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Unsupervised Learning

* Recall in the setting of classification and
regression, the training data are represented
as (z;,v;)i=1..n, the goal Is to predict ¥n+1
given a new point z,41

 They are called supervised learning

* In unsupervised setting, we are only given the
unlabelled data (z;)i=1,...», the goal Is:

— Estimate density P(x)
— Dimension reduction: PCA, ICA (next week)
— Clustering, etc



What Is Clustering?

* Roughly speaking, clustering analysis yields a data
description in terms of clusters or groups of data
points that posses strong internal similarity

— a dissimilarity function between objects
— an algorithm that operates on the function




What Is Clustering?

e Unlike Iin supervised setting, there is no clear
measure of success for clustering algorithms;
people usually resort to heuristic argument to
judge the quality of the results, e.g. Rand index
(see web supplement for more details)

* Nevertheless, clustering methods are widely used
to perform exploratory data analysis (EDA) in the
early stages of data analysis and gain some
Insight into the nature or structure of data



Application of Clustering

Image segmentation: decompose the image into
regions with coherent color and texture inside them

Search result clustering: group the search result set
and provide a better user interface (\Vivisimo)

Computational biology: group homologous protein
seguences into families; gene expression data
analysis

Signal processing. compress the signal by using
codebook derived from vector quantization (VQ)
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Dissimilarity of objects

e The natural guestion now is: how should we measure
the dissimilarity between objects?

— fundamental to all clustering methods
— usually from subject matter consideration

— not necessarily a metric (i.e. triangle inequality
doesn’t hold)

— possible to learn the dissimilarity from data (later)

e Similarities can be turned into dissimilarities by
applying any monotonically decreasing transformation



Dissimilarity Based on Attributes

Most of time, data Z; have measurements Z;; on
attributes j =1,...,p.

Define dissimilarities between attribute values

— common choice: d;(x;j, ;) = (xij — xy5)°

Combine the attribute dissimilarities to the object
dissimilarity, using the weighted average

D(CUi, SC'Z'/) — Z?:l wjdj (CIL‘@j,CEi/j) where Z?:l wy; = 1

The choice of weights Is also a subject matter
consideration; but possible to learn from data (later)



Dissimilarity Based on Attributes

o Setting all weights equal does not give all attributes
equal influence on the overall dissimilarity of objects!

« An attribute’s influence depends on its contribution to
the average object dissimilarity

D= 5300 > i D(@i,zi) = j=1 w;d,

average dissimilarity of jth attribute _ X . .
dj = 7= Dzt 2ui=1 45 (Tij, Tivj)

e Setting w; < 1/d; gives all attributes equal influence
In characterizing overall dissimilarity between objects



Dissimilarity Based on Attributes

e For instance, for squared error distance, the
average dissimilarity of jth attribute is twice the
sample estimate of the variance

dj = 25 >0 4 Yoy (@ij — xirj)? = 2var;

* The relative importance of each attribute is
proportional to its variance over the data set

e Setting w; x 1/d; (equivalent to standardizing the
data) is not always helpful since attributes may
enter dissimilarity to a different degree



Case Studies
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Learning Dissimilarity

Specifying an appropriate dissimilarity is far more important than
choice of clustering algorithm

Suppose a user indicates certain objects are considered by them
to be “similar”:

(x5,2;) € S if x; and z; are similar

Consider learning a dissimilarity of form

D(ZE?;,CIZJ') = ||CEZ — ZIZJ'HA _ \/(CIJZ — ZEj)TA(ZBZ' — ij)

— If A'is diagonal,it corresponds to learn different weights for different
attributes
— Generally, A parameterizes a family of Mahalanobis distance

Leaning such a dissimilarity is equivalent to finding a rescaling of
data; replace = by A%



Learning Dissimilarity

« A simple way to define a criterion for the
desired dissimilarity:

“i.{“ 2 (aiws)es 1%i = ;[

s.1. Z[_r!“r} vep 1T —xj|la =1,
A= 0.

* A convex optimization problem, could be

solved by gradient descent and iterative
projection

e For detalls, see [Xing, Ng, Jordan, Russell '03]



Learning Dissimilarity

2-class data (original) 2-clasz data projection (Newton)
2-class gata projection (19)
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Old Faithful Data Set
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K-means

e |dea: represent a data set in terms of K
clusters, each of which is summarized by a
prototype U

— Usually applied to Euclidean distance (possibly
weighted, only need to rescale the data)

 Each data is assigned to one of K clusters

— Represented by responsibilities 73, € 10, 1}
K
such that » ~ r;, = 1 for all data indices i
k=1



K-means

 Example: 4 data points and 3 clusters
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e Cost function: data
K

n
IT=3 % rielzi — pll?
i=1

responsibilities prototypes



Minimizing the Cost Function

Chicken and egg problem, have to resort to iterative
method

E-step: minimize J w.r.t. Tik
— assigns each data point to nearest prototype

M-step: minimize J w.r.t g
— gives

= 2i TikTi
i Tik
— each prototype set to the mean of points in that
cluster

Convergence guaranteed since there is a finite number
of possible settings for the responsibilities

only finds local minima, should start the algorithm with
many different initial settings































How to Choose K?

