
Clustering

CS294 Practical Machine Learning

Junming Yin
10/09/06



Outline
• Introduction

– Unsupervised learning

– What is clustering?  Application

• Dissimilarity (similarity) of objects

• Clustering algorithm

– K-means, VQ, K-medoids

– Gaussian mixture model (GMM), EM

– Hierarchical clustering

– Spectral clustering



Unsupervised Learning

• Recall in the setting of classification and
regression, the training data are represented
as          , the goal is to predict
given a new point

• They are called supervised learning

• In unsupervised setting, we are only given the
unlabelled data  , the goal is:

– Estimate density

– Dimension reduction: PCA, ICA (next week)

– Clustering, etc



What is Clustering?

• Roughly speaking, clustering analysis yields a data
description in terms of clusters or groups of data
points that posses strong internal similarity

– a dissimilarity function between objects
– an algorithm that operates on the function



What is Clustering?

• Unlike in supervised setting, there is no clear

measure of success for clustering algorithms;

people usually resort to heuristic argument to

judge the quality of the results, e.g. Rand index

(see web supplement for more details)

• Nevertheless, clustering methods are widely used

to perform exploratory data analysis (EDA) in the

early stages of data analysis and gain some

insight into the nature or structure of data



Application of Clustering

• Image segmentation: decompose the image into

regions with coherent color and texture inside them

• Search result clustering: group the search result set

and provide a better user interface (Vivisimo)

• Computational biology: group homologous protein

sequences into families; gene expression data

analysis

• Signal processing: compress the signal by using

codebook derived from vector quantization (VQ)
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Dissimilarity of objects

• The natural question now is: how should we measure
the dissimilarity between objects?

– fundamental to all clustering methods

– usually from subject matter consideration

– not necessarily a metric (i.e. triangle inequality
doesn’t hold)

– possible to learn the dissimilarity from data (later)

• Similarities can be turned into dissimilarities by

applying any monotonically decreasing transformation



Dissimilarity Based on Attributes

• Most of time, data have measurements        on
attributes

• Define dissimilarities between attribute values

– common choice:

• Combine the attribute dissimilarities to the object
dissimilarity, using the weighted average

• The choice of weights is also a subject matter

consideration; but possible to learn from data (later)



Dissimilarity Based on Attributes

• Setting all weights equal does not give all attributes
equal influence on the overall dissimilarity of objects!

• An attribute’s influence depends on its contribution to
the average object dissimilarity

• Setting      gives all attributes equal influence
in characterizing overall dissimilarity between objects

average dissimilarity of jth attribute



Dissimilarity Based on Attributes

• For instance, for squared error distance, the
average dissimilarity of jth attribute is twice the
sample estimate of the variance

• The relative importance of each attribute is
proportional to its variance over the data set

• Setting     (equivalent to standardizing the
data) is not always helpful since attributes may
enter dissimilarity to a different degree



Case Studies

Simulated data, 2-means
without standardization

Simulated data, 2-means
with standardization



Learning Dissimilarity

• Specifying an appropriate dissimilarity is far more important than
choice of clustering algorithm

• Suppose a user indicates certain objects are considered by them
to be “similar”:

• Consider learning a dissimilarity of form

– If A is diagonal,it corresponds to learn different weights for different

attributes

– Generally, A parameterizes a family of Mahalanobis distance

• Leaning such a dissimilarity is equivalent to finding a rescaling of

data; replace      by



Learning Dissimilarity

• A simple way to define a criterion for the

desired dissimilarity:

• A convex optimization problem, could be

solved by gradient descent and iterative

projection

• For details, see [Xing, Ng, Jordan, Russell ’03]



Learning Dissimilarity
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Old Faithful Data Set

Duration of eruption (minutes)

Time

between

eruptions

(minutes)



K-means

• Idea: represent a data set in terms of K

clusters, each of which is summarized by a

prototype

– Usually applied to Euclidean distance (possibly

weighted, only need to rescale the data)

• Each data is assigned to one of K clusters

– Represented by responsibilities     

such that              for all data indices i



K-means

• Example: 4 data points and 3 clusters

• Cost function:

prototypesresponsibilities

data



Minimizing the Cost Function
• Chicken and egg problem, have to resort to iterative

method

• E-step: minimize    w.r.t.

