

41

Inexactness of Bethe Entropy Approximation o

e Consider a fully connected graph with

ps(zs) = [0.5 0.5] for s=1,2,3,4 1 4

05 0
p’st(xsm%'t) = |: 0 05:| v (S,t) c F. 5 3

o ltis globally valid: 7 € M(G); realized by the distribution that places
mass 1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

o Hpethe(t) = 4log2 — 6log2 = —2log2 < 0,
o —A*(u) =log2 > 0.

42
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Remark et

e This connection provides a principled basis for applying the
sum-product algorithm for loopy graphs

e However,

e Although there is always a fixed point of loopy BP, there is no
guarantees on the convergence of the algorithm on loopy graphs

e The Bethe variational problem is usually non-convex. Therefore, there
are no guarantees on the global optimum

o Generally, no guarantees that Apethe(6) is a lower bound of A(6)

e Nevertheless,

e The connection and understanding suggest a number of avenues for
improving upon the ordinary sum-product algorithm, via progressively
better approximations to the entropy function and outer bounds on the
marginal polytope (Kikuchi clustering)

43

Summary o2

e Variational methods in general turn inference into an optimization
problem via exponential families and convex duality

e The exact variational principle is intractable to solve; there are two
distinct components for approximations:

e Either inner or outer bound to the marginal polytope
e Various approximation to the entropy function

e Mean field: non-convex inner bound and exact form of entropy
e BP: polyhedral outer bound and non-convex Bethe approximation

e Kikuchi and variants: tighter polyhedral outer bounds and better
entropy approximations (Yedidia et. al. 2002)
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