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Recap .

e Loopy belief propagation (sum-product) algorithm is a method
to find the stationary point of Bethe free energy
e based on direct approximation of Gibbs free energy
e will revisit BP and Bethe approximation from another point of view later

e Today, we will look at another approximation inference
method based on restricting the family of approximation
distribution



Variational Methods o

e “Variational”: fancy name for optimization-based formulations

e i.e., represent the quantity of interest as the solution to an optimization
problem

e approximate the desired solution by relaxing/approximating the
intractable optimization problem

e Examples:

o Courant-Fischer for eigenvalues: Apax(A) = max ol Ax
lz|l2=1

o Linear system of equations: Ax = b, A > 0, * = A~ 1p
variational formulation:

1
x* = arg min {ixTA:E - bTa:}

for large system, apply conjugate gradient method



Inference Problems in Graphical Models o

e Undirected graphical model (MRF):

p(a) =  [] volzo)

cecC

e The quantities of interest:
e marginal distributions:  p(x;) = Z p(x)

e normalization constant (partition function): ./

e Question: how to represent these quantities in a variational
form?



Variational Formulation

KL(QIP)=|-Hy(X)- Y E, logyc(x.)

N /
hd

F(P,0) Gibbs Free Energy

+logZ

e F(P,P)=-logZ is a complicated function of true marginals and

hard to compute

e Idea: construct a F(P,Q) such that it has a nice functional form

of beliefs (approximate marginals) and easy to optimize

e approach 1: directly approximate with Ig(P,Q), e.g. Bethe approximation
F(P,Q) = F(P,Q) = Ggethe({4i(%i) }, {¢ij (i, 2;)})

e approach 2: restrict Q in a tractable class of distributions



Mean Field Method «°

B

KL(QIIP)=]-H ,(X)~- EEQ logy.(x.)+logZ

N /
hd

F(P,0) Gibbs Free Energy

e Restrict O for which Hp is feasible to compute

e exact objective to minimize
e tightened feasible set
e Yyields a lower bound on the log partition function log Z

e ()is a “simple” parameterized approximating distribution
e free parameters to tune are called variational parameters



Naive Mean Field

-

e Completely factorized variational distribution

g0 =] | g,(x)
S
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H, = _Ezqi(xi)logqi(xi)
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Naive Mean Field Free Energy
e Consider a pairwise Markov random field
v)oc || i) ] (i, m))
eV (i,j)EE
e Nailve mean field free energy
F(P, Q) GMF Z Z q'L xz d; 37] longg xzawj ZZ% €Lj long 37@
(i,j)EE xi,x; eV oz
+ 2. 2 aqi(w;)log gi(x;)
1€V ox;

e Use coordinate descent to optimize with respect to g
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Naive Mean Field for Ising Model |+
e |sing model in {0,1} representation % 3
p(x) xexpq >, xibi + >, x;xi0;; o—0—%
1€V (i,J)EE

e The true marginals are the mean parameters A

pi = plx; = 1) = Ep(x;)

e The naive mean field update equations

g <0 (97; + 2 9@ij>

JEN (i)

o q;:=qi(x; =1) = E,|z;] is the variational mean parameter at node i

the variational mean parameters are coupled among neighbors
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Derivation
G1MF Z Q'LQJ %] Z QZ
(i,J)EE eV
+) (gilogqi + (1 — gi)log(1 — g;))
i€V
dG
i\;F(q) =— Y g0i; — 0; +loggq; — log(1 — g;)
di FEN(4)

e Setting to zero gives us
0; + Z q;0;; = log 7 z
JEN() &
e That is the mean field equation

q; — 0 9+ZQ]’L]

JEN(7)
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Structured Mean Field °

e Mean field theory is general to any tractable sub-graphs
e Naive mean field is based on the fully unconnected sub-graph

e Variants based on structured sub-graphs can be derived, such
as trees, chains, and etc.

O 00 0O
O 00O0O
—p 0 0 0 OO
O 00 0O
O 00 OO
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Factorial HMM (Ghahramani & Jordan 97°) | ¢

e (Can be used to model multiple independent latent processes

e Exact inference is in general intractable (why?)
e Complexity: O(TMKM+1), which is exponential in the # of chains M



Structured Mean Field for Factorial HMM |

A

O Ve T, U
O O O

e Structured mean field approximation (with variational parameter \ )

M T
QUSH [N o TT @(st™ ) T @s:™ |8, )
m=1 t=2

e The variational entropy term decouples into sum: one term for each chain

e In contrast to completely factorized O, optimizing w.r.t. )\ needs to run
forward-backward algorithm as a subroutine
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Summary so far :

e Mean field methods minimizes KL divergence of variational
distribution and target distribution by restricting the class of
variational distributions

e It yields a lower bound of the log partition function, hence is a
popular method to implement the approximate E-step of EM
algorithm
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Variational Principle
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Inference Problems in Graphical Models o

e Undirected graphical model (MRF):
1
p(z) = - 1 vo(ze)

e The quantities of interest:

e marginal distributions:  p(x;) = Z p(x)
w]aj#'l’

e normalization constant (partition function): /

e Question: how to represent these quantities in a variational
form?