In some cases it is known apriori from problem
domain

Generally, it has to be be estimate from data and
usually selected by some heuristics in practice

The cost function J generally decrease with
iIncreasing K
ldea: Assume that K* is the right number

— We assume that for K<K* each estimated cluster
contains a subset of true underlying groups

— For K>K* some natural groups must be split

— Thus we assume that for K<K* the cost function falls
substantially, afterwards not a lot more
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Vector Quantization

Application of K-means for compressmg signals
1024x1024 pixels, 8-bit grayscale | -

1 megabyte in total

Break image into 2x2 blocks of pixels
resulting in 512 x512 blocks, each
represented by a vector in R*

Run K-means clustering
— Known as Lloyd’s algorithm

— Each 512 x512 block is approximated
by its closest cluster centroid,
known as codeword

— Collection of codeword is i
called the codebook Sir Ronald A. Fisher (1890-1962)




Vector Quantization

Application of K-means for compressing signals
1024x1024 pixels, 8-bit grayscale ‘
1 megabyte in total

Storage requirement
— Kx4 real numbers for the codebook
(negligible)
— log,K bits for storing the code for

each block (can also use variable
length code)

— Theratio is:
log, K /(4-8)
—
# bits per block in / \ # bits per pixel in

compressed image # pixels per block uncompressed image K =200

— K =200, the ratio is 0.239




Vector Quantization

Application of K-means for compressing signals
1024x1024 pixels, 8-bit grayscale ¥
1 megabyte in total r

Storage requirement
— Kx4 real numbers for the codebook
(negligible)
— log,K bits for storing the code for

each block (can also use variable
length code)

— The ratio is:
log, K /(4-8)
7
# bits per block in / \ # bits per pixel in

compressed image # Pixels per block uncompressed image

— K =4, the ratio is 0.063

g
- |




K-medoids

 K-means algorithm is sensitive to outliers

— An object with an extremely large distance from others
may substantially distort the results, i.e., centroid is not
necessarily inside a cluster

e |dea: instead of using mean of data points within the
clusters, prototypes of clusters are restricted to be

one of the points assigned to the cluster (medoid)

— given responsibilities (assignments of points to clusters),
find one of the point within the cluster that minimizes total
dissimilarity to other points in that cluster

* Generally, computation of a cluster prototype
Increases from n to n?




Limitations of K-means

e Hard assignments of data points to clusters

— Small shift of a data point can flip it to a different
cluster

— Solution: replace hard clustering of K-means with
soft probabilistic assignments (GMM)

e Hard to choose the value of K

— As K is increased, the cluster memberships can
change in an arbitrary way, the resulting clusters
are not necessarily nested

— Solution: hierarchical clustering




The Gaussian Distribution

 Multivariate Gaussian

_ 1 e NP1
mean covariance

e Maximum likelihood estimation



Gaussian Mixture

e Linear combination of Gaussians

K K

p(z) = Y mN(z|pg, k) where Y m =1, 0<m <1

parameters to be estimated

 To generate a data point:
— first pick one of the components with probability 7
— then draw a sample x; from that component

 Each data is generated by one of K Gaussians, a
latent variable z; = (z;1,...,2;Kk) is associated

) K
with each T; | D11 zit = 1 and p(zi = 1) = 1,



Example: Mixture of 3 Gaussians

1 - 1

{05, gn gty

0 0.5 10 0.5 1

Synthetic Data Set,
p(z|k) y
the colours are
latent variables



Synthetic Data Set Without Colours
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Fitting the Gaussian Mixture

Given the complete data set (z,2) = (2, 2:)i=1....n
— the complete log likelihood

n K
Inp(z, zlm, 1, 2) = Y > zig{Inm + INN (2] pg, Zp) }
i—=1 k=1
— trivial closed-form solution: fit each component to

the corresponding set of data points p(z;|m, 1, )
Without knowing values of latent variables, WV

have to maximize the incomplete log likelihood;

n K
Inp(z|m, pu, ) = Y In{ > mN(zlug, >p)}
i=1 k=1
— Sum over components appears inside the logarithm,
no closed-form solution



EM Algorithm

E-step: for given parameter values we can
compute the expected values of the latent
variables (responsibilities of data points)

rie = E(zi) = p(zip = 1|z, m,p, )
— p(zik — 1)p(xz‘zzk — 17777.“7 Z)

/ S8 p(zir = Dp(zilzie = 1, m, 0, )

N(z;|ur., >
Bayes rule = Kwk (/\;|k- k>z
>t TN (25| ug, 2

— Note that 7;; € |0, 1]instead of {0, 1} but we still
have Zszl r;r. = 1 for all ¢



EM Algorithm

« M-step: maximize the expected complete log
likelihood

n K
Ellnp(z, z|lm, p, D) = > > rig{Inme + InN (2| g, Zp) }
i—1 p—1

— update parameters:

= MKl —
n i Tik

Tk

_ i Tik(wy — ) (2 — pp)t

2k
>i Tik




EM Algorithm

Iterate E-step and M-step until the log likelihood
of data does not increase any more

— converge to local optima

— need to restart algorithm with different initial guess
of parameters (as in K-means)

Does maximizing the expected complete log
likelihood increases the log likelihood of data?