– assigns each data point to nearest prototype

• M-step: minimize    w.r.t
– gives

– each prototype set to the mean of points in that
cluster

• Convergence guaranteed since there is a finite number
of possible settings for the responsibilities

• only finds local minima, should start the algorithm with
many different initial settings





















How to Choose K?

• In some cases it is known apriori from problem

domain

• Generally, it has to be be estimate from data and

usually selected by some heuristics in practice

• The cost function J generally decrease with

increasing K

• Idea: Assume that K* is the right number

– We assume that for K<K* each estimated cluster

contains a subset of true underlying groups

– For K>K* some natural groups must be split

– Thus we assume that for K<K* the cost function falls

substantially, afterwards not a lot more



 K*



Vector Quantization

• Application of K-means for compressing signals
• 1024 1024 pixels, 8-bit grayscale

• 1 megabyte in total

• Break image into 2 2 blocks of pixels

resulting in 512 512 blocks, each 

represented by a vector in R4

• Run K-means clustering

– Known as Lloyd’s algorithm

– Each 512 512 block is approximated 

by its closest cluster centroid, 

known as codeword

– Collection of codeword is 

called the codebook Sir Ronald A. Fisher (1890-1962)



Vector Quantization

• Application of K-means for compressing signals
• 1024 1024 pixels, 8-bit grayscale

• 1 megabyte in total

• Storage requirement

– K 4 real numbers for the codebook 

(negligible)

– log2K bits for storing the code for    

each block (can also use variable 

length code)

– The ratio is:

– K = 200, the ratio is 0.239
K =200

2log /(4 8)K

# pixels per block # bits per pixel in
uncompressed image

# bits per block in
compressed image



Vector Quantization

• Application of K-means for compressing signals
• 1024 1024 pixels, 8-bit grayscale

• 1 megabyte in total

• Storage requirement

– K 4 real numbers for the codebook 

(negligible)

– log2K bits for storing the code for    

each block (can also use variable 

length code)

– The ratio is:

– K = 4, the ratio is 0.063
K = 4

2log /(4 8)K

# pixels per block # bits per pixel in
uncompressed image

# bits per block in
compressed image



K-medoids

• K-means algorithm is sensitive to outliers
– An object with an extremely large distance from others

may substantially distort the results, i.e., centroid is not
necessarily inside a cluster

• Idea: instead of using mean of data points within the

clusters, prototypes of clusters are restricted to be

one of the points assigned to the cluster (medoid)
– given responsibilities (assignments of points to clusters),

find one of the point within the cluster that minimizes total
dissimilarity to other points in that cluster

• Generally, computation of a cluster prototype

increases from n to n2



Limitations of K-means

• Hard assignments of data points to clusters
– Small shift of a data point can flip it to a different

cluster

– Solution: replace hard clustering of K-means with
soft probabilistic assignments (GMM)

• Hard to choose the value of K

– As K is increased, the cluster memberships can
change in an arbitrary way, the resulting clusters
are not necessarily nested

– Solution: hierarchical clustering



The Gaussian Distribution

• Multivariate Gaussian

• Maximum likelihood estimation

mean covariance



Gaussian Mixture

• Linear combination of Gaussians

• To generate a data point:
– first pick one of the components with probability

– then draw a sample       from that component

• Each data is generated by one of K Gaussians, a

latent variable               is associated

with each      ,

where

parameters to be estimated



Example: Mixture of 3 Gaussians
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Synthetic Data Set,

the colours are

latent variables



Synthetic Data Set Without Colours
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Fitting the Gaussian Mixture
• Given the complete data set

– the complete log likelihood

– trivial closed-form solution: fit each component to

the corresponding set of data points

• Without knowing values of latent variables, we

have to maximize the incomplete log likelihood:

– Sum over components appears inside the logarithm,

no closed-form solution



EM Algorithm
• E-step: for given parameter values we can

compute the expected values of the latent
variables (responsibilities of data points)

– Note that            instead of         but we still

have

Bayes rule



EM Algorithm

• M-step: maximize the expected complete log

likelihood

– update parameters:



EM Algorithm
• Iterate E-step and M-step until the log likelihood

of data does not increase any more

– converge to local optima

– need to restart algorithm with different initial guess
of parameters (as in K-means)

• Does maximizing the expected complete log
likelihood increases the log likelihood of data?

– Yes. Coordinate ascent algorithm, see Chapter 8
of Jordan’s book

• Relation to K-means

– Consider GMM with common covariance

– As              , two methods coincide















Hierarchical Clustering

• Does not require a preset number of clusters

• Organize the clusters in an hierarchical way

• Produces a rooted (binary) tree (dendrogram)
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Hierarchical Clustering
• Two kinds of strategy

– Bottom-up (agglomerative): recursively merge two groups with

the smallest between-cluster dissimilarity (defined later on)

– Top-down (divisive): in each step, split a least coherent cluster

(e.g. largest diameter); splitting a cluster is also a clustering

problem (usually done in a greedy way); less popular than

bottom-up way
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Hierarchical Clustering

• User can choose a cut through the hierarchy to

represent the most natural division into clusters

– e.g, choose the cut where intergroup dissimilarity

exceeds some threshold
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Hierarchical Clustering

• Have to measure the dissimilarity for two
disjoint groups G and H,         is computed
from pairwise dissimilarities

– Single Linkage: tends to yield extended clusters

– Complete Linkage: tends to yield round clusters

– Group Average: tradeoff between them; however,

not invariant to monotone transformation of

dissimilarity function



Example: Human Tumor Microarray Data

• 6830 64 matrix of real numbers

• Rows correspond to genes, 

columns to tissue samples

• Cluster rows (genes) can deduce 

functions of unknown genes from 

known genes with similar 

expression profiles

• Cluster columns (samples) can 

identify disease profiles: tissues 

with similar disease should yield 

similar expression profiles

Gene expression matrix



Example: Human Tumor Microarray Data

• 6830 64 matrix of real numbers

• GA clustering of the microarray data

– Applied separately to rows and columns

– Subtrees with tighter clusters placed on the left

– Produces a more informative picture of genes and

samples than the randomly ordered rows and columns



Spectral Clustering

• Idea: use the top eigenvectors of a matrix

derived from distance between data

points

• Too many versions of spectral clustering

algorithms

– has roots in spectral graph partitioning

– only look at one version by Ng, Jordan and

Weiss

– see website for more papers and softwares



Spectral Clustering

• Given a set of points   , we’d like to
cluster them into k clusters
– Form an affinity matrix                  where

– Define

– Find k largest eigenvectors of L, concatenate them

columnwise to obtain

– Form the matrix Y by normalizing each row of X to
have unit length

– Think of n rows of Y as a new representation of
original n data points; cluster them into k clusters
using K-means



Example: Two circles



Example: Two circles



Analysis of algorithm (Ideal case)
• In ideal case, say there are 3 clusters that are

infinitely far away from each other, then the affinity

matrix becomes:

• The eigenvalues and eigenvectors of L are the union

of eigenvalues and eigenvectors of its block (the

latter padded appropriately with zeros)

– From spectral graph theory, we know that each block

has a strictly positive principal eigenvector      with

eigenvalue 1, the next eigenvalue is strictly less than 1



Analysis of algorithm (Ideal case)
• Stack L’s eigenvectors in columns to obtain X and

normalize the rows of X to obtain Y:

• The rows of Y corresponds to three orthogonal points lying

on a unit sphere. Running K-means will immediately find

three clusters

• In general case, have to rely on matrix perturbation theory,

see paper for more details

• Also can choose width of Gaussian kernel automatically,

see paper for more details