e Use tools from (1) exponential families; (2) convex analysis
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Exponential Families o

e Canonical parameterization (w.r.t measure /)

0" o(x) - .4(.")]&
/

Canonical Parameters Sufficient Statistics Log partition Function

pelxy, -

e Log normalization constant:

A(9) = log / exp{0’ ¢(x)}dx

it is a convex function (Prop 3.1 in Wainwright & Jordan)
e Effective canonical parameters:

Q= {rﬂ e RYA(0) < +r:c-}

e Regular family: () is an open set.
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Family X v log p(x;0) A(9)
Bernoulli {0,1} Counting Oz — A(6) log[1 4 exp(0)]
Gaussian R Lebesgue 01 + 0222 — A(H) %[91 + log 37;2]
Exponential (0, +00) Lebesgue 0(—x) — A(0) —log 6
Poisson {0,1,2...} Counting Ox — A(0) exp(0)
h(z) =1/x!




Graphical Models as Exponential Families o

e Undirected graphical model (MRF):

p(x;0) H V(xc;bo)

CEC

e MRF in an exponential form:

p(x;6) = exp { > log(xc; o) — log 2(6’)}

ceC

e logy(xc;0c)can be written in a linear form after some
reparameterization

e Sufficient statistics must respect the structure of graph
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Example: Hidden Markov Model

o3 (22, x3)

(114 &

U1 Y2 Y3 Ya Ys
e \What are the sufficient statistics?

L.(zs) = 1 ifxs=7 Ly (a,1) = 1 ifxg=35 and z;=k,
SIS 0 otherwise, TR 0 otherwise,

e \What are the corresponding canonical parameters?
Ost.ji =log P(xy =k | z5 = J) 0s.; =log P(ys | x5 = J)

e A compact form

Hst(xsaxt) — ngt;jkﬂst;jk(aj&ajt) — logP(a:t | ajs)
7k



Example: Discrete MRF 5

£

1 ifxs =9
Ot (:ES, xt) Indicators: I(xs) = ® "7
0. (3375)ﬂ4 i N 0, (:US) 0 otherwise
O—O—0O0—~0
O—0O0—0O0—0 Parameters: 0s ={0s.5,7 € Xs}
O—O—O—0 Ost = {0st;5, (4, k) € Xs X At}
O—O0——0O——=0

Compact form:  0s(xs) := >, 05,51 ()
est(af&xt) = Zj,]f est;jkﬂj(xs)ﬂk(xt:

e In exponential form

p(x;0) o exp{ Z Os(xs) + Z Ost(zs,xt)}
seVv (s,t)eE
e Why is this representation is useful? How is it related to inference

problem?
e Computing the expectation of sufficient statistics (mean parameters)
given the canonical parameters yields the marginals
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Example: Gaussian MRF :

o

e (Consider a zero-mean multivariate Gaussian distribution that
respects the Markov property of a graph

e Hammersley-Clifford theorem states that the precision matrix A = Z_l
also respects the graph structure

1 2 |
:
:
3 4
5 ;
4 —
(a) (b)

e (Gaussian MRF in exponential form

p(x) = exp {% (0, xxT) — A(@)}  where © = —A

e Sufficient statistics are {:Ci, s e Vixsay, (S, t) c E}
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Computing Mean Parameter: Bernoulli °

e A single Bernoulli random variable
p(z;0) = exp{fx — A(9)},z € {0,1}, A(6) = log(1 + €?)

e Computing its mean parameter from canonical parameter:

0

p=px=1)=E[z] = T of

e Want to do it in a variational manner: cast the procedure of
computing mean in an optimization-based formulation



Conjugate Dual Function :

-

e Given any function f(#), its conjugate dual function is:

fr(p) = Sgp{<9,u> — f(0)}

e Conjugate dual is always a convex function: pointwise
supremum of a class of linear functions

e Under some technical condition on f (convex and lower semi-
continuous), the dual of dual is itself:

f=0")
f(0) =sup {0, ) — f* (1)}

7’
e See Convex Optimization book by Boyd for more details
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Computing Mean Parameter: Bernoulli
e Compute the conjugate
A* () == sup {6 — log[1 + exp(6)]}
OER
69
e Stationary condition U = 1+ ?
1 1 — u)log(l — if 1
s We i A*(M){u o+ (1= i) log(1 — ) if € [0,1]
+00 otherwise.

e The variational form to compute mean:

A(0) = max,eo,1] {M 0 — A*(M)}-

60

1+ e

e The optimum is achieved at =



Next Step ... o

e The last identity is not a coincidence but a deep theorem in
general exponential family

e However, for general graph models/exponential families,
computing the conjugate dual (negative entropy) is intractable

e Moreover, the constrain set of mean parameter is hard to
characterize

e Relaxing/Approximating them leads to different algorithms:
loop belief propagation, naive mean field, and etc.
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