— Yes. Coordinate ascent algorithm, see Chapter 8
of Jordan’s book

Relation to K-means
— Consider GMM with common covariance ¥, = §°1
— As 4% — 0,r;. — 0 or 1, two methods coincide





















Hierarchical Clustering

e Does not require a preset number of clusters
e Organize the clusters in an hierarchical way

* Produces a rooted (binary) tree (dendrogram)

Step0 Stepl Step2 Step3 Step 4 :
| | | | | >agglomeratlve

« | | | | divisive
Step4 Step3 Step2 Stepl StepO



Hierarchical Clustering

* Two kinds of strategy

— Bottom-up (agglomerative): recursively merge two groups with
the smallest between-cluster dissimilarity (defined later on)

— Top-down (divisive): in each step, split a least coherent cluster
(e.g. largest diameter); splitting a cluster is also a clustering
problem (usually done in a greedy way); less popular than
bottom-up way

Step0 Stepl Step2 Step3 Step 4 :
| | | | | >agglomeratlve

« | | | | divisive
Step4 Step3 Step2 Stepl StepO




Hierarchical Clustering

* User can choose a cut through the hierarchy to
represent the most natural division into clusters

— e.g, choose the cut where intergroup dissimilarity
exceeds some threshold

Step0 Stepl Ste
| | |

2 Step3 Step4

| >agglomerative

< divisive



Hierarchical Clustering

 Have to measure the dissimilarity for two
disjoint groups G and H, D(G, H)is computed
from pairwise dissimilarities D(i, j) withi € G,j € H

— Single Linkage: tends to yield extended clusters
DSL(G7 H) = MiNicq,jeH D(iaj)

— Complete Linkage: tends to yield round clusters
DCL(Ga H) — MaX;eq,jeH D(iaj)

— Group Average: tradeoff between them; however,
not invariant to monotone transformation of
dissimilarity function

DGA(G> H) = ZiEG,jEH D(i,j)

nGgny




Example: Human Tumor Microarray Data

_ Gene expression matrix
6830x64 matrix of real numbers

I
300102

Rows correspond to genes,
columns to tissue samples

Cluster rows (genes) can deduce
functions of unknown genes from
known genes with similar
expression profiles

Cluster columns (samples) can
identify disease profiles: tissues
with similar disease should yield
similar expression profiles




Example: Human Tumor Microarray Data

e 6830x64 matrix of real numbers

* GA clustering of the microarray data
— Applied separately to rows and columns
— Subtrees with tighter clusters placed on the left

| — Produces a more informative picture of genes and
samples than the randomly ordered rows and columns

H i

1 5=
1 Tl '1 DT T
1




Spectral Clustering

* |dea: use the top eigenvectors of a matrix
derived from distance between data
points

 Too many versions of spectral clustering
algorithms

— has roots in spectral graph partitioning
— only look at one version by Ng, Jordan and

Weiss
— see website for more papers and softwares



Spectral Clustering

« Given a set of points sy, ...,s, € R, we'd like to
cluster them into k clusters
— Form an affinity matrix A € R™*™ where
Aij = exp(=||si — s;|[*/20%)
— Define D = diag(W1) and L = D~'/2AD~1/2

— Find k largest eigenvectors of L, concatenate them
columnwise to obtain X = [z1, 29, ...,x] € R™*F

— Form the matrix Y by normalizing each row of X to
have unit length

— Think of n rows of Y as a new representation of
original n data points; cluster them into k clusters
using K-means



Two circles

Example

two circles, 2 clustera (K-means)

15¢



Example: Two circles

Rowe of ¥ (jitterad, randomly subsamplad) for twocirclee 5 twocircles, 2 clusters
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Analysis of algorithm (ldeal case)

* Inideal case, say there are 3 clusters that are
infinitely far away from each other, then the affinity
matrix becomes:

A0 0
A= 0 A% 0

0 0 A°

« The eigenvalues and eigenvectors of L are the union
of eigenvalues and eigenvectors of its block (the
latter padded appropriately with zeros)

— From spectral graph theory, we know that each block L*
has a strictly positive principal eigenvector 27 with
eigenvalue 1, the next eigenvalue is strictly less than 1



Analysis of algorithm (ldeal case)

Stack L’s eigenvectors in columns to obtain X and
normalize the rows of X to obtain Y:

Tzl 0 0
X=10 T4 0
0 0 2% |

Y =

Sl Ol Y

i )]

=l QL Ol

The rows of Y corresponds to three orthogonal points lying
on a unit sphere. Running K-means will immediately find

three clusters

In general case, have to rely on matrix perturbation theory,
see paper for more details

Also can choose width of Gaussian kernel automatically,
see paper for more details